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Abstract.

The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active
dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire
process, whilst communication between spines is mediated by the cable equation. In
this paper we develop a computational framework that allows the study of multiple
spiking events in a network of such spines embedded on a simple one-dimensional
cable. In the first instance this system is shown to support saltatory waves with the
same qualitative features as those observed in a model with Hodgkin-Huxley kinet-
ics in the spine-head. Moreover, there is excellent agreement with the analytically
calculated speed for a solitary saltatory pulse. Upon driving the system with time-
varying external input we find that the distribution of spines can play a crucial role
in determining spatio-temporal filtering properties. In particular, the SDS model in
response to periodic pulse train shows a positive correlation between spine density
and low-pass temporal filtering that is consistent with the experimental results of
Rose and Fortune [1999, ‘Mechanisms for generating temporal filters in the elec-
trosensory system’. The Journal of Ezperimental Biology 202, 1281-1289]. Further,
we demonstrate the robustness of observed wave properties to natural sources of
noise that arise both in the cable and the spine-head, and highlight the possibility
of purely noise induced waves and coherent oscillations.
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1. Introduction

In 1891 Ramoén y Cajal showed that dendritic spines are present in the
dendrites of many neurons of the cerebral cortex of mammals (Cajal,
1891). Dendritic spines are small mushroom like appendages with a
bulbous head and a tenuous stem (of length around 1pum) and may
be found in their hundreds of thousands on the dendritic tree of a
single cortical pyramidal cell. These extensions of the dendritic tree
provide junction points for the axons of other neurons (i.e., provide
surface area for synapses), and thus serve as loci for receiving inputs.
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In the cerebral cortex approximately 80% of all excitatory synapses are
made onto dendritic spines. Since the biophysical properties of spines
can be modified by experience in response to patterns of chemical and
electrical activity, morphological and electro-chemical changes in pop-
ulations of dendritic spines are thought to provide a basic mechanism
for Hebbian learning in the nervous system. In fact as far back as 1899
Cajal (1899) was arguing that spines could be involved in learning and
that physical changes in spines were associated with neuronal function,
suggesting that they might grow with activity and retract during in-
activity or sleep. These notions continue to be influential in the study
of the function of dendritic spines even today (Yuste and Bonhoeffer,
2001; Yuste and Majewska, 2001).

In recent years the properties of spines have also been linked with
the implementation of logical computations (Shepherd and Brayton,
1987) coincidence detection (Larkum et al., 1999) orientation tuning in
complex cells of visual cortex (Mel et al., 1998) and the amplification
of distal synaptic inputs (Miller et al., 1985). At the organismal level
there is now evidence to suggest that the density of dendritic spines
may reflect overall mental agility (Zito and Murthy, 2002). Conversely,
many neurological diseases resulting in mental retardation have been
associated with spine loss or spine morphology changes (such as Fragile
X-syndrome!). However, the focus of this paper will be on the implica-
tion of excitable channels in the spine-head membrane for single neuron
dynamics. The benefits of excitable membrane for the amplification of
excitatory synaptic inputs was first discussed by Jack et. al. (1975). If
dendritic spines possess excitable membrane, the spread of current from
one spine along the dendrites may bring adjacent spines to threshold
for impulse generation, resulting in a saltatory propagating wave in the
distal dendritic branches (Shepherd et al., 1985). However, it is only rel-
atively recently that confocal and two-photon microscopy observations
have confirmed the generation of action potentials in the dendrites (see
(Segev and Rall, 1998) for a perspective).

The first step towards the development of a spiny dendritic tissue
model that might be used to explore these issues can be attributed to
Baer and Rinzel (1991) who considered a passive uniform unbranched
dendritic tree coupled to a population of excitable dendritic spines.
In this continuum model the active spine-head dynamics is modeled
with Hodgkin-Huxley (HH) kinetics whilst the (distal) dendritic tissue
is modeled with the cable equation. The spine-head is coupled to the
cable via a spine-stem resistance that delivers a current proportional to
the number of spines at the contact point. There is no direct coupling
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between neighboring spines; voltage spread by diffusion along the cable
is the only way for spines to interact. Although the numerical studies of
Baer and Rinzel (1991) show traveling wave solutions, the underlying
continuous nature of the model precludes the possibility that these
waves are truly saltatory. The saltatory nature of a propagating wave in
a spiny neuron may be directly attributed to the fact that active spines
are physically separated. Although we can numerically simulate the
nonlinear and nonuniform properties of biologically realistic dendritic
trees with discrete and clustered distributions of spines, based around
natural extensions of the Baer-Rinzel (BR) model, there is a lack of
analytical tools for dealing with such systems. However, recent work by
Coombes, Bressloff and Lord (Coombes and Bressloff, 2000; Coombes,
2001b; Lord and Coombes, 2002; Coombes and Bressloff, 2003) has
shown that the active membrane dynamics of spines can be treated us-
ing an analytically tractable integrate-and-fire (IF') process. The result-
ing model has been termed the Spike-Diffuse-Spike (SDS) model since
spine-head dynamics is an all-or-nothing action potential response,
whilst the dendritic cable is modeled as a passive structure. Not only
can saltatory wave propagation be naturally analyzed in the SDS frame-
work, the model is computationally inexpensive and ideally suited for
the study of neural response to complicated spatio-temporal patterns
of synaptic input that typically occur in cortical neurons. It is precisely
these points we choose to highlight in this paper.

