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Abstract

We consider strong approximations to parabolic stochastic PDEs. We assume the noise
lies in a Gevrey space of analytic functions. This type of stochastic forcing includes the
case of forcing in a finite number of Fourier modes. We show that with Gevrey noise our
numerical scheme has solutions in a discrete equivalent of this space and prove a strong error
estimate. Finally we present some numerical results for a stochastic PDE with a Ginzburg-
Landau nonlinearity and compare to the more standard implicit Euler-Maruyama scheme.
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1 Introduction

We consider the numerical approximation of stochastic PDEs of the following type
a(t) = Au(t) + F(u(t)) + QW (t), (1.2)

with periodic boundary conditions df, 27) and initial conditionuy € Cpe: ([0, 27}, C), the
space of continuous periodic functions. The corresponding integral equation is given by

t t
u(t) = e®u(0) +/ e(t_S)AF(u(s)) ds+/ =2 QAW (s) , (1.2)
0 0
where the stochastic integral is taken ib'dtsense (it is a simple exercise to adapt our
results to the Stratonovich, or any other case, see the remark aft8t#g.HereV is a
cylindrical Wiener process and a Hilbert-Schmidt operator on Gevery space, namely it has
exponentially decaying Fourier coefficients. In this paper, we develop a numerical scheme
which preserves the exponential decay of Fourier modes and thereby improve on standard
error estimates for Galerkin schemes for stochastic PDES. The precise assumptions on the
nonlinearityF’ and noiseQ1¥ are detailed in Sectiors2-2.3.

We show, in Sectiod, that our numerical scheme has solutions in a discrete equivalent
of the Gevrey space. There is a long history of the use of Gevrey regularity in deterministic
PDEs and in their numerical analysis: the work on Navier-Stokesspw#s generalized
to nonlinear parabolic equations ihg, 5], and as a consequence exponential convergence
of the Galerkin scheme was obtained 4j. [For stochastic PDEs a number of authors have
considered nois@WW which is smooth in space and white noise in time, for example [

19, 17] consider the 2D Navier-Stokes equation and obtain regularity results with smooth
forcing and P] considers Gevrey regularity of attractors for stochastic reaction-diffusion
equations. In a similar spirit to these works we choose the noise in the smallest space in
which the deterministic part of the PDE is known to have solutions, namely a Gevrey space
of analytic functions (see Eg2(2). Naively, we expect that the regularity of the solution is
determined by the regularity of the noise, but that it could not be any smoother than for the
deterministic case, namely Gevrey. We note that the Gevrey regularity covers the case of a
stochastic forcing in a finite number of modes. For the deterministic PDE, Gevrey regularity
of numerical solutions based on a Fourier decomposition was considered in this fdr/8 in [
whilst different discrete Gevrey spaces were define@@h nd for finite differences inif4).

The spatial discretisation we consider here is a Galerkin approximation.

Having obtained smoothness of the solutions we exploit this to prove in Segt@on
strong error estimate that improves over standard results in the literature. This is faster than
any polynomial, although not the exponential rate found}riqgr the deterministic case. We
restrict our analysis to additive noise since in this case existence and uniqueness of solutions
is fairly standard (se€3]). Strong convergence of a Galerkin approximation for stochastic
PDEs with additive, spatially white noise has been condsidered by few authors. The standard
Euler Maruyama scheme was first considered fy(gee SectiorB), and for this scheme a
stability restriction is required on the time step (similar to the deterministic case). Strong
convergence for the standard implicit Euler—-Maruyama scheme is considered irlLkbjoth [
and [B] which also considers a number of different spatial and time discretizations.

In Section7 we present numerical results and examine strong convergence for a forced
PDE with a Ginzburg-Landau type nonlinearity. We investigate both smooth and non-smooth
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noise and compare this scheme to a standard implicit Euler-Maruyama scheme. Finally we
briefly consider the multiplicative noise case numerically.

