A mountain pass solution in cylinder buckling

Jiří Horák, Universität zu Köln, Cologne, Germany <u>Gabriel J. Lord</u>, Heriot-Watt University, Edinburgh, UK Mark A. Peletier, Technische Universiteit Eindhoven, The Netherlands

From: Rhodes & Walker '80 Thin walled structures

A mountain pass solution in cylinder buckling

Jiří Horák, Universität zu Köln, Cologne, Germany <u>Gabriel J. Lord</u>, Heriot-Watt University, Edinburgh, UK Mark A. Peletier, Technische Universiteit Eindhoven, The Netherlands

Part 1 Experimental Evidence

- Axially localized solution
- Buckle/failure load
- Part 2 Model
- Part 3 Post-Buckle
 - Homoclinic solution (with G. Hunt (Bath) and A. Champneys (Bristol))

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Part 4 Failure load for cylinder

Mountain pass

Part I : Experimental results

Typical end shortening vs load plot:

◆□> ◆□> ◆豆> ◆豆> 「豆

- ▷ Post-buckle minimum load
- ▷ Post-buckle plateau in load

 \triangleright Localized buckled solution

- ▷ Translation invariant
- \triangleright Well defined circumferential wave number s
- ▷ 2 forms of solution : Symmetric & Cross Symmetric.

Collection of experimental results:

Linear prediction $\lambda_{fail}/\lambda_{cr} = 1$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Questions :

 $1. \ \mbox{Can}$ we compute post-buckle solution and loads ?

2. Can we predict the load at which cylinder buckles ?

(ロ)、(型)、(E)、(E)、 E、 の(の)

Part II : A Model

von Kármán-Donnell equations:

$$\kappa^2 \Delta^2 w + \lambda w_{xx} - \rho \phi_{xx} - 2G(w, \phi) = 0$$
$$\Delta^2 \phi + \rho w_{xx} + G(w, w) = 0.$$

where

$$G(u, v) = \frac{1}{2}u_{xx}v_{yy} + \frac{1}{2}u_{yy}v_{xx} - u_{xy}v_{xy}$$
$$\kappa^{2} = \frac{t^{2}}{12(1 - \nu^{2})}, \qquad \lambda = \frac{P}{2\pi REt}, \qquad \rho = \frac{1}{R}$$
$$(x, y) \in \Omega = [-L, L] \times [0, 2\pi R).$$

Assumptions: > Thin, isotropic shell

- ▷ Elastic buckle and curvature not too large
- \triangleright No pre-buckle
- Normals stay normal, plane stress and small angle approximation for strain tensor.

$$\kappa^2 \Delta^2 w + \lambda w_{xx} - \rho \phi_{xx} - 2G(w, \phi) = 0$$
$$\Delta^2 \phi + \rho w_{xx} + G(w, w) = 0.$$

Stored energy:

$$E(w) = \frac{Et}{2} \int_{\Omega} \left[\kappa^2 \Delta w^2 + \Delta \phi^2 \right] dx dy,$$

Constraint is the average axial end-shortening associated with deflection w

$$S(w)=\frac{1}{4\pi R}\int_{\Omega}w_{x}^{2}\,dxdy.$$

Solutions of vKD equations are stationary points of

Total Potential
$$F_{\lambda}(w) = E(w) - \lambda S(w).$$

・ロト・日本・モート モー うへで

Solutions also stationary points of E(w) under constant S(w).

Part III : Post-buckle paths:

○ Dynamic Analogy :

- Seek localized buckle solutions as homoclinic solution
- ► BCs $(L = \infty)$: w, ϕ + derivatives $\longrightarrow 0$ as $x \longrightarrow \pm \infty$.
- Seek solution in subspace of circumferential wave number.
- Discretize by Galerkin circumferentially have large system of ODEs in axial direction.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 \bigcirc Use numerical continuation

Test Results for Yamaki Shell :

$$L = 160.9(mm) \quad R = 100(mm) \quad t = 0.247(mm)$$
$$E = 5.56(GPa) \quad \nu = 0.3$$

For this shell: $L/2\pi R \approx 0.25$... not very long Number of circumferential waves s = 11.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Test Results for Yamaki Shell :

$$L = 160.9(mm) \quad R = 100(mm) \quad t = 0.247(mm)$$
$$E = 5.56(GPa) \quad \nu = 0.3$$

For this shell: $L/2\pi R \approx 0.25$... not very long Number of circumferential waves s = 11.