In section 2 we review the SDS framework and extend previous work
by showing how one may express solutions in terms of a Dyson-like
series expansion. Moreover, we discuss the numerical implementation
of analytical solutions to the SDS model that depend upon numeri-
cally determined firing events. For comparison with more conventional
(numerical PDE) approaches we also develop an implementation of
the SDS model within the NEURON simulation environment (Hines and
Carnevale, 2003). As a first illustration of the usefulness of the SDS
model of spiny dendritic tissue we present a case study of saltatory
propagating waves in a model with regularly spaced spines. Also in
section 3 we treat wave propagation (and its failure) for more irregular
distributions of spines. After establishing the ability of the SDS model
to accurately describe the sorts of saltatory waves one finds in the more
biophysically detailed BR model, we turn next, in section 4, to the issue
of the active dendritic tree as a nonlinear filter. In particular we use
the SDS model to address the observation of Rose and Fortune (1999)
that there is a positive correlation between spine density and low-pass
temporal filtering. In section 5 we test the robustness of observed wave
and filtering properties to natural sources of noise that arise both in
the cable and the spine-head, and highlight the possibility of purely

SDSfiltering_final.tex; 22/07/2005; 20:04; p.3



4

noise induced waves and coherent oscillations. Finally, in section 6, we
look forward and describe some of the open problems in single neuron
function that may be readily addressed with a further analysis of SDS
dynamics.

2. The spike-diffuse-spike model
We consider a uniform passive dendritic cable with a given distribution

of spines along its length. A schematic diagram of the SDS model is
shown in Figure 1. The dynamics of membrane voltage in the cable

Spine-head (active)

IF

xn;i-l “/‘ \

a

\/Dendritic cable (passive) = \/

Cim=F Rm

Figure 1. A schematic representation of the SDS model showing a passive cable with
electrically connected active spines.

V = V(x,t) is described by the equation

ov a2 92V Ta
RASNL IR AL Ip. 1
of ~ iR, 07w, TPl (1)

maCy,

Here a is a diameter of the cable (measured in um), R, is the spe-
cific cytoplasmic resistivity (in Q-cm), C,, and R, are respectively
the specific membrane capacity (in puF/cm?) and a resistance across
a unit area of passive membrane (in 2-cm?). Spines are connected
to the cable at the discrete points z,, with the distribution function
p(x) =3, cr0(x—x,), where I is a discrete set that indexes the spines.
Each spine generates a sequence of action potentials in its spine-head
given by the function V(x,t). As a result the spine that just “fired”
passes the spine current I, = (‘7 —V)/r into the cable. The spine stem
resistance of an individual spine is given by r. Denoting 7", m € Z as
the time of the mth firing event of the nth spine the function V(:Un, t)
is given by V(x,,t) = 3, n(t — T'™). Here n(t) specifies the universal
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shape of an action potential. The generator of action potentials in the
nth spine-head evolves according to

~OU, Up  Vo—U, m
C—; ——?+T—C’hz(5t—T) (2)

reset

where V,, = V (&, t). Here the parameters C' and 7 describe the elec-
trical properties of the spine-head membrane, namely its capacitance
and resistance respectively. The spine’s firing times 7" are defined in
terms of the IF process according to

T =inf{t | Uy(t) > h, t > T 1+ 15} (3)

Hence, a spine fires whenever U,, driven by current from the shaft,
crosses some threshold potential h. Just after the firing event the vari-
able U, resets to zero, modeled by the last term in equation (2).
Multiple spiking events from an individual spine are controlled by a
refractory time-scale 7r during which the spine can not fire.
It is convenient to rewrite (1) in the standard form

ov o’V Vv V-V

=D — L+ Draple) ()
where D = A2/7 denotes the diffusion coefficient of the cable, 7 =
Cm Ry, is the membrane time constant, A\ = /aR,,/4R, is the elec-
tronic space constant and r, = 4R,/ ma® denotes the intracellular re-
sistance per unit length of cable. The integration of this equation gives
us an implicit expression for the membrane potential in the form

_ Dr, Z/ ds G(z — xp, t — 8)[V(zg,8) — V(e s).  (5)
kel

Ve

Here, G(z,t) is the Green’s function of the infinite uniform passive

cable
1

Var Dt

where ¢ = 1/7 and ©(t) is the Heaviside step function. The expression
for the cable voltage (5) has a Dyson-like form (Bressloff and Coombes,
1997) suggesting a Neumann series solution, obtained by repeated sub-
stitution of (5) into itself. Introducing the parameter A = Dr,/r, and
generating just the first two terms in this expansion gives

V(e t) = A%:/Ot dsG(x — xp,t — 8)V (24, 5) (7)

G(z,t) = e et o7/ UDDQ(¢), (6)

t E .
—A? Z/ dsG(z — xg, t — 8)/ ds'G(zy, — xp, s — 8" )V (zp, §),
0
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where {p, k} € I'. Under the approximation that A < 1, only the first
term significantly contributes to the full solution. This first term is an
exact solution of the SDS model in the presence of a partial current flux
I, = V/r from the spine-head into the cable instead of the original
full flux. This gives rise to the so-called partial SDS model. In this case
the solution takes the explicit form

V(z,t)=A > H(z—azp,t—1T}"), max{T}"} <t < T!, (8)
kel'ym ’

where m = m(k) counts firing events at each spine and H(x,t) =
fg G(z,t — s)n(s)ds. For a simple action potential shape given by a
rectangular pulse n(t) = no0(t)O(rs—t) (with strength 79 and duration
Ts), the function H(z,t) can be found in closed form (Coombes and
Bressloff, 2003) as H(x,t) = Ac(z,t — min(t,75)) — Ae(z,t) with a
standard integral A.(x,t) given in Appendix A. Equation (8) holds for
times ¢ between maxy, ,,{T}"} (i.e., the last firing event from the set of
all spine firing times), and Tf the time of the new firing event at the
fth spine.