2 Definitions and Assumptions

2.1 Functional Spaces

Let Lper([o, 2m), (C) be the Hilbert space of square-integrable complex-valuegperiodic
functions, which we identify witlf?(Z, C) by Fourier series:

flz) = anemx = an@n(l‘)a

nez nez
_ i 2 2 )
e = (5 [ 1@ dsc) @\m >
We also usel(®>-)Sobolev spaceld™ (m € N)
1fllm = [[(1 = A)% fll2 = (Z(Hn?)m!fmz) : (2.1)
nEL

The Hilbert space that we will use most often in this papetis= H!. We next define
Gevrey space&,, (o > 0) of analytic functions

1fllGe = eV "2 fllx = (Ze%"”'(HnQ)Ian) . (2.2)

neL

The actual Hilbert spacé$™ andG,, are defined as the domains (i3, ([0, 2), C)) of the

operatorg1 — A)z and(1 — A)% exp(ay/—A), with scalar products corresponding to the
norms @.1)—(2.2).
Throughout the paper, we use the following notation: & L2, ([0, 27), C) andF (u) €

L2..([0,27),C), we write F, (u) for the nth coefficient in the Fourier series éf(u). The

integer part of: is written [x]:
[z] = max{n€Z : n<z}.

We denote byP™N the projection ont@pan{y_x;, ..., ¢x}, the first2N + 1 Fourier modes.

2.2 Nonlinear Term

We assume two types of Lipschitz conditions on the nonlinear trrithe first of these is
in Cper ([0, 2], C): there is a polynomial functiof on [0, c0)? such that

|F(2) = F(y)| < B(|z], ly])lz -yl -
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The second of these is in the discrete Gevrey space (se2 B)j.there is am > 0 and a
continuous functior on [0, c0)? such that

[F(u) = F)lla. < Blllullaa, [[vllea)llu—vlla, - (2.3)

In addition to these Lipschitz conditions we assume that the nonlindarigypolynomially
bounded, that is there are positive constanandr such that

|2][F' ()] + [F(z)] < C(1+|["). (2.4)

Finally we assume thaf is dissipative inCye; ([0, 27], C), that is, there is ap € R such
that

Re((F(z) — F(y))(z —y)) < nlz —yl*. (2.5)

These assumptions hold for the Ginzburg—Landau nonlineBity(u) = —|u|?u (see RO

for Eq.(2.3)), and this is the example we consider in SecfforDissipativity assumptions
usually requiren < 0 in Eg.(2.5. This can be achieved by changing the definition of the
linear operator: lel. = A + 2n andG(z) = F(x) — 2nx. Then Eq. {.1) is the same as

a(t) = Lu(t) + G(u(t)) + QW (t),

where the nonlinearitys satisfies a bound like2(5) with a negative constant and the linear
operatorL generates a compact quasi-bounded semi-group, hence the existence of solutions
follows from standard results (s8¢l). We consider here the regularity and strong numerical
approximation of solutions.

2.3 Noise Term

Let W be the cylindrical Wiener process @tiand Q a Hilbert—Schmidt operator ovéf,,.
We restrict ourselves to the following type of noise terms:

QW (t) = > bnenfn(t) . with > eIl (1 4 n?)|b,|* < o0, (2.6)
nez nez
whereb,, € C, {8, € R : n € Z} are mutually independent ordinary Brownian motions
andy, (z) = exp(inz). We also assumigy = 0. Without loss of generality, we may assume
that« in this section andv in Section2.2 are the same number. We often use the notation
b(z) for the function)_, b,e,(z). In Section7, Figurel, we plot a sample path for noise
that satisfies4.6).
We make the assumption that (the linear operator in EdL(1)) and @ can be diago-
nalised simultaneously. This greatly simplifies the notation, but is not crucial.

