A mountain pass solution in cylinder buckling

Jiří Horák, Universität zu Köln, Cologne, Germany Gabriel J. Lord, Heriot-Watt University, Edinburgh, UK Mark A. Peletier, Technische Universiteit Eindhoven, The Netherlands

From: Rhodes \& Walker '80 Thin walled structures

A mountain pass solution in cylinder buckling

Jiří Horák, Universität zu Köln, Cologne, Germany
Gabriel J. Lord, Heriot-Watt University, Edinburgh, UK
Mark A. Peletier, Technische Universiteit Eindhoven, The Netherlands
Part 1 Experimental Evidence
- Axially localized solution
- Buckle/failure load
Part 2 Model
Part 3 Post-Buckle
- Homoclinic solution (with G. Hunt (Bath) and A. Champneys (Bristol))

Part 4 Failure load for cylinder

- Mountain pass

Part I : Experimental results

Typical end shortening vs load plot:

(Esslinger)
\triangleright Post-buckle minimum load
\triangleright Post-buckle plateau in load
\triangleright Localized buckled solution

\triangleright Translation invariant
\triangleright Well defined circumferential wave number s
$\triangleright 2$ forms of solution: Symmetric \& Cross Symmetric.

Collection of experimental results:

Linear prediction $\lambda_{\text {fail }} / \lambda_{c r}=1$

Questions:

1. Can we compute post-buckle solution and loads ?
2. Can we predict the load at which cylinder buckles ?

Part II : A Model

von Kármán-Donnell equations:

$$
\begin{array}{r}
\kappa^{2} \Delta^{2} w+\lambda w_{x x}-\rho \phi_{x x}-2 G(w, \phi)=0 \\
\Delta^{2} \phi+\rho w_{x x}+G(w, w)=0
\end{array}
$$

where

$$
G(u, v)=\frac{1}{2} u_{x x} v_{y y}+\frac{1}{2} u_{y y} v_{x x}-u_{x y} v_{x y}
$$

$$
\kappa^{2}=\frac{t^{2}}{12\left(1-\nu^{2}\right)}, \quad \lambda=\frac{P}{2 \pi R E t}, \quad \rho=\frac{1}{R}
$$

$(x, y) \in \Omega=[-L, L] \times[0,2 \pi R)$.

Assumptions: \triangleright Thin, isotropic shell
\triangleright Elastic buckle and curvature not too large
\triangleright No pre-buckle
\triangleright Normals stay normal, plane stress and small angle approximation for strain tensor.

$$
\begin{array}{r}
\kappa^{2} \Delta^{2} w+\lambda w_{x x}-\rho \phi_{x x}-2 G(w, \phi)=0 \\
\Delta^{2} \phi+\rho w_{x x}+G(w, w)=0
\end{array}
$$

Stored energy:

$$
E(w)=\frac{E t}{2} \int_{\Omega}\left[\kappa^{2} \Delta w^{2}+\Delta \phi^{2}\right] d x d y
$$

Constraint is the average axial end-shortening associated with deflection w

$$
S(w)=\frac{1}{4 \pi R} \int_{\Omega} w_{x}^{2} d x d y
$$

- Solutions of vKD equations are stationary points of

$$
\text { Total Potential } \quad F_{\lambda}(w)=E(w)-\lambda S(w)
$$

- Solutions also stationary points of $E(w)$ under constant $S(w)$.

Part III : Post-buckle paths:

Dynamic Analogy :- Seek localized buckle solutions as homoclinic solution
- PCs $(L=\infty): w, \phi+$ derivatives $\longrightarrow 0$ as $x \longrightarrow \pm \infty$.
- Seek solution in subspace of circumferential wave number.
- Discretize by Galerkin circumferentially have large system of ODEs in axial direction.Use numerical continuation

Test Results for Yamaki Shell :

$$
\begin{gathered}
L=160.9(\mathrm{~mm}) \quad R=100(\mathrm{~mm}) \quad t=0.247(\mathrm{~mm}) \\
E=5.56(\mathrm{GPa}) \quad \nu=0.3
\end{gathered}
$$

For this shell: $L / 2 \pi R \approx 0.25 \ldots$ not very long Number of circumferential waves $s=11$.

Test Results for Yamaki Shell :

$$
\begin{gathered}
L=160.9(\mathrm{~mm}) \quad R=100(\mathrm{~mm}) \quad t=0.247(\mathrm{~mm}) \\
E=5.56(\mathrm{GPa}) \quad \nu=0.3
\end{gathered}
$$

For this shell: $L / 2 \pi R \approx 0.25 \ldots$ not very long
Number of circumferential waves $s=11$.