The firing times for the construction of solution (8) may be found
from the set of threshold conditions U, (t) = h, with U, (t) obtained
by integrating equation (2). In particular, to find a new firing time
Tf > max{T}"} corresponding to the spine at location z; we have to
solve the set of threshold conditions for the functions

DCL m
ik ZH —apt =T — R e T (9)

where

~

t
Bz, t) = / 0~ F (2, 5)ds, (10)
0

and g9 = (1/7 + 1/r)/C. For ¢ > ¢y this integral can be found in
closed form as H(z,t) = (A-(z,0)(e colt-—min(t.7s)) _ o—cot) 4 A(g t —
min(¢, 7)) — A(z,t))/eo with

o~

Az, t) = e [Ac o (2,0) — Ac(2,0) — Ac_cy (7, 0)] + Ac(z,t). (11)

Alternatively the integral in (10) can be readily evaluated numerically
for the explicitly given function H(z,t).

By solving the set of threshold conditions with U, (t) defined by (9)
we obtain a vector of times showing when each spine is able to reach
the threshold h. The smallest time from this vector, Tf, that satisfies

the refractory restriction T]-f — Tf_l > 7 defines a new spiking event at
location x;. The firing times of an individual spine have to be separated
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by at least 7g, so the refractory time is restricted by 7g > 75. As a result
of finding the newly fired spine extra terms have to be added into both
sums in (9). The same routine is then repeated to obtain subsequent
firing events.

2.1. NUMERICAL IMPLEMENTATION OF THE SDS MODEL

The analytical integration of the equations of motion to get the explicit
equations (8) and (9) for the partial SDS model obviates the need for
the numerical solution of a partial differential equation. In the compu-
tations below we have taken € > g so that the explicit solution (10)
and (11) can be used. Up to determining the firing times this gives us
an analytic solution. The numerical scheme for the explicitly defined
solution was implemented in MATLAB and the firing times (defined from
the threshold conditions U, (t) = h) were determined numerically using
the root-finding routine fzero. For each time interval the number of
equations used for finding the earliest threshold crossing event can
be reduced by excluding the spines that are still in the refractory
state. Once the latest firing event has been determined then V' (z,t)
can be evaluated (in terms of a sum over all spines and all previous
firing events). Since contributions from firing events in the distant past
are exponentially decaying it would be safe to truncate this sum over
events, and further improve numerical efficiency, though we do not do
so in this paper.

In the following section we compare and validate the results from
the (quasi) analytic solution of (10) and (11) detailed above. We show
convergence by solving the explicit equation (7) for V' (z,t) rather than
(8) which requires the solution of the differential equation (2) for each
spine. We also compare to the SDS model given as a system of differ-
ential equations implemented in NEURON (Hines and Carnevale, 2003).
We solve the partial model with flux I, = 1% /r from the spine-head into
the cable as well as the full SDS model (1) and (2). We also compare
to the BR model with discrete spines, again implemented in NEURON.
All code is available upon request to the authors.

3. Validation of models and saltatory wave propagation

We validate the different models and their numerical solution by com-
paring the propagation of a solitary saltatory wave. We start by noting
that for the (quasi) analytic case a solitary wave can be determined
from the solution of a nonlinear algebraic equation.

Assume that the spines are regularly distributed along the cable
with spacing d, i.e., z,, = nd. The speed of a solitary wave propagating
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in such a system may be determined in a self-consistent manner (see
Coombes and Bressloff, 2003) by the implicit equation

oo
h=—= > H(nd,nd), (12)
Cr 2

for the partial SDS model. Here A measures the time between succes-
sive threshold crossings at adjacent spine-heads and thus, the speed is
v = d/A. In Figure 2 we plot this speed (solid curve) as a function
of distance between the spines. If the spines are separated beyond
some critical value (to the right of limit point LP) the wave fails to
propagate. From the analysis in (Coombes, 2001a) it is further possible
to establish that the faster of the two branches is stable. On the same
figure we plot the results obtained from direct numerical simulations.
In all simulations the wave is initiated from an activated single spine
at one end of the cable (and free boundary conditions are assumed).
Crosses indicate the speed obtained by using the explicit solution of the
SDS model given by equations (8) and (9). Stars demonstrate the speed
found by solving the system of differential equations. There is excellent
agreement between both approaches as well as with the speed found
from equation (12). Circles in Figure 2 denote the results of the full
SDS model. The spine current passed into the cable in the full model
is relatively less than in the partial model when other parameters are
fixed. This explains why the wave in the last model propagates faster
with the LP for propagation failure shifted to the right. If the firing
events in the model are defined by using the full form of the solution for
V(x,t) given by equation (5) the results will agree with the numerical
solution of the full SDS model. To demonstrate this convergence of the
explicit approach, we evaluate the speed of wave propagation using the
explicit equation (7) for V' (z, t) rather than (8). Equation (7) includes a
second order term in A and this term has to be evaluated numerically.
In this case the functions U, (t) used for the determination of firing
events are found by solving the differential equation (2) for each spine.
The obtained speed of the wave is indicated by triangles in Figure
2. The inclusion of the second order term in the expansion for the
full solution yields a slower wave speed (than with just the first order
term). As more terms are included in the expansion the wave speed
gets closer to the solution of the full model. The inner plot in this
figure is a magnified view (for small lattice spacing), and demonstrates
that the speed of the wave attains a maximum for small d. In Figure
5 we plot the voltage at the location of the 10th spine along the cable
when d = 0.4. Here it is seen that the voltage of the fast wave in the
partial SDS model has a higher amplitude compared to that of the full
SDS model. However, even working to only second order in A yields
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Figure 2. A plot of solitary wave speed v (in units A/7) as a function of the distance
between the spines d (in units A). Solid line: the solution of equation (12). Crosses:
the solution given by the explicit equations (8) and (9). Stars and circles: the solu-
tions defined by solving (1) and (2) for the partial and full SDS model respectively.
Triangles: the solution defined by solving (2) and (7). Parameters: D = 1,7¢ = ¢ =1,
no =1, g0 = 0.8, C = 25, r =1, 7 = 10, h = h/Dr, = 0.05. Inner plot is a
magnified view of a part of the speed curve showing the LP for v.

an improved solution, with increasing agreement as we include more
terms in the series expansion for V(z,t).