3 Numerical Scheme

We next describe our numerical scheme to integratelER).(Schemes similar to this were
considered for the deterministic case #9[13]. We first take Fourier series and obtain the
infinite system of coupled equations

t t
un(t) = e_t"2un(0) —I—/ e_(t_s)”an(u(s)) ds—l—/ e~ (=% dBn(s), n € Z,
0 0
(3.1)
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where we recall thak;, (u) is the nth Fourier coefficient af (u). Leth > 0 denote the time
step andN the size of the Galerkin truncation. We consider the discretisation of Hjj.(
given by

uY ((k+ Dh) = e n* (ug(kh) +hF, (u(kh)) +bn\/KXk+Ln) . (32

wheren € {—N,...,N}. The noiseterm$X;, , : n€ {-N,... N}, k=1,...,[T/h]}
are defined by

Xk:,n = h_1/2(ﬁn(kh) ﬁn(( - 1) )) (33)
and are (by definition of the Brownian motions) i.iXf(0, 1) random variables. In Sectidh
we discuss how higher order methods may be obtained and in Séctioplementation
of the scheme is considered. In particular, we compare3Ed.(ith the classical Euler—
Maruyama approximatiorilp, Sec. 9.1]:

u ((k+1)h) = (1 — hn®)ul (kh) + hF, (uN(kh)) + b, VhXji1, (3.4)
and to the implicit Euler—Maruyama schem[Sec. 12.2]
W (k4 Dh) = (1+hn?) ™" (ul (k) + Py (wN(kh)) + bVhXei10) - (35)
Notice that the corrections to E§.€) introduced in EqJ3.2) are non-uniform im:
e = (1 —hn?) + O(n*h?).
The relationship between E§.@) and Eq.8.1) is quite obvious when we iterate Eg.9):

[t/h]
uN(t) = +Z ~(k=Dhjn (th(uN((kq)h))+bn\mxk,n) . (3.6)

The discrete scheme is onIy defined fgh € N, but the above formula makes sense for any
t > 0: itis the solution at time € (kh, (k + 1)h] of the linear differential equation

Nt = AuN(1), (3.7)
uN(kh+0) = wuN(kh) +hPNF(uN(kh)) + Vhe™ QXN (k) .
The second sum in EQ() is indeed an approximation to thedIstochastic integral and

it is easy at this point to modify the scheme to approximate any another type of stochastic
integral. See also Sectid@for higher order schemes.

Proposition 3.1 Eq.(1.1) has a uniqué{—strong solution:(¢) on [0, 7' with

sup E(||u(t)\|31) < 0.
o<t<T

Proof. The Laplacian operatak generates an analytic compact semi-groug’pn ([0, 27], (C).
This and the dissipativity of (in Cper ([O, 27], (C), see EqZ.5) imply existence and unique-
ness inCpe: ([0, 2], C) by Theorem 7.13 in].

To extend this result t@{, we only need to remark that the heat kerGg(x) satisfies
fOT VG|l dt < oo indimension 1. Hence applying to Eq.(L.2) and using’pe; ([0, 27, C)
bounds and EcR(4), we get a bound ift. L]

The first main result of this paper is a regularity result: solutions of&E&#.@re in a
Gevrey space of analytic functions.
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Theorem 3.2 For all T' > 0, there exists a positive random variablend constants, C,,,
and R such that

E (:Egexp(cHu(t)Héw)) <R, E(v™) < Cn,V¥m > 0.

Proof. This Theorem will be restated as Corollahbin Section4. L]
Remark that similar results for the stochastic POEL can be found in the literature
[19, 1] and [16, Ch. 5], although this has not been considered for numerical approximations
to our knowledge. For the deterministic equation a number of regularity results exist for the
numerical approximations. The scheme considered3i§ similar to the case considered
here and Gevrey regularity is proved. The scheme considerg@jiis [different and employs
a different definition of discrete Gevrey spaces. Our techniques could be applied to the
scheme and functional setup &, but we feel our approach is notationally simpler and
more intuitive.
This regularity result on the numerical scheme allows us to prove (see Séttiba
following strong error estimate.

Proposition 3.3 Eq.(3.6) converges strongly ifi{ to a solution of EqX.1) asN — oo and
h — 0. If ug € G, then we have the error estimate

E( sup ||u(t) —uN<t>||H> < K(T,m)(N"™ +h)
te(0,T7]

for all m > 0.

