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Part | : Experimental results

Typical end shortening vs load plot:
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> Post-buckle minimum load
> Post-buckle plateau in load



Collection of 4 experimental results:
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Question :

» Can we understand the buckling load mathematically ?
(Can we bound the load at which cylinder buckles)



Part Il : A Model

von Karman-Donnell equations:

I{2A2W + )\WXX - quxx - 2G(W’ ¢) =0
A2¢ + pWxx + G(Wv W) =0.
where
1 1
G(u’ V) = §UxxVyy + EUnyXx — Uxy Vxy
2 _ t72 )= L p= l
12(1 — 12)’ 2 REt’ R
(x,y) € Q=[-L,L] x[0,27R).

K

Assumptions:>> Thin, isotropic shell
>> Elastic buckle and curvature not too large
> No pre-buckle
> Normals stay normal, plane stress
and small angle approximation for strain tensor.



von Karman-Donnell equations:

K2A2W + Ay — posx — 2G(w, ) =0
A%+ pwix + G(w, w) = 0.
Euler—-Lagrange equation with
»Stored energy:

Et

E(w) 5

/ (k> Aw? + A¢?] dxdy.
Q
»Constraint : average axial end-shortening associated with w

S(w) = —

2
R W, axay

» Solutions of vKD equations are stationary points of
Total Potential : Fax(w) = E(w) — AS(w).

» Solutions also stationary points of E(w) under constant S(w).



Part |1l : Mountain Pass Solution
Let wy # ws be two vectors in a space X. Define

M= {7 € (10,11, X) [1(0) = wi, (1) = wa},

= inf max F((t)).
¢ = Inf max F((t)

If ¢ > max{F(w1), F(w2)} and F satisfies (PS)., then cis a
critical value of F.




Mountain Pass [Ambrosetti and Rabinowitz]

MP1. We show w; = 0 is a local minimizer: there are o, a > 0 such
that Fy(w) > a for all w with ||w||x = o;
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MP1. We show wy = 0 is a local minimizer: there are g, > 0 such
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MP2. If domain is large enough, then there exists wy with
HWQHX > o and F)\(Wg) <0.
Based on Yoshimura diamond pattern.
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Mountain Pass [Ambrosetti and Rabinowitz]

MP1. We show w; = 0 is a local minimizer: there are g, > 0 such
that Fy(w) > « for all w with [|w||x = o;

MP2. If domain is large enough, then there exists wy with
|lwal|x > 0 and Fy(w2) < 0.
Based on Yoshimura diamond pattern.

MP3. Given sequence of paths v, that approximates inf in defn.
Extract a (Palais-Smale) sequence of points w, € 7,, each
close to the maximum along .
Show this sequence converges in an appropriate manner.

In fact use the “Struwe monotonicity trick” ('90) to get a.e. A



Mountain Pass Alg. : Y. S. Choi, P. J. McKenna (1993)

1) — Initial discrete path. Take P points:
7 = W1+%(W2—W1),je 0,1,...,P}

2) — Main loop:
(a) find m: Vj F(zm) > F(z;), interpolate,
(b) compute VF(zp),
(c) deform the path: § > 0 (small) z*™ = z,, — 6V F(zm),
(d) STOP when F increases.
3) — Infinite loop: re-distribute points on path




Numerical Solutions

Q = (-100,100) x (—100,100), Ax = Ay =05, A =1.1
Found using different choices of ws.
Min energy solution = Single Dimple



Steepest Descent:

(a) Fx~5 (b) Fyx~ —15 (c) F) ~ —5 x 10*

-5 0 5 10
distance in X

Q = (—200,200) x (—115,115), Ax = Ay = 0.5, A= 1.1



Interpretation of MP 7

» Have found the mountain pass energy for the perfect cylinder

how does this give a handle on an imperfect “real” cylinder ?

» Consider the minimum mountain—pass energy: V = inf,, F).

» In order to leave the basin of attraction of wy, the surplus
energy should exceed V/(\)



Imperfections and MP

Suppose stored energy from being under load can be transfered to
overcome the mountain pass.
Rescale MP energy V/(\) by elastic strain energy stored in cylinder

of length L :
1 t V(N
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Imperfections and MP

1. The general trend of the constant-a curves is very similar to
the trend of the experimental data;

2. The a =1 curve, which indicates the load at which the
mountain-pass energy equals the stored energy in the
prebuckled cylinder, appears to be a lower bound to the data.
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Nasa knockdown
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Other single dimples ...

» Single dimples are seen in the high-speed camera images of
Esslinger.

» Some "worst imperfections” by Deml and Wunderlich, Deml,
Wunderlich and Albertin are single dimples.

» Single dimples are seen in finite element simulations (eg
Schweizerhof)




Summary ...

» Mountain pass solutions
» Elements for proof
» Numerical algorithm
» Solutions
» From MP solutions seems can get a lower bound on the
buckling load.
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