3.1. VALIDATION AGAINST THE BAER-RINZEL MODEL

The SDS model defined in terms of the IF process is a reduced version
of the biophysically realistic model of Baer and Rinzel where the spine-
head dynamics are modeled by HH kinetics. To compare these two
models, we consider the BR model with a discrete distribution of spines
rather than with the spines uniformly distributed along the cable (Baer
and Rinzel, 1991, Lord and Coombes, 2002). In this case the model is
defined by equation (1) and
~ 0V ~ V-V
Ez—I(V,m,n,h)— _—

Here the function I is the standard HH current, listed in Appendix
B for completeness. The membrane current arises mainly through the
conduction of sodium and potassium ions through voltage dependent

(13)
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channels in the membrane. A numerical simulation of the BR model
with a regular distribution of spines is presented in Figure 3 which
shows a space-time density plot of V' (z,t). This plot nicely illustrates
an example of a saltatory traveling wave solution.

40 30

Time

0

30d

Distance

Figure 8. An example of saltatory traveling wave in the BR model with a discrete
distribution of spines and spine spacing d = 5. Other parameters are given in
Appendix B.

The speed of a saltatory wave changes when we vary the distance
between the spines, and is quantified in Figure 4. Also in this figure we
show a plot of the wave speed for the partial SDS model (solid curve),
with parameters chosen so as to give a corresponding fit to the more
biophysically detailed BR model.

From now on we consider the SDS model to be the (quasi) analytic
solution of the partial SDS model obtained by solving equations (8)
and (9) with a numerical approximation to the firing time.

3.2. SALTATORY WAVES AND SPINE DISTRIBUTIONS

Waves generated in the SDS model travel in a saltatory manner be-
cause the discreteness of the spine distribution breaks the translation
symmetry of the underlying cable. An example of a saltatory wave
(constructed from (10) and (11)) is shown in Figure 6. In Figure 7 we
show a space-time plot of the cable voltage with 30 regularly distributed
spines, which nicely illustrates (as does Figure 3) that although the
wave has a saltatory nature it travels with well-defined speed. For
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Figure 4. The speed of wave propagation v as a function of the distance between
the spines d in the discrete BR model (dotted curve) and in the partial SDS model
(solid curve). Parameters of the SDS model: D = 0.0003 m/s, 1o = 100 mV, 75 = 2

ms, r = 0.01 MQ, C = 0.001 uF, e =3,e0=0.7, h= h/rq = 0.00095. Parameters
of the BR model are given in Appendix B.

sufficiently small values of the refractory period it is also possible to
generate periodic traveling waves. An example is shown in Figure 8.

In real dendritic tissue the distribution of spines is likely to be
irregular. In the SDS framework we might simply consider that the
distribution function p(z) has some disorder. An example of the effect
that such disorder can have is shown in Figure 9, where we choose spine
positions from a uniform distribution. In comparison to Figure 7, not
only does this cause irregular (and repeated) wave propagation, but it
may lead to back-propagating waves. As expected, too much spatial
disorder in the spine distribution can lead to propagation failure, when
any one pair of adjacent spines becomes too far separated to cause
firing of one by the other.

4. Filtering properties

The spatio-temporal patterns of activity in neurons and indeed net-
works of neurons is intimately linked to the processing of sensory infor-
mation. A fundamental issue in understanding the relationship between
structure and function is how neurons transform and represent infor-
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20

Figure 5. Voltage V (in units of 1) at the location of the 10th spine along the cable
with spine spacing d = 0.4. Other parameters as in Figure 2. Left (right) solid curve:
the solution of the partial (full) SDS model. Dashed curve: the solution of the full
SDS model including terms up to order A2.

0.6

0.4 r

0.2+

16d

Figure 6. An example of saltatory solitary wave in the partial SDS model traveling
along the cable with spine spacing d = 0.6 and D = 0.25. Other parameters as in
Figure 2. Snapshots are shown for times to = TA+7g, t1 = 8A+0.17s, t2 = 8A+75
and t3 = 9A + 0.17s, where A = 1.1217.
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20

Time

0 Distance 30d

Figure 7. An example of saltatory traveling pulse in the partial SDS model initiated
from a single active spine and moving out through the cable with 30 regularly spaced
spines when d = 0.6. Other parameters as in Figure 2 except 7r = 6.

Time

0 Distance 30d

Figure 8. An example of periodic traveling wave for the model of Figure 7 with
7r = 5. Plots on the right illustrate the voltage potential as a function of time t at
the location of the 10th spine along the cable (top plot) and as a function of space
x at time t = 25 (bottom plot).

mation using such patterns. In this regard an understanding of how
neural systems respond to sensory stimuli is an important issue. Indeed,
although the selective behavioral responses to stimuli in the sensory
systems of many organisms is believed to rely on the presence of filters
for the neural representations of the temporal structure of sensory
signals, the mechanisms underlying this temporal selectivity are not
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Time

30d

Distance

Figure 9. An example of irregular wave propagation in the partial SDS model for
the parameter set corresponding to Figure 7 with 33 spine positions chosen from a
uniform distribution.