Proof. This is considered in Sectidn L]
This is an improvement over the results for the standard Euler-Maruyama £gfér
which the error bound is

E (Ju(t) = u™(®)|x) < K(#)(N' +N°h),

see []. It must be said, however, that for our result we have made restrictive assumptions on
the noise (Gevrey class of regularity), which is not the casé&]inThe rate of convergence

in N cannot be expected to be faster than the rate of decay.o$trong convergence for

the implicit Euler—Maruyama scheme has been considered for Galerkin approximations of
SPDEs by 8] (who also examines other discretisations in space and time) add]in [

4 Smoothing Action of the Semi-Flow

In this section, we explore the contraction properties of the semi-flow generated Bygeq.(
in various spaces. Let = {F,, : m € Z} denote the nonlinear term of E§.():

[t/h]
Fm(v)(t) = Z e_(t_(k_l)h)mQth(v((k —1)h)),
k=1
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acting on the metric space
Bry(T) = {v 0,71 x[0,2m) — R; loll, = Sup. lo@®)lle,. < R} :
€|0,7

We prove a contraction result foF in the following lemma, from which all the results of
Section3 will follow.

Lemma4.1 Forall R > 0 and0 < v < «a, wherea is such that Eq4.3) holds, there is a
7 > 0 such that the mayF is a contraction orBg (7).

Proof. Letv; andv; be such thaljv: o[, < R. First note that

[t/h] 1/2 [t/h]
Zh(Z ~(k=1)h)n > < VY h{t—(k—1)h)? < Vat.
k=1

k=1 In|<N

Using these estimates, we compute the Lipschitz constaftinfBg ., (7):

Z 627t|n|(1 + n2) ‘fn (Ul)(t) — fn(UQ)(t)‘Q

In|<N

- ¥

[n|<N

[t/h]
3 he~(t= (k=D (e~ (k-Dh)
k=1

ev(k—l)hw\/u_—n?(Fn (01 ((k — 1)h)) = F (va ((k — Uh)))

2

IN

[t/h] 1/2 2
<Z h( 3 ez(t(kl)hnmmn)) B(R)||v1((k — 1)h) — va ((k — 1)h) HGW(MJ

k=1 [n|<N
[t/h]

1/2\ 2
< Bl vl (S0 3 -t} )
k=1 [n|<N

) [t/h] U2
< 1132(}{)“\1;1—1)2]”7 (Zh<ze(t(k1)h)(~y -n )) >

k=1 [n|<N

2
< wBX(R)e T |vr — vall?

whereB(R) = sup,, . g B(x, y) with B from Eq.@.3).
By taking the sup ovetr < 7, we obtain the estimate

2T
IF(v1) = Flo2)ll, < 7B(R)e” V7 [vr — v, < (1—=0)[lvi —vell, ,
wheres > 0if \/7¢7°7 < 1/(2B(R)).

Remark here that the inverse of the maximal Gevrey index) !, is bounded by a
polynomial inR. This will be used in the proof of Corolla#.5. (]
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We now consider the noise term in E3j§) which we denoté(¢):

hn(t) = 3 eI VX

ol
—_

andg(t) the linear part of the evolution, for the initial conditiaf) € Cpe ([0, 27)):

gn(t) = e uN(0) .

To use Lemmat.1to deduce properties of solutions of E2jd), we need estimates on the
processeg(t) andh(t).

Lemma 4.2 GivenC > 0 there is ac > 0 such that
B (supexp<c||h<t>||éa>) <c,
t<1
wherea is such that EqZ.6) holds.

