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Part I : Experimental results

Typical end shortening vs load plot:

(Esslinger)

B Post-buckle minimum load
B Post-buckle plateau in load



Collection of 4 experimental results:
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Donnell (steel)
Power law fit : Y=1.0275X−0.17596

Donnell (brass)
Power law fit : Y=0.51114X−0.087858

Bridget et al
Power law fit : y=0.37343x−0.0050409

Ballerstedt & Wagner
Power law fit : y=4.2246x−0.3745

Linear prediction λfail/λcr = 1



Question :

I Can we understand the buckling load mathematically ?
(Can we bound the load at which cylinder buckles)



Part II : A Model
von Kármán-Donnell equations:

κ2∆2w + λwxx − ρφxx − 2G (w , φ) = 0

∆2φ + ρwxx + G (w ,w) = 0.

where

G (u, v) =
1

2
uxxvyy +

1

2
uyyvxx − uxyvxy

κ2 =
t2

12(1− ν2)
, λ =

P

2πREt
, ρ =

1

R

(x , y) ∈ Ω = [−L, L]× [0, 2πR).

Assumptions:B Thin, isotropic shell
B Elastic buckle and curvature not too large
B No pre-buckle
B Normals stay normal, plane stress

and small angle approximation for strain tensor.



von Kármán-Donnell equations:

κ2∆2w + λwxx − ρφxx − 2G (w , φ) = 0

∆2φ + ρwxx + G (w ,w) = 0.

Euler–Lagrange equation with
IStored energy:

E (w) =
Et

2

∫
Ω

[
κ2∆w2 + ∆φ2

]
dxdy .

IConstraint : average axial end-shortening associated with w

S(w) =
1

4πR

∫
Ω

w2
x dxdy .

I Solutions of vKD equations are stationary points of

Total Potential : Fλ(w) = E (w)− λS(w).

I Solutions also stationary points of E (w) under constant S(w).



Part III : Mountain Pass Solution

Let w1 6= w2 be two vectors in a space X . Define

Γ = {γ ∈ C ([0, 1],X ) | γ(0) = w1, γ(1) = w2} ,

c = inf
γ∈Γ

max
t∈[0,1]

F (γ(t)) .

If c > max{F (w1),F (w2)} and F satisfies (PS)c , then c is a
critical value of F .



Mountain Pass [Ambrosetti and Rabinowitz]

MP1. We show w1 = 0 is a local minimizer: there are %, α > 0 such
that Fλ(w) ≥ α for all w with ‖w‖X = %;

MP2. If domain is large enough, then there exists w2 with
‖w2‖X > % and Fλ(w2) ≤ 0.
Based on Yoshimura diamond pattern.

MP3. Given sequence of paths γn that approximates inf in defn.
Extract a (Palais-Smale) sequence of points wn ∈ γn, each
close to the maximum along γn.
Show this sequence converges in an appropriate manner.
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Mountain Pass [Ambrosetti and Rabinowitz]

MP1. We show w1 = 0 is a local minimizer: there are %, α > 0 such
that Fλ(w) ≥ α for all w with ‖w‖X = %;

MP2. If domain is large enough, then there exists w2 with
‖w2‖X > % and Fλ(w2) ≤ 0.
Based on Yoshimura diamond pattern.

MP3. Given sequence of paths γn that approximates inf in defn.
Extract a (Palais-Smale) sequence of points wn ∈ γn, each
close to the maximum along γn.
Show this sequence converges in an appropriate manner.

In fact use the “Struwe monotonicity trick” (’90) to get a.e. λ



Mountain Pass Alg. : Y. S. Choi, P. J. McKenna (1993)

1) — Initial discrete path. Take P points:

zj = w1 +
j

P
(w2 − w1), j ∈ {0, 1, . . . ,P}

2) — Main loop:

(a) find m: ∀j F (zm) ≥ F (zj), interpolate,
(b) compute ∇F (zm),
(c) deform the path: δ > 0 (small) znew

m = zm − δ∇F (zm),
(d) STOP when F increases.

3) — Infinite loop: re-distribute points on path



Numerical Solutions

Ω = (−100, 100)× (−100, 100), ∆x = ∆y = 0.5, λ = 1.1
Found using different choices of w2.
Min energy solution ≡ Single Dimple



Steepest Descent:

(a) Fλ ≈ 5 (b) Fλ ≈ −15 (c) Fλ ≈ −5× 104
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Ω = (−200, 200)× (−115, 115), ∆x = ∆y = 0.5, λ = 1.1



Interpretation of MP ?

I Have found the mountain pass energy for the perfect cylinder
–
how does this give a handle on an imperfect “real” cylinder ?

I Consider the minimum mountain–pass energy: V = infw2 Fλ.

I In order to leave the basin of attraction of w1, the surplus
energy should exceed V (λ)



Imperfections and MP

Suppose stored energy from being under load can be transfered to
overcome the mountain pass.
Rescale MP energy V (λ) by elastic strain energy stored in cylinder
of length L :

α =
1

2π
√

3(1− ν2)

t

L

V (λ)

λ2
.
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Imperfections and MP

1. The general trend of the constant-α curves is very similar to
the trend of the experimental data;

2. The α = 1 curve, which indicates the load at which the
mountain-pass energy equals the stored energy in the
prebuckled cylinder, appears to be a lower bound to the data.
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Nasa knockdown
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Other single dimples ...

I Single dimples are seen in the high-speed camera images of
Esslinger.

I Some “worst imperfections” by Deml and Wunderlich, Deml,
Wunderlich and Albertin are single dimples.

I Single dimples are seen in finite element simulations (eg
Schweizerhof)



Summary ...

I Mountain pass solutions
I Elements for proof
I Numerical algorithm
I Solutions

I From MP solutions seems can get a lower bound on the
buckling load.
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