completely understood. Undoubtedly these mechanisms are subserved
by the biophysics of neurons, including the passive electrical properties
of a neuron, and the types and distribution of channels and conduc-
tances they support. However, only relatively recently has a role for
dendritic spines begun to be seriously entertained. For an increased
understanding of the role of spines in temporal filtering, intracellular
recordings are necessary. Progress in recording from neurons as small
as 10 pm has been made using ‘patch-type’ pipette techniques (Rose
and Fortune, 1996), and these have been used to investigate the role of
spines in filtering temporal input patterns to midbrain neurons of the
weakly electric fish Figenmannia (Fortune and Rose, 1997; Rose and
Fortune, 1999). In particular, this work has shown that neurons with a
broad dendritic arbor and relatively spiny dendrites demonstrate low-
pass temporal filtering properties in response to input stimuli. Here, we
suggest the use of the SDS model for re-examining the findings of Rose
and Fortune from a theoretical perspective, with a particular emphasis
on clarifying the effect of both passive and active properties of the
dendrite on filtering. The SDS model incorporates passive membrane
properties within the cable and mimics active properties by the IF
process in the spine-head. Importantly, we have the ability to vary
spine distributions and see the effect on filtering. A limitation of the
model is that no explicit consideration is given to the dynamics in the
soma. However, output signal recordings at the soma in experiments
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are believed to be primarily influenced by the spread of activity in the
dendrites, suggesting that an analysis of filtering within the SDS model
will still be relevant.

We assume that an electrical signal in the form of a periodic pulse
train is applied to the dendritic cable at position xg. This is modeled
by adding the following term to the right-hand side of equation (4)

Igim = Z 0(x — xp)o(t — pT), (14)
P

where T is the period of the stimulus. By solving equation (4) with this
applied current, we obtain an extra term that enters the right hand side
of equation (8) for the membrane potential as follows

P
ZG(m—xo,t—pT), (15)

p=0

where P = max{p | t — pT > 0}. Therefore, equation (9) for the spines
has to be updated accordingly by adding an extra term

1 E
— " G(an —x0,t — pT), (16)
rC 220

where G(z,t) is found as
N t
G(z,t) = /0 Gz, 5)e0Dds = e ™0t (A,_ (,0) — Ae_, (z,1)). (17)

In Figure 10 we plot the results of simulations of the SDS model
driven by the applied forcing signal (14). In all simulations the distri-
bution of spines is chosen to be regular and the current is applied to
the left end of the cable at a distance of 0.5 (in units of \) from the
first spine. In each of these three examples we stimulated the system
with a different fixed frequency. Differing applied stimuli lead to dif-
ferent patterns of waves propagating through the system. The signal
transformation during its propagation is best established by comparing
the applied stimulus and the system response at the opposite end of
the cable. Plots on the right in Figure 10 show the membrane voltage
at the location of the 55th spine along the cable. If the period of
stimulation is large, the signal measured at the end of the cable has a
single inter-spike interval (ISI) consistent with the period of stimulus
(see Figure 10A). If we decrease the period of stimulation making it
closer to the refractory time 7p the output response at the end of the
cable shows the presence of two ISIs (in Figure 10B). When the period
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of applied current is chosen to be small (Figure 10C), the refractoriness
of the system prevents the output from reaching the frequency of the
stimulus. Instead, the system initiates repetitive waves consistent with

the refractory time, with a single ISI.

200
12
v
g
E 06
0
0 100
200 [—
12
\4
2 0.6
IS
0
100
0 Distance 60 d
C 200p

0.6

Time

0 Distance 60 d

200

Figure 10. Examples of wave propagation in the SDS model driven by periodic
stimulation. The current stimulus is applied to the left end of the cable embedded
with 60 regularly spaced spines. The system parameters as in Figure 2 with d = 0.4,
except Tr = 7. The period of stimulation is T'=15 (A), T =6 (B) and T'=1 (C).
Plots on the right are examples of voltage profile at the location of the 55th spine

along the cable.
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The observed correlation between the periods of the applied signal
and the ISIs of the system responses is quantified in Figure 11. The
x-axis of the plots in this figure contains the frequencies of the applied
stimulus used in the simulations. Along the y-axis we plot the frequen-
cies at the end of the cable measured as the number of spikes emitted
per unit time. Figure 11A shows the data from simulations for a spine
spacing with d = 0.4. Vertical dashed lines in this figure indicate the
frequencies of the applied signal used in simulations in Figure 10. The
two values for the spike frequencies that are defined for the particular
range of input frequencies illustrate the presence of two distinct ISIs, as
for example in Figure 10B. The response of the system coincides with
the input signal for low frequencies of stimulation, whereas for high
frequencies it is limited by the system refractoriness. These dynam-
ics indicate that the SDS model exhibits low-pass temporal filtering
properties. The doubly periodic ISIs occur at stimulus periods close to
the refractory time-scale. The smaller the distance between the spines,
the smaller the range of input frequencies that lead to doubly periodic
ISIs. However, if the spines are further apart, the regime of stimulus
frequencies where the system responds irregularly with doubly periodic
ISIs is increased. An example is shown in Figure 11B, where the spine
spacing d equals 0.8. Thus, the low-pass filtering properties are reduced
with decreasing spine density.
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Stimulus frequency (Hz) Stimulus frequency (Hz)

Figure 11. Frequency of the applied stimulation vs frequency of spikes in the output
response at the end of the cable. The system parameters as in Figure 10 with
d=0.4in A and d = 0.8 in B. Vertical dashed lines in A indicate the frequencies of
stimulation that were chosen for simulations in Figure 10.

In Figure 12 we show the relative amplitude of voltage responses to
the frequency of input current. This figure is included to make a link
to the experimental observations that spiny neurons demonstrate a de-
cline in the amplitude of voltage responses with increasing stimulation
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frequency. The relative amplitude measured in dB is evaluated as the
difference between the maximum amplitude and the mean of the signal
response. Figure 12A is plotted for two different spine spacings d. A
decrease in the spine density (achieved by increasing d) reduces the
decline in the voltage amplitude. The presence of doubly periodic ISIs
in the voltage response causes the irregularities seen in both curves at
periods around the refractory time-scale. In Figure 12B we show that
a change in the refractory time in the system results in a shift of the
original curve but does not affect the overall trend.