Proof. Let Yy, = exp(—(t — (k —1)h)m?)vhX},,,,. Remark that th&} ,,, (for simplicity
of notation, we seY}, o = 0) are mutually independen¥ (0, h exp(—2(t — (k - 1)h)m2))

random variables. Therefore, for ahy ¢t; >t +h > tg > 0, the sumzk [t
is a Gaussian random variable with variance

tl/h] tl/h

Z V&r(Yk m) — —2tm Z €2khm

=[to/h]+ k=[to/h]

B he‘thQ e2[t1/hlhm? _ J2[to /h]hm?
- e2hm? _ 1

([t1/h] — [to/h])h

Therefore, giver” > 0, for ¢y sufficiently small we get

[t1/h]
E (exp(co Z Yk,m|2/(t1 to))) < C.

k=[to/h]

/h]+1 Yiem

IN

We now choose the constansuch that
cllplfE, = > e+ n?)b* < e
nez

Then, usingE (X9) < (E (X))? for ¢ < 1 (Jensen’s inequality) and mutual independence
of the random variables, we get

E (exp(clla(tr) — e 02n(to) 2, /(1 — t0))
[t1/h]

- E <6XP<Z 06204|m|(1+m )| bm, |2) Z Ykm‘ /(t1 to)))

meZ k=[to/h]+
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_ H E (exp(cemm(l —|—m2)\bm|2) [g?] Yk,m‘z/(tl - to)))

meZ k=[to/h]+1
[t1/h] 9 exp(2a|m|) (14+m2)[bm2[|b]| G2
< TL(E{ep(dbit] > Yiu| /ti-t0)]) -
mez k=I[to/h]+1
< c. (4.1)

We can write the noise teri(t) from (3.6) as

h(t) _ h(t) _ e(tftn)Ah(tn) + e(tftn)A (h(tn) B e(tnftn—1)Ah(tn_1)) +...
+el A (R(ty) — e 2h(0)) + "2 R(0)

(note thath(0) = 0) for an arbitrary choice 06 < ¢t; < --- < ¢, < t. Each term in
this sum satisfies an inequality like E4.1), hence the claim follows from an application of
Kolmogorov’s maximal inequalityl[0]. (]

We now considey(t) from the linear part of the evolution.

Lemma 4.3 For all v > 0,
2
sup [|9(t) [y < €N (0) ]l
t>0
(wheret A 1 = min(¢, 1)).

Proof. This is an elementary calculation:

9,2
gDy, = DML 4 n?) [ (0)?
neL

< YN (1 4 n?) | (0)?
nez
< 2N (0))3, O

To obtain the regularity result we introduce a new n#&g" defined as follows:
FON) = F(f+g+h).
Obviously, if f is a fixed point ofF9:", thenf + ¢ + h is a solution of Eq3.2).

Lemma 4.4 Let o be such that EqA.3) holds and leth € Br (1) for somed < v < c.
ThenZF9" has a unique fixed point iz ,(1).

Proof. By Eq.(2.2) and Lemmag.2-4.3, there is & such thakup, -, ||g(t)+h(t)[lc, < C,
thusg + h is in Bo o(1) henceF?" is well-defined o3¢, () for r < 1.

Lemma4.1 shows thatF%" is a contraction forr small enough, hence by the Banach
fixed point Theorem, it has a fixed point. The result can be iterated to get a fixed point in
Beo(1). L]

We next apply this result to the random process defined byBE3.
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Corollary 4.5 Letu(t) be defined by EqB(2) with vy € G,. For all T > 0, there exists a
random variabley and constants, C,,, and R such that

E (Supexp(c\|u(t)||é7)> <R, E(v™) < Cpn,V¥m > 0. 4.2)
t<T

Proof. By Lemma4.4, sincer > 0 almost surelyy satisfies Eq4.2) with R = RyE (exp(CHhHéw))

providedh € G, which is true almost surely by Lemmnda2, andv is such that Lemma&.4
holds ianhmw(t). The bound on the distribution aof follows from the fact thaty~! can
bounded by a polynomial ifi||c., (see remark at the end of the proof of Lem#d) since

B() < B (™) < Com (suped Ol )

t<T

5 Strong Error Estimate

We want to estimate the strong error of ProposioB

E( sup ||u(t) —uN(t)H%> :
te(0,T

whereu(t) is the solution of EqX.2) andu™ (¢) the solution of Eq3.2) with the same initial
conditionug (see [L2], p.324-325).

