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Part I : Experimental results

Typical end shortening vs load plot:

(Esslinger)

B Post-buckle minimum load
B Post-buckle plateau in load



B Localized buckled solution

B Translation invariant
B Well defined circumferential wave number s
B 2 forms of solution : Symmetric & Cross Symmetric.



Collection of experimental results:
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Donnell (steel)
Power law fit : Y=1.0275X−0.17596

Donnell (brass)
Power law fit : Y=0.51114X−0.087858

Bridget et al
Power law fit : y=0.37343x−0.0050409

Ballerstedt & Wagner
Power law fit : y=4.2246x−0.3745

Linear prediction λfail/λcr = 1



Questions :

1. Can we compute post-buckle solution and loads ?

2. Can we predict the load at which cylinder buckles ?



Part II : A Model
von Kármán-Donnell equations:

κ2∆2w + λwxx − ρφxx − 2G (w , φ) = 0

∆2φ + ρwxx + G (w ,w) = 0.

where

G (u, v) =
1

2
uxxvyy +

1

2
uyyvxx − uxyvxy

κ2 =
t2

12(1− ν2)
, λ =

P

2πREt
, ρ =

1

R

(x , y) ∈ Ω = [−L, L]× [0, 2πR).

Assumptions:B Thin, isotropic shell
B Elastic buckle and curvature not too large
B No pre-buckle
B Normals stay normal, plane stress

and small angle approximation for strain tensor.



κ2∆2w + λwxx − ρφxx − 2G (w , φ) = 0

∆2φ + ρwxx + G (w ,w) = 0.

Stored energy:

E (w) =
Et

2

∫
Ω

[
κ2∆w2 + ∆φ2

]
dxdy ,

Constraint is the average axial end-shortening associated with
deflection w

S(w) =
1

4πR

∫
Ω

w2
x dxdy .

I Solutions of vKD equations are stationary points of

Total Potential Fλ(w) = E (w)− λS(w).

I Solutions also stationary points of E (w) under constant S(w).



Part III : Post-buckle paths:

© Dynamic Analogy :

I Seek localized buckle solutions as homoclinic solution

I BCs (L = ∞): w , φ + derivatives −→ 0 as
x −→ ±∞.

I Seek solution in subspace of circumferential wave
number.

I Discretize by Galerkin circumferentially have large
system of ODEs in axial direction.

© Use numerical continuation



Test Results for Yamaki Shell :

L = 160.9(mm) R = 100(mm) t = 0.247(mm)

E = 5.56(GPa) ν = 0.3

For this shell: L/2πR ≈ 0.25 ... not very long
Number of circumferential waves s = 11.
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s=11 λmin
λcl

Wmin Wmax

Experiment 0.24 -0.9 1.9
Homoclinic 0.242 -0.866 1.966

Rel. Error : ≈ 0.05



Cellular buckling
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Cellular buckling
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Post-buckle & Homoclinics

I Given circumferential wave number s get
good agreement with post-buckle regime . . .

I Finite shell length in experiments : but
infinite homoclinic approximation works well.

I Determination of circumferential wave number
next project ??



Part IV : Mountain Pass Solution

Let w1 6= w2 be two vectors in a space X . Define

Γ = {γ ∈ C ([0, 1],X ) | γ(0) = w1, γ(1) = w2} ,

c = inf
γ∈Γ

max
t∈[0,1]

F (γ(t)) .

If c > max{F (w1),F (w2)} and F satisfies (PS)c , then c is a
critical value of F .



Mountain Pass

MP1. We show that w1 = 0 is a local minimizer: there are
%, α > 0 such that Fλ(w) ≥ α for all w with
‖w‖X = %;

MP2. If domain is large enough, then there exists w2 with
‖w2‖X > % and Fλ(w2) ≤ 0. Based on Yoshimura
diamond pattern.

MP3. Given a sequence of paths γn that approximates the
infimum in defn, we extract a (Palais-Smale)
sequence of points wn ∈ γn, each close to the
maximum along γn, and show that this sequence
converges in an appropriate manner.



Mountain Pass Alg. : Y. S. Choi, P. J. McKenna (1993)

Phase 1 — Initial discrete path. Take P points:
zj = w1 + j

P (w2 − w1), j ∈ {0, 1, . . . ,P}
Phase 2 — Main loop:

(a) find m: ∀j F (zm) ≥ F (zj), interpolate,
(b) compute ∇F (zm),
(c) deform the path: δ > 0 (small) znew

m = zm − δ∇F (zm),
(d) STOP when F increases.

Phase 3 — Infinite loop: re-distribute points on path



Numerical Solutions

Ω = (−100, 100)× (−100, 100), ∆x = ∆y = 0.5, λ = 1.1
Found using different choices of w2.
Min energy solution ≡ Single Dimple



Steepest Descent:

(a) Fλ ≈ 5 (b) Fλ ≈ −15 (c) Fλ ≈ −5× 104
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Ω = (−200, 200)× (−115, 115), ∆x = ∆y = 0.5, λ = 1.1



Interpretation of MP ?

Have found the mountain pass energy for the perfect cylinder –
how does this give a handel on an imperfect “real” cylinder ?
Consider the minimum mountain–pass energy: V = infw2 Fλ.

In order to leave the basin of attraction of w1, the surplus energy
should exceed V (λ)



Imperfections and MP

Suppose stored energy from being under load can be transfered to
overcome the mountain pass.
Rescale MP energy V (λ) by elastic strain energy stored in cylinder
of length L :

α =
1

2π
√

3(1− ν2)

t

L

V (λ)

λ2
.
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Imperfections and MP

1. The general trend of the constant-α curves is very similar to
the trend of the experimental data;

2. The α = 1 curve, which indicates the load at which the
mountain-pass energy equals the stored energy in the
prebuckled cylinder, appears to be a lower bound to the data.
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Nasa knockdown
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Other single dimples ...

I Single dimples are seen in the high-speed camera images of
Esslinger.

I Some “worst imperfections” by Deml and Wunderlich, Deml,
Wunderlich and Albertin are single dimples.

I Single dimples are seen in finite element simuations (eg
Schweizerhof)



Summary ...

I Axially localized solutions : found as homoclinic orbit
I Computations of post-buckle paths and cellular buckling
I Mountain pass solutions

I Elements for proof
I Numerical algorithm
I Solutions

I From MP solutions seems can get a lower bound on the
buckling load.
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