$\mathrm{s}=11$	$\frac{\lambda_{\min }}{\lambda_{c}}$	$W_{\min }$	$W_{\max }$
Experiment	0.24	-0.9	1.9
Homoclinic	0.242	-0.866	1.966

Cellular buckling

Cellular buckling

Cellular buckling

Post-buckle \& Homoclinics

- Given circumferential wave number s get good agreement with post-buckle regime...
- Finite shell length in experiments : but infinite homoclinic approximation works well.
- Determination of circumferential wave number next project ??

Part IV : Mountain Pass Solution

Let $w_{1} \neq w_{2}$ be two vectors in a space X. Define

$$
\begin{aligned}
& \Gamma=\left\{\gamma \in C([0,1], X) \mid \gamma(0)=w_{1}, \gamma(1)=w_{2}\right\}, \\
& c=\inf _{\gamma \in \Gamma \max _{t \in[0,1]} F(\gamma(t))} .
\end{aligned}
$$

If $c>\max \left\{F\left(w_{1}\right), F\left(w_{2}\right)\right\}$ and F satisfies $(P S)_{c}$, then c is a critical value of F.

Mountain Pass

MP1. We show that $w_{1}=0$ is a local minimizer: there are $\varrho, \alpha>0$ such that $F_{\lambda}(w) \geq \alpha$ for all w with $\|w\|_{X}=\varrho$;
MP2. If domain is large enough, then there exists w_{2} with $\left\|w_{2}\right\|_{x}>\varrho$ and $F_{\lambda}\left(w_{2}\right) \leq 0$. Based on Yoshimura diamond pattern.

MP3. Given a sequence of paths γ_{n} that approximates the infimum in defn, we extract a (Palais-Smale) sequence of points $w_{n} \in \gamma_{n}$, each close to the maximum along γ_{n}, and show that this sequence converges in an appropriate manner.

Mountain Pass Alg. : Y. S. Choi, P. J. McKenna (1993)

Phase 1 - Initial discrete path. Take P points:
$z_{j}=w_{1}+\frac{j}{P}\left(w_{2}-w_{1}\right), j \in\{0,1, \ldots, P\}$
Phase 2 - Main loop:
(a) find m : $\forall j F\left(z_{m}\right) \geq F\left(z_{j}\right)$, interpolate,
(b) compute $\nabla F\left(z_{m}\right)$,
(c) deform the path: $\delta>0$ (small) $z_{m}^{\text {new }}=z_{m}-\delta \nabla F\left(z_{m}\right)$,
(d) STOP when F increases.

Phase 3 - Infinite loop: re-distribute points on path

Numerical Solutions

$\Omega=(-100,100) \times(-100,100), \Delta x=\Delta y=0.5, \lambda=1.1$
Found using different choices of w_{2}.
Min energy solution \equiv Single Dimple

Steepest Descent:

(a) $F_{\lambda} \approx 5$
(b) $F_{\lambda} \approx-15 \quad$ (c) $F_{\lambda} \approx-5 \times 10^{4}$

$\Omega=(-200,200) \times(-115,115), \Delta x=\Delta y=0.5, \lambda=1.1$

Interpretation of MP ?

Have found the mountain pass energy for the perfect cylinder how does this give a handel on an imperfect "real" cylinder ? Consider the minimum mountain-pass energy: $V=\inf _{w_{2}} F_{\lambda}$.

In order to leave the basin of attraction of w_{1}, the surplus energy should exceed $V(\lambda)$

Imperfections and MP

Suppose stored energy from being under load can be transfered to overcome the mountain pass.
Rescale MP energy $V(\lambda)$ by elastic strain energy stored in cylinder of length L :

$$
\alpha=\frac{1}{2 \pi \sqrt{3\left(1-\nu^{2}\right)}} \frac{t}{L} \frac{V(\lambda)}{\lambda^{2}} .
$$

Imperfections and MP

1. The general trend of the constant- α curves is very similar to the trend of the experimental data;
2. The $\alpha=1$ curve, which indicates the load at which the mountain-pass energy equals the stored energy in the prebuckled cylinder, appears to be a lower bound to the data.

Nasa knockdown

Other single dimples ...

- Single dimples are seen in the high-speed camera images of Esslinger.
- Some "worst imperfections" by Deml and Wunderlich, Deml, Wunderlich and Albertin are single dimples.
- Single dimples are seen in finite element simuations (eg Schweizerhof)

Summary ...

- Axially localized solutions: found as homoclinic orbit
- Computations of post-buckle paths and cellular buckling
- Mountain pass solutions
- Elements for proof
- Numerical algorithm
- Solutions
- From MP solutions seems can get a lower bound on the buckling load.

Summary ...

- Axially localized solutions : found as homoclinic orbit
- Computations of post-buckle paths and cellular buckling
- Mountain pass solutions
- Elements for proof
- Numerical algorithm
- Solutions
- From MP solutions seems can get a lower bound on the buckling load.