We split the problem into Fourier modes with| < N and|n| > N and consider the
non-linear and noise terms separately. First we look at the non-linear term.

sup
te(0,7] In|<N
[t/h]

Z E( sup Z/<k_1>he (_(k_l)h)”2(1+n2)<\Fn(uN(s))—Fn(uN(tk))\

In|<N te(0,7] .1

FIFa(u(s)) — Fu(u ()] + (609 1) (u(s))]) ds)

[t/h]
> 1> / DR (2 (ol (DN B (y(5)) — B (uN(8))) ds

k=1

)

We use the bounds on the nonlinearity RiR—(2.4)

< C (T2h2 +/ E ( sup || F(u(s)) — F(UN(S))H%> dt + E <T2h2 sup ’“(S)”a))
0 s€(0,1] s€(0,7]

< C<T2h2+/ E ( sup Hu(s)—uN(S)H%> dt) :
0 s€(0,t]
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Similarly, for |n| > N, using Eq.2.4), form > 0

2
E | sup
(tE(O,T} |7§>:N )

1/2
< C,N"E (sze‘”N)l/QE ( sup IIF(u(s))\‘éw>

/t e_(t_s)"2(1 +n?)Fy(u(s))ds

0

s€(0,7]
1/2
< CuN"TE | sup |ju(s)||& ;
s€(0,7] !

where~ is as in Theoren3.2
Next the noise contribution is analysed: using Doob’s martingale inequabityas in

[9], we get
t/h] / ki ] ) 2
sup Z (14 n? Z (/ e~ (t=sn"p dBn(s) — e~ (t=(k—1)h)n bn\/HXk,n>
tE(OT In|<N =1 (k—1)h
T 2
é 4 Z +n |b | E </ (e—(’T—S)TL2 _ 6_(7— [S/h] )dﬁn( )>
[n]<N 0
T 2 2 2
~ 4y 2) 2alnl|p, |2/ (6_(7_5)71 _6—(7—[s/h})h)n) o—200n] 4
[n|<N 0
< CTh?|bllg,

where||b||3 =3, (1 + n?)e?l"l|b,|2, and for|n| > N,

t
/ e~ (t=9)n? by, dBn(s)
0

te(0,7] In[>N

2
E ( sup Z (1+n?) ) < C(T)e’zaNHbHéa

Putting it all together, we obtain by Gronwall’s inequality:

E ( sup ||u(t) — uN(t)H%) < Cp (/ E ( sup |lu(s) — uN(s)H%> dt + 7%h?% + N_m>
te(0,7] 0 s€(0,t]
< Cp(r)(h>+N7™).

Jensen’s Inequality then gives PropositiB.

6 Higher Order Schemes

The easiest way to obtain higher order schemes is to applydaitdylor expansion (see
[12]). For example:

h h
un(h) = e u,(0) + / e =97 B (u(s)) ds + / e =%y, 4B,(s)
0 0



Stochastic PDEs with Gevrey Regularity 11

e (0) + e M hE, (u(0))

—l—/oh </05 e—(h—o)n? <n2Fn(u(a)) + ZajF”(“(U))(—jguj(a) 4 Fi(u(0)))
Z VIO F, ) do
o O ST 45 >)

h
—|—/ (e_h"2 + / n2e~(h-o)n? d0> bn, dBn(s) .
0 0

Using the same discretisation procedure as in Segt{pnojecting onto a finite set of modes
and replacing by 0) we get

un((k+ 1)h)

= e ( n(kh) +h(1 + hn) " (u(kh))

N
#31 5 (QF b))~ Py )+ F k) + 20 (k)

j=—N

N
1

+—=h%2 N b0 P (u(kh) Zig
\/g j=—N

1
+ bn\/ﬂ(l + hn2)Xk:+1,n - bnnzﬁh:vzzk-&-l,n) ) (61)

kh
Zkn = V3032 (/( | Bn(s) ds)
k—1)h

areN (0, 1) random variables. They are not independent of the variablgs

where

1
E (X1 Zkn) = 5112 )

We refer to 2], p.19, for a method to generate these correlated Gaussian variables. The
scheme obtained in E§.() has strong orde3/2. Other schemes, both weak and strong,
may be derived in the standard wahZ].