To summarize, the filtering properties of the SDS model are en-
tirely consistent with the experimental observations of Rose and For-
tune (Fortune and Rose, 1997; Rose and Fortune, 1999), namely that
spiny dendrites with active membrane properties demonstrate low-pass
temporal filtering properties.

Relative amplitude (dB)
Relative amplitude (dB)

10° 10" 10” 10 16" 10°
Stimulus frequency (Hz) Stimulus frequency (Hz)

Figure 12. Frequency of applied stimulation vs relative amplitude of the voltage
potential (in dB) with the system parameters as in Figure 10. A: d = 0.4 (squares),
d = 0.8 (triangles), Tr = 7. B: 7r = 7 (squares), Tr = 9 (triangles), d = 0.4.

5. Noise induced phenomenon

The spontaneous behavior of neurons in vivo is believed to be driven
by voltage fluctuations arising from system noise. Such noise can be
characterized as either intrinsic or extrinsic. A major source of intrinsic
noise arises from the stochastic gating of ion channels in the cell mem-
brane. Importantly, if the membrane potential is close to threshold,
channel noise can be critical for the generation of action potentials.
In the SDS model the description of noise due to stochastic channels
is best introduced in the excitable spine-heads. However, since the
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kinetics of ion channels are not explicitly included in the model, the
noise is simply considered to lead to the stochastic generation of action
potentials. Extrinsic noise sources in the neuron typically arise from
synaptic inputs. Interestingly, there is an observed difference between
the spontaneous activity of neurons in vivo and the activity during
intracellular stimulation in wvitro. Introducing a voltage fluctuation in
the cable membrane as well as in the spines is a natural way to mimic
the presence of input noise in the SDS model of an isolated neuron.

To study the effects of both types of noise on the properties of wave
propagation in the SDS framework we assume that the system is driven
by additive white noise in time that is either smooth (correlated) or
white (uncorrelated) in space. The SDS model that includes noise both
in the cable and the spine-head is given by

~

2 _
av = |2V VL @)Y Yt 4 pdw t,2), (18)
or?2 T
VTL m
du,, = l@ —eoUn — hZ&(t =T dt + ppdWy(t,z).  (19)
r m

This is in fact a system of integral equations where we interpret noise
in the Ito sense. We assume that the Wiener processes Wy iy are of the
form
W(t,x) = > budnBalt)
nez

where the 3, are a mutually independent ordinary set of Brownian
motions and the ¢,, are appropriate basis functions (with either periodic
or Neumann boundary conditions). The coefficients b,, determine the
spatial correlation. For spatially correlated noise we take

Z:e%‘|”||bn|2 < 00
neZ

Here, the parameter o determines the correlation length scale and the
spatial smoothness. Examples of such noise are considered for example
in (Da Prato and Zabczyk, 1992; Shardlow, 2005; Garcia-Ojalvo and
Sancho, 1999; Lord and Rougemont, 2004). The parameters py and py
describe the strength of the noise in the cable and in the spine-head
respectively.

The integration of equation (18) for the membrane potential leads to
a solution for V' (z,t) that may be split into two terms. The first term,
representing the deterministic component, may be computed using the
exact solution given by equation (8), whereas the second term incorpo-
rating the noise has to be evaluated numerically. To evaluate this term
we enforce a spatial correlation in Fourier space and use a Brownian
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increment of mean zero and finite variance in time, as discussed for
example in (Kloeden and Platen, 1992). The noise for an infinite cable
was approximated by applying periodic boundary conditions of twice
the numerical cable length and taking the central portion away from
the boundary. The integration of equation (19) for U, (t), similarly to
the cable, generates two terms. In general, the first term has to be
evaluated numerically and we use an explicit Euler-Maruyama method
of approximation. The second term, that defines the noise in the spine-
head, was generated in the same manner as for the cable and then
sampled at the spine position. However, when wpy = 0, the model
reduces to the case where only the spines are forced by noise and,
thus, the solution for V(x,t) is explicitly defined. In this limit, the
numerical evaluation of the first term in the solution of equation (19)
can be avoided. Instead, this term is found using the explicit equation
(9).

Here we demonstrate the effect noise can have on the properties of
wave propagation in the SDS model. We begin by exploring the SDS
model with noise only in the spine-head and take py = 0. In all of the
figures that follow the noise-path is the same and py is the only param-
eter that varies. In all simulations the spines are regularly distributed
along the cable. When d = 0.6 (left of LP in 2) there is propagation in
the absence of noise as illustrated in Figure 13. In general, by increasing
the level of noise in the system the patterns of cell response change from
isolated or repetitive wave propagation to the case of almost simulta-
neous firing of all spines (i.e., a coherent behavior). However, as shown
in Figures 13A and B, at low noise levels the repetitive propagation
of waves can be suppressed by a small noise increase. For high noise
(Figure 13D) the majority of spines can generate an action potential
immediately and this leads to the activation of residual spines (i.e.,
those that did not fire) shortly thereafter. When d = 1 (right of LP in
2) the system does not support traveling waves in the absence of noise.
However, the examples in Figure 14 illustrate that it is possible for noise
to sustain spatio-temporal structures that could not otherwise occur.
In particular, for a low level of noise we observe purely noise induced
waves such as shown in Figure 14A. Propagation failure occurs if the
level of noise is below some critical value. In regions of high noise it is
possible to see coherent oscillations in the system (Figure 14B) where
almost all spines simultaneously generate action potentials. Choosing
correlated noise in the spine-head instead of white noise does not yield
a qualitative change in system behavior. This is illustrated in Figure 15
where we plot two examples of spatio-temporal structures generated by
correlated noise. The patterns of wave propagation are similar to the
examples shown in Figure 14.
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Figure 13. Traveling waves in the SDS model in the presence of uncorrelated white
noise in the spine-heads for parameters d = 0.6, uy = 0 and A: py = 0.007, B:
pu = 0.009, C: py = 0.015, D: uy = 0.028. Other parameters as in Figure 7
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Figure 14. Traveling waves in the SDS model in the presence of uncorrelated white
noise in the spine-heads for parameters d = 1, uy = 0 and A: puy = 0.03, B:
pu = 0.055. Other parameters as in Figure 7.
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Figure 15. Traveling waves in the SDS model in the presence of correlated noise in
the spine-heads for the parameters « = 1, d = 1, uyy = 0 and A: uy = 0.17, B:
pou = 0.4, Other parameters as in Figure 7.