Cellular buckling

_______ ୬ ବ (୍

Cellular buckling

. nac

Cellular buckling

200

Post-buckle & Homoclinics

- Given circumferential wave number s get good agreement with post-buckle regime ...
- Finite shell length in experiments : but infinite homoclinic approximation works well.
- Determination of circumferential wave number next project ??

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Part IV : Mountain Pass Solution

Let $w_1 \neq w_2$ be two vectors in a space X. Define

$$\begin{split} & \Gamma = \{ \gamma \in C([0,1],X) \, | \, \gamma(0) = w_1, \gamma(1) = w_2 \} \, , \\ & c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} F(\gamma(t)) \, . \end{split}$$

If $c > \max{F(w_1), F(w_2)}$ and F satisfies $(PS)_c$, then c is a critical value of F.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Mountain Pass

- MP1. We show that $w_1 = 0$ is a local minimizer: there are $\varrho, \alpha > 0$ such that $F_{\lambda}(w) \ge \alpha$ for all w with $||w||_{\chi} = \varrho$;
- MP2. If domain is large enough, then there exists w_2 with $||w_2||_X > \varrho$ and $F_{\lambda}(w_2) \le 0$. Based on Yoshimura diamond pattern.

MP3. Given a sequence of paths γ_n that approximates the infimum in defn, we extract a (Palais-Smale) sequence of points $w_n \in \gamma_n$, each close to the maximum along γ_n , and show that this sequence converges in an appropriate manner.

Mountain Pass Alg. : Y. S. Choi, P. J. McKenna (1993)

Phase 1 — Initial discrete path. Take *P* points: $z_j = w_1 + \frac{j}{P}(w_2 - w_1), j \in \{0, 1, ..., P\}$ **Phase 2** — Main loop: (a) find *m*: $\forall j \ F(z_m) \ge F(z_j)$, interpolate, (b) compute $\nabla F(z_m)$, (c) deform the path: $\delta > 0$ (small) $z_m^{new} = z_m - \delta \nabla F(z_m)$, (d) STOP when *F* increases.

Phase 3 — Infinite loop: re-distribute points on path

Numerical Solutions

 $\Omega = (-100, 100) \times (-100, 100), \Delta x = \Delta y = 0.5, \lambda = 1.1$ Found using different choices of w_2 . Min energy solution \equiv Single Dimple

(日) (同) (日) (日)

-

Steepest Descent:

(a) $F_{\lambda} \approx 5$ (b) $F_{\lambda} \approx -15$ (c) $F_{\lambda} \approx -5 \times 10^4$

 $\Omega = (-200, 200) \times (-115, 115), \ \Delta x = \Delta y = 0.5, \ \lambda = 1.1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interpretation of MP ?

Have found the mountain pass energy for the perfect cylinder – how does this give a handel on an imperfect "real" cylinder ? Consider the minimum mountain–pass energy: $V = \inf_{w_2} F_{\lambda}$.

In order to leave the basin of attraction of w_1 , the surplus energy should exceed $V(\lambda)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Imperfections and MP

Suppose stored energy from being under load can be transfered to overcome the mountain pass.

Rescale MP energy $V(\lambda)$ by elastic strain energy stored in cylinder of length L :

$$\alpha = \frac{1}{2\pi\sqrt{3(1-\nu^2)}} \frac{t}{L} \frac{V(\lambda)}{\lambda^2}.$$

Imperfections and MP

- 1. The general trend of the constant- α curves is very similar to the trend of the experimental data;
- 2. The $\alpha = 1$ curve, which indicates the load at which the mountain-pass energy equals the stored energy in the prebuckled cylinder, appears to be a lower bound to the data.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Nasa knockdown

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 = の Q ()~

Other single dimples ...

- Single dimples are seen in the high-speed camera images of Esslinger.
- Some "worst imperfections" by Deml and Wunderlich, Deml, Wunderlich and Albertin are single dimples.
- Single dimples are seen in finite element simuations (eg Schweizerhof)

Summary ...

- Axially localized solutions : found as homoclinic orbit
- Computations of post-buckle paths and cellular buckling
- Mountain pass solutions
 - Elements for proof
 - Numerical algorithm
 - Solutions
- From MP solutions seems can get a lower bound on the buckling load.

Summary ...

- Axially localized solutions : found as homoclinic orbit
- Computations of post-buckle paths and cellular buckling
- Mountain pass solutions
 - Elements for proof
 - Numerical algorithm
 - Solutions
- From MP solutions seems can get a lower bound on the buckling load.

🗄 ୬ବ୍ଚ