7 Numerical Results

We have implemented the scheme Ej2(and, for comparison, the implicit Euler-Maruyama
method of Eq. 8.5) for the Ginzburg-Landau nonlinearitjgr,(v) = —|u|?u. In practice,
for the nonlinear term we compute the coefficieRtgu™ (kh)) by first applying the inverse
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@ _3 (b)

Figure 1: (a) A sample path of Gevrey noise with= exp(—n), n # 0. In (b) we plot sample
noise att = 1 (top) Gevrey noise, (middle) noise with = n=!,n # 0, (bottom) noise with no
decay in the coefficients, = 1 corresponding to spatially white noise.

fast Fourier transform ta™(kh), computingF(u) in real space followed by the fast Fourier
transform.

We examine the regularity of solutions and strong convergence for smooth (Gevrey)
noise and non-smooth (non-Gevrey) noise. In Figuta) we have plotted a sample noise
path which satisfies2(6), for which we have takeh, = exp(—u|n|), n # 0. The spatial
smoothness of the noise is parameterized gnd in this examplg = 1. In (b) we compare
att = 1 the Gevrey noise (top) against noise with= n~!,n # 0 (middle) and against
noise with constant values 6f = 1, spatially white noise (bottom). Neithéf = n~! or
b, = 1 satisfies the hypothesi2.@). In each case we took the same seed for the random
number generatoR!? Fourier coefficients and a time steplof= 0.01. Figurel shows the
smooth spatial nature of the forcing satisfyirdggj (although it is white noise in time).

In Figures2-4 we plot sample solutions (top) and the corresponding (semilog) of the
Fourier spectrum (bottom). The computations for these figures Adeeburier modes. In
Figure 2 smooth noise was taken with two different time steps, irh(a2) 10~* and in (b)

h = 1073. In (a) we see that the spectrum decays exponentially with wave number where
as in (b) for large wave numbers we see a faster decay in the spectrum. This is can be
understood from the factesp(—hn?) in Eq. 3.2), for exponential decay in the spectrum

we requireh to scale likeN —!. As we have seen in EQ.(7), at each timeu(t) is the solution

of the linear heat equation, which is known to be an entire analytic function. Thus, our
numerical scheme consists in approximating the Gevrey analytic solutiorof the PDE

(which possibly has a singularity in the complex plane) by a sequence of entire analytic
functionsu®<"V (), which have increasingly rapid growth along the imaginary axis as we
let h go to0 (but no singularity).

In contrast to Figure the solutions of Figur&(a) and (b) were computed with non-
smooth noise (&), = n~! and (b)b,, = 1. For smooth noise the spectrum decays exponen-
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tially in wave number (in accordance with the theory) and comparing Figleied3 we see
much slower decay in the spectrum for the non-smooth noise.

Figure4 shows similar calculations for the implicit Euler—-Maruyama scheme with smooth
(a) and non-smooth noise, = n~!, n # 0 in (b). Although we have not proved that im-
plicit Euler—-Maruyama has solutions in a Gevrey class of regularity with smooth forcing,
these results indicate that this is probably the case. The non-smooth case is similar to that
observed in Figuré.

We also tested strong convergence numerically (see Fidgu®s To approximate a
“true” solution we computed a solution with'? Fourier modes antt = 1075, In Fig-
ure 5 (a) the average of theZ ([0, 2m), C)—norm of the error is displayed fdi0 orbits
againsth. Each curve corresponds to a different number of Fourier mddes 27 with
qg = 17,8,9,10,11,12 and a reference straight line of slopés shown for comparison. In
Figure5 (b) we have taken smooth noise. We observe that the order of convergence is con-
sistent with the theory. Figurg (b) shows similar calculations for the casebgf = n~!,
so (2.6) is no longer satisfied (and the noise is no longer in a Gevrey space of regularity).
Comparing Figurés (a) and (b) we see that the scheme exhibits stiffness for non-smooth
noise and is less accurate.

