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Part 1 Experimental Evidence

» Axially localized solution
» Buckle/failure load

Part 2 Model
Part 3 Post-Buckle
» Homoclinic solution
(with G. Hunt (Bath) and A. Champneys
(Bristol))
Part 4 Failure load for cylinder
» Mountain pass



Part | : Experimental results

Typical end shortening vs load plot:
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> Post-buckle minimum load
> Post-buckle plateau in load



> Localized buckled solution

> Translation invariant
> Well defined circumferential wave number s
> 2 forms of solution : Symmetric & Cross Symmetric.




Collection of experimental results:
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Questions :

1. Can we compute post-buckle solution and loads ?

2. Can we predict the load at which cylinder buckles ?



Part Il : A Model

von Karman-Donnell equations:

I{2A2W + )\WXX - quxx - 2G(W’ ¢) =0
A2¢ + pWxx + G(Wv W) =0.
where
1 1
G(u’ V) = §UxxVyy + EUnyXx — Uxy Vxy
2 _ t72 )= L p= l
12(1 — 12)’ 2 REt’ R
(x,y) € Q=[-L,L] x[0,27R).

K

Assumptions:> Thin, isotropic shell
>> Elastic buckle and curvature not too large
> No pre-buckle
> Normals stay normal, plane stress
and small angle approximation for strain tensor.



K2APW + AWy — Pk — 2G(w,¢) =0
A%p + pwi + G(w, w) = 0.

Stored energy:

Et

E(w) =~

/ [I{ZAWZ + Acbz] dxdy,
Q

Constraint is the average axial end-shortening associated with
deflection w

S(w) = R /., w2 dxdy.

» Solutions of vKD equations are stationary points of
Total Potential Fa(w) = E(w) — AS(w).

» Solutions also stationary points of E(w) under constant S(w).



Part Il : Post-buckle paths:

(O Dynamic Analogy :

» Seek localized buckle solutions as homoclinic solution

» BCs (L= o0): w,¢ + derivatives — 0 as
X — =o0.

» Seek solution in subspace of circumferential wave
number.

Discretize by Galerkin circumferentially have large
system of ODEs in axial direction.

(O Use numerical continuation



Test Results for Yamaki Shell :

L =160.9(mm) R =100(mm) t = 0.247(mm)
E =556(GPa) v =023

For this shell: L/2mR =~ 0.25 ... not very long
Number of circumferential waves s = 11.
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Test Results for Yamaki Shell :

L =160.9(mm) R =100(mm) t = 0.247(mm)
E =5.56(GPa) v =0.3

For this shell: L/2mR =~ 0.25 ... not very long

Number of circumferential waves s = 11.
s=11

aro-length
s=11 ‘ )\)\":'I" ‘ Whin ‘ Winax
Experiment | 0.2 -0.9 1.9 Rel. Error: ~ 0.05
Homoclinic | 0.242 | -0.866 | 1.966




Cellular buckling
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Cellular buckling
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Cellular buckling
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Post-buckle & Homoclinics

» Given circumferential wave number s get
good agreement with post-buckle regime ...

» Finite shell length in experiments : but
infinite homoclinic approximation works well.

» Determination of circumferential wave number
next project 77



Part IV : Mountain Pass Solution
Let wy # ws be two vectors in a space X. Define

M= {7 € (10,11, X) [1(0) = wi, (1) = wa},

= inf max F((t)).
¢ = Inf max F((t)

If ¢ > max{F(w1), F(w2)} and F satisfies (PS)., then cis a
critical value of F.




Mountain Pass

MP1.

MP2.

MP3.

We show that w; = 0 is a local minimizer: there are
0, > 0 such that F\(w) > « for all w with

Iwlix = e

If domain is large enough, then there exists wy with
|lwa||x > 0 and Fy(w2) < 0. Based on Yoshimura
diamond pattern.

Given a sequence of paths +, that approximates the
infimum in defn, we extract a (Palais-Smale)
sequence of points w, € 7y,, each close to the
maximum along ~,, and show that this sequence
converges in an appropriate manner.



Mountain Pass Alg. : Y. S. Choi, P. J. McKenna (1993)

Phase 1 — Initial discrete path. Take P points:

zi=wi+ 5(we —w),j€{0,1,...,P}

Phase 2 — Main loop:

(a) find m: Vj F(zm) > F(z;), interpolate,

(b) compute VF(zp),

(c) deform the path: § > 0 (small) zX™ = z,, — 6V F(zm),
(d) STOP when F increases.

Phase 3 — Infinite loop: re-distribute points on path




Numerical Solutions

Q = (-100,100) x (—100,100), Ax = Ay =05, A =1.1
Found using different choices of ws.
Min energy solution = Single Dimple



Steepest Descent:

(a) Fx=~5 (b) Fyx~ —15 (c) Fy ~ —5 x 10*

-5 0 5 10
distance in X

Q = (—200,200) x (—115,115), Ax = Ay = 0.5, A= 1.1



Interpretation of MP 7

Have found the mountain pass energy for the perfect cylinder —
how does this give a handel on an imperfect “real” cylinder ?
Consider the minimum mountain—pass energy: V = inf,, F).

In order to leave the basin of attraction of wy, the surplus energy
should exceed V()



Imperfections and MP

Suppose stored energy from being under load can be transfered to
overcome the mountain pass.
Rescale MP energy V/(\) by elastic strain energy stored in cylinder
of length L :
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Imperfections and MP

1. The general trend of the constant-a curves is very similar to
the trend of the experimental data;

2. The a =1 curve, which indicates the load at which the
mountain-pass energy equals the stored energy in the
prebuckled cylinder, appears to be a lower bound to the data.
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Nasa knockdown
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Other single dimples ...

» Single dimples are seen in the high-speed camera images of
Esslinger.

» Some "worst imperfections” by Deml and Wunderlich, Deml,
Wunderlich and Albertin are single dimples.

» Single dimples are seen in finite element simuations (eg
Schweizerhof)




Summary ...

» Axially localized solutions : found as homoclinic orbit
» Computations of post-buckle paths and cellular buckling
» Mountain pass solutions
» Elements for proof
» Numerical algorithm
» Solutions
» From MP solutions seems can get a lower bound on the
buckling load.




Summary ...

» Axially localized solutions : found as homoclinic orbit
» Computations of post-buckle paths and cellular buckling
» Mountain pass solutions

» Elements for proof

» Numerical algorithm
» Solutions

» From MP solutions seems can get a lower bound on the
buckling load.
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