The noise term in equation (19) for the spine-heads dynamics leads
to a stochastic process for spike generation. Another way to incorporate
this stochasticity into the firing events is to introduce a source of noise
at the threshold level. This can be modeled under the replacement
h — h + ¢ where ¢ is an additive noise with distribution p(¢). This
approach can be simply implemented by generating a random vector
& of length n from a distribution of mean h and standard deviation (8
at each small time step. Then the firing events are defined by checking
the threshold conditions U, > &, where &, is the nth element of vector
¢ and U, is given by equation (9). The level of noise in the system is
controlled by the parameter 5. The numerical simulations of the SDS
model in the presence of threshold noise demonstrate consistency with
the results of the model driven by the stochastic forcing at the spine-
heads. It is also possible to model the effect of threshold noise using a
probabilistic rule for spike generation. To see this we consider drawing
the threshold noise from a distribution o, so that the probability of a
firing event can be written

P> 1) = [0(©OWU —h-&)dE = [T~ D), (20)

where f(£) = [® o(z)dz. Considering a bell-shaped noise distribution
for o, then the function f will have a sigmoidal shape. Here we use the
following form for the function f

FO)=(1+e ™)/ +eY) —e (21)

so that the probability of a firing event is zero and one respectively
for U = 0 and U — oo. The parameter v in (21) controls the level
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of noise in the system by determining the width of the bell-shaped
distribution o (such that decreasing v corresponds to increasing noise).
Simulation results of the SDS model with this probabilistic update
rule are shown in Figure 16. Plots on the left are for the system with
spine spacing d = 0.6, whereas plots on the right are obtained when
d = 1. For low noise the system is able to support repetitive wave
propagation as illustrated in Figures 16A and D. When the noise level
is below some critical value, propagation failure occurs. This is similar
to the behavior observed in our earlier examples of the stochastic SDS
model. Here, however, an increase in noise causes more irregularity in
the patterns of wave propagation (see Figures 16B and E). Moreover,
high noise limits the spread of activity in the system by inhibiting wave
propagation (see Figures 16C and F) or can even lead to propagation
failure. The probabilistic rule used for the determination of the spikes
in these last examples ensures that the probability of an individual
spine being fired is low if the membrane voltage in the cable at the
location of this spine is low. This explains why wave propagation can
terminate for high noise levels. In previous examples, where the noise
in the spines is modeled by the stochastic differential equation (19),
the high noise in the system, contrary to this last example, stimulates
activity along the whole cable.

Now consider the stochastic SDS model driven by noise in the cable
and thus, take uy = 0. In Figure 17 we plot results of simulations for
the system in the presence of uncorrelated white noise. These examples
demonstrate that in the parameter region where waves propagate in the
absence of noise (d = 0.6), an increase in noise level can lead to repeti-
tive wave initiation. Plots on the right show profiles of action potentials
in the membrane at the locations of the 20th and 12th spine along the
cable (Figures 17A and B). In the presence of correlated rather than
white noise, the system demonstrates a similar kind of behavior. This
is shown in Figure 18 where increasing noise levels generate a single,
double and repetitive wave respectively.

If the distance between the spines is chosen to be large, the noise
in the cable, white or correlated, is not able to initiate any wave prop-
agation in the system. However, in the case of high white noise some
limited activity might be possible. An example is illustrated in Figure
19. The plot on the right shows the firing times of spines that generated
action potentials during the simulation.

In summary, from our numerical simulation studies we conclude that
noise in the spine-heads has a strong effect on the properties of wave
propagation. In the parameter regime where the deterministic model
fails to support waves, noise in the spines may aid in the initiation
and propagation of waves. Moreover, for high noise in the spines one
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Figure 16. Traveling waves in the SDS model in the presence of threshold noise
incorporated by the probabilistic rule for the spine spacing d = 0.6 (A, B and C)
and d =1 (D, E and F). The noise levels are v = 60 (low noise) (A and D), vy =5
(medium noise) (B and E), v = 0.8 (C) and v = 1 (high noise) (F). Other parameters
as in Figure 7.

observes coherent oscillations. At the same time, the stochastic SDS
model shows robustness of wave propagation to low noise in the spine-
heads. On the other hand, noise in the cable does not have a strong
effect on patterns of activity.

We now consider the presence of noise both in the cable and in
the spine-heads (see Figure 20). Noise in the cable was chosen as for
the model in Figure 18B. For Figure 20A (Figure 20B) noise in the
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Figure 17. Traveling waves in the SDS model in the presence of uncorrelated white
noise in the cable for the parameters d = 0.6, uyy = 0 and A: uy = 0.08, B:
pyv = 0.114. Other parameters as in Figure 7. Plots on the right show the profiles of
membrane voltage at the locations of 20th (A) and 12th spine (B) along the cable.

spine-heads was generated as in Figure 13B (Figure 14A). Simulations
demonstrate that in the parameter regime where the reduction of noise
to zero would still support wave propagation the cable noise stimulates
the repetitive initiation of waves (see Figure 20A).