In Figure6 (a) we show the results of the same calculations performed for the implicit
Euler-Maruyama scheme of EdB.H) with smooth noise. We see qualitatively the same
behaviour as the scheme given 18,23 with smooth noise, shown in Figutga). In Figures
(b) we show the results of the standard Euler-Maruyama scheme o8Bywith smooth
noise, and again we observe qualitatively the same behaviour as the scheme gigR by (
of Figure5 (a). However, the standard Euler-Maruyama schemeZ4).lfas worse stability
properties (see7] 8]), and a restriction is required that< 2/N2. As a consequence, this
scheme is unlikely to be used for practical computations. This stability constraint meant that
the “true” solution was found with. = 10~ and2!° modes and we show computations
performed with2” modes andi = 2 x 107%,5 x 1076,107°,2.5 x 107°,5 x 1076, 107,

Like the implicit Euler-Maruyama scheme we have no result on the regularity of the solution
for the standard Euler-Maruyama with smooth noise.

Similar numerical results are found for the caseniltiplicative noise

a(t) = Au(t) + F(u(t)) +u(t)QW(t) . (7.1)

We adapt the schem8.@) and consider
W ((k+1)h) = e " (ug(kh) +hF, (uN(kh)) + dn\/ﬂxkﬂyn) , (7.2

whered,, are the Fourier coefficients @@ . In figure7 we have plotted in (a) the solution

and spectrum using this scheme foe= 2! andh = 10~%. In (b) we have plotted the solu-

tion and Fourier modes for the multiplicative noise case using the implicit Euler-Maruyama
method. In FigureB (a) we examine convergence of the schef@)(with multiplicative

noise with2!! Fourier modes. In (b) we have looked at convergence for the the implicit
Euler-Maruyama scheme with multiplicaitve noise. The average of.hg[0, 27),C)—

norm of the error is displayed fdr orbits againsh. The reference solution was computed

with h = 1076 and2'2 Fourier modes. A reference line with slopés also shown. Nu-
merically we observe the same convergence rate as in the additive noise case and that the
Euler-Maruyama and the schem&2) have similar properties.
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() (b)

Figure 2: Solution at = 1 (top) and spectrum (below) using scherBe&( with smooth noise.
Computed witr2!! modes and step size (a)= 10~* and (b)h = 1073.

() (b)
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n n

Figure 3: Solution at = 1 (top) and spectrum (below) using the sche®&)(with non-smooth
noise (a), = n~* and (b)b, = 1. Computed witi2!* modes and witth = 104,
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Figure 4: Solution at = 1 (top) and spectrum (below) using the implicit Euler-Maruyama
scheme 3.5) with (a) smooth noise and (b) non-smooth noise £ n~!). Solution computed
with 21 modesh = 1074
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Figure 5: Strong error estimates for (a) smooth noise and (b) non-smooth noise for the scheme
(3.2 with different values oh andN = 2?7, ¢ = 7,8,9,10, 11, 12. Also shown in each case is a
reference line of slope 1.
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Figure 6: Strong error estimates with smooth noise for (a) the implicit Euler—-Maruyama scheme
BH(N=214¢4=7,8,9,10,11,12) and (b) the standard Euler—-Maruyama sche&éd (N =
27). For stability reasons the reference solution for the (b) was computedhwith10—¢ and

N = 21°, Also shown in each case is a reference line of slope 1.
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Figure 7: Scheme7(2) (a) and implicit Euler-Maruyama (b) with smoothultiplicative noise.
Solutions shown at= 1 computed witl2!! modes and. = 10~ (top) in space and (bottom) in
Fourier space.
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Figure 8: lllustration of convergence (a) of the schem@)(for smoothmultiplicativenoise and
(b) the implicit Euler-Maruyama scheme. In each case the reference line has slope 1.
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