Finally, we investigate the robustness of the filtering properties ob-
served in the deterministic SDS model to noise sources. The SDS model
in the presence of a small amount of correlated noise both in the cable
and the spine-heads was driven by injected current in the form of
a periodic pulse train as in section 4. In Figure 21 we demonstrate
examples of membrane voltage profiles along the cable for three differ-
ent periods of stimulation. These plots should be compared with the
results of simulations shown in Figure 10. The presence of noise in the
system for the low and high periods of stimulation (Figures 21A and C)
retains the same ISIs as in the deterministic model. When the period
of stimulation is close to the refractory time the well-defined pattern
of doubly periodic ISIs seen in Figure 10B can be destroyed by noise.
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Figure 18. Traveling waves in the SDS model in the presence of correlated noise in
the cable for the parameters « =1, d = 0.6, uy = 0 and A: py = 0.4, B: uy = 0.8
and C: py = 0.81. Other parameters as in Figure 7. Plots on the right show the
profiles of membrane voltage at the locations of 20th spine along the cable.
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Figure 19. Traveling waves in the SDS model in the presence of uncorrelated white
noise in the cable for the parameters d = 1, uy = 0 and gy = 0.35. Other parameters
as in Figure 7. Plot on the right shows the spines that generate the action potential.

0 Distance 0 Distance 30d

Figure 20. Traveling waves in the SDS model in the presence of uncorrelated white
noise in the spines-heads and correlated noise in the cable for the parameters A:
d=06,a=1, uy =08, uy =0.009 and B: d =1, o = 1, py = 0.8, uy = 0.03.
Other parameters as in Figure 7.

However, in general the low-pass temporal filtering properties observed
in the deterministic model are robust to noise.

6. Discussion
It is now just over one hundred years since the discovery of spines,

yet there are still mysteries about the contribution they make to single
neuron dynamics. Building on the insight into dendritic function gained
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Figure 21. Examples of voltage profiles at the location of the 55th spine along the
cable in the stochastic SDS model driven by the applied current stimulation of period
T. The parameters are a = 0.4, py = 0.49, py = 0.043 and T'= 15 (A), T =6 (B)
and T'=1 (C). Other system parameters as in Figure 10.

since the pioneering theoretical work of Rall in the 1950’s (surveyed
in (Segev et al., 1995)), we propose that the SDS model is ideally
suited to probing how active spines shape and modulate a spatially
structured input. In this paper we have focused on a rather simple
(spatially localized) input, though we emphasize here that more spa-
tially structured input can also be treated. Moreover, there is no barrier
to working with a truly branched dendritic tree model as the analyt-
ical (“sum-over-paths”) techniques necessary to do this have already
been developed by Bressloff et. al. (1996). In future work we pro-
pose to use the SDS model to understand whether inputs to a neuron
sum linearly, or depend on spatial relationships in the input, such as
clustering. The currently available experimental evidence is conflict-
ing (Cash and Yuste, 1998; Polsky et al., 2004). Interestingly, recent
advances in imaging technology (using fluorescent dyes in combination
with confocal or two-photon laser scanning microscopy) have permitted
time-lapse observation of spine morphology in living neurons (Fischer
et al., 1998; Dunaevsky et al., 1999; Bonhoeffer and Yuste, 2002), show-
ing that spines are also constantly moving. In fact over time-scales of
seconds, spines continuously undergo small changes in shape, thought
to be powered by dynamic actin filaments. On timescales of minutes
to hours spines can change their shape dramatically or even appear or
disappear. Moreover, new spines can be generated in response to synap-
tic stimulation that also results in strengthening of synapses. These
morphological changes could underlie some of the changes in synaptic
strength induced by neural activity. Working within the SDS framework
we would also be in a position to examine how successive synaptic input
might influence spine motility and electro-chemical properties. Some
work in this direction has already been done by Verzi et. al. (2005), for
the continuum Baer and Rinzel model using phenomenological models
of spine density dynamics. Within the SDS framework we envisage
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complementary work, building on existing modeling studies (of spines
as calcium compartments) such as that of Holcman and Schuss (2005),
exploring how calcium accumulates in discrete spines, and how this
makes its way to the cell nucleus and triggers genetic mechanisms that
ultimately lead to the mechanical reconfiguration of the synapse. Both
the above issues are topics of current investigation and will be reported
upon elsewhere.
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Appendix A: A (z,t)

Ac(z,t) = T\/gTD{eXp <— || \/§> erfc (—\/% + \/;t>

+ exp (]m\ \/g) erfc (\/’% + @)} .

Appendix B: Equations of the BR model

~

I(‘A/, m,n,h) = gKn4(V —vK) + gNahm?’(‘A/ — VNa) + gL(V - VL),

~. dX

TX(V>$ = Xoo(V) - X,

for X € {m,n,h} where Vi, Vi and gy, represent the constant mem-
brane reversal potentials associated with the leakage, potassium and
sodium channels respectively.

1

) = )+ e (7)
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Xoo(V) = ax(V)x (V),
where

. A(V +4
aﬂ"L(V = 0 (V + ’\O) 9
1 —exp[—0.1(V + 40)]

ap(V) = 0.07exp[—0.05(V + 65)],

0.01(V + 55)
1 — exp[—0.1(V +55)]

an(V) =

B (V) = 4.0exp|[—0.0556(V + 65)],

- 1
PulV) = 1+ exp[—0.1(V + 35)]

Bn(V) = 0.125exp[—0.0125(V + 65)].

The following parameter values were used: R, = 36 Q-cAm, R,, = 3333
Q-cm?, Cp, = 1 pF/em?, a = 1 pm, r = 0.05 MQ, C = 0.001 uF,
gr, = 0.0003 mS, gxr = 0.036 mS, gy, = 0.12 mS, V;, = —54.402 mV,
Vi = =77 mV and Vy, = 50 mV.
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