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Abstract

We consider strong approximations to parabolic stochastic PDEs. We assume the noise
lies in a Gevrey space of analytic functions. This type of stochastic forcing includes the
case of forcing in a finite number of Fourier modes. We show that with Gevrey noise our
numerical scheme has solutions in a discrete equivalent of this space and prove a strong error
estimate. Finally we present some numerical results for a stochastic PDE with a Ginzburg-
Landau nonlinearity and compare to the more standard implicit Euler-Maruyama scheme.
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1 Introduction

We consider the numerical approximation of stochastic PDEs of the following type

u̇(t) = ∆u(t) + F
(
u(t)

)
+QẆ (t) , (1.1)

with periodic boundary conditions on[0, 2π) and initial conditionu0 ∈ Cper

(
[0, 2π],C

)
, the

space of continuous periodic functions. The corresponding integral equation is given by

u(t) = et∆u(0) +
∫ t

0
e(t−s)∆F

(
u(s)

)
ds+

∫ t

0
e(t−s)∆QdW (s) , (1.2)

where the stochastic integral is taken in Itô’s sense (it is a simple exercise to adapt our
results to the Stratonovich, or any other case, see the remark after Eq.(3.7)). HereW is a
cylindrical Wiener process andQ a Hilbert-Schmidt operator on Gevery space, namely it has
exponentially decaying Fourier coefficients. In this paper, we develop a numerical scheme
which preserves the exponential decay of Fourier modes and thereby improve on standard
error estimates for Galerkin schemes for stochastic PDES. The precise assumptions on the
nonlinearityF and noiseQẆ are detailed in Sections2.2–2.3.

We show, in Section4, that our numerical scheme has solutions in a discrete equivalent
of the Gevrey space. There is a long history of the use of Gevrey regularity in deterministic
PDEs and in their numerical analysis: the work on Navier-Stokes by [6] was generalized
to nonlinear parabolic equations in [18, 5], and as a consequence exponential convergence
of the Galerkin scheme was obtained in [4]. For stochastic PDEs a number of authors have
considered noiseQẆ which is smooth in space and white noise in time, for example [1,
19, 17] consider the 2D Navier-Stokes equation and obtain regularity results with smooth
forcing and [2] considers Gevrey regularity of attractors for stochastic reaction-diffusion
equations. In a similar spirit to these works we choose the noise in the smallest space in
which the deterministic part of the PDE is known to have solutions, namely a Gevrey space
of analytic functions (see Eq. (2.2)). Naively, we expect that the regularity of the solution is
determined by the regularity of the noise, but that it could not be any smoother than for the
deterministic case, namely Gevrey. We note that the Gevrey regularity covers the case of a
stochastic forcing in a finite number of modes. For the deterministic PDE, Gevrey regularity
of numerical solutions based on a Fourier decomposition was considered in this form in [13],
whilst different discrete Gevrey spaces were defined in [20], and for finite differences in [14].
The spatial discretisation we consider here is a Galerkin approximation.

Having obtained smoothness of the solutions we exploit this to prove in Section5 a
strong error estimate that improves over standard results in the literature. This is faster than
any polynomial, although not the exponential rate found in [4] for the deterministic case. We
restrict our analysis to additive noise since in this case existence and uniqueness of solutions
is fairly standard (see [3]). Strong convergence of a Galerkin approximation for stochastic
PDEs with additive, spatially white noise has been condsidered by few authors. The standard
Euler Maruyama scheme was first considered by [7] (see Section3), and for this scheme a
stability restriction is required on the time step (similar to the deterministic case). Strong
convergence for the standard implicit Euler–Maruyama scheme is considered in both [11]
and [8] which also considers a number of different spatial and time discretizations.

In Section7 we present numerical results and examine strong convergence for a forced
PDE with a Ginzburg-Landau type nonlinearity. We investigate both smooth and non-smooth
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noise and compare this scheme to a standard implicit Euler-Maruyama scheme. Finally we
briefly consider the multiplicative noise case numerically.

2 Definitions and Assumptions

2.1 Functional Spaces

Let L2
per

(
[0, 2π),C

)
be the Hilbert space of square-integrable complex-valued2π–periodic

functions, which we identify with̀2(Z,C) by Fourier series:

f(x) =
∑
n∈Z

fne
inx ≡

∑
n∈Z

fnϕn(x) ,

‖f‖L2 =
(

1
2π

∫ 2π

0
|f(x)|2 dx

) 1
2

=

(∑
n∈Z
|fn|2

) 1
2

.

We also use (L2–)Sobolev spacesHm (m ∈ N)

‖f‖Hm = ‖(1−∆)
m
2 f‖L2 =

(∑
n∈Z

(1 + n2)m|fn|2
) 1

2

. (2.1)

The Hilbert space that we will use most often in this paper isH = H1. We next define
Gevrey spacesGα (α > 0) of analytic functions

‖f‖Gα = ‖eα
√
−∆f‖H =

(∑
n∈Z

e2α|n|(1 + n2)|fn|2
) 1

2

. (2.2)

The actual Hilbert spacesHm andGα are defined as the domains (inL2
per

(
[0, 2π),C

)
) of the

operators(1−∆)
m
2 and(1−∆)

1
2 exp(α

√
−∆), with scalar products corresponding to the

norms (2.1)–(2.2).
Throughout the paper, we use the following notation: ifu ∈ L2

per

(
[0, 2π),C

)
andF (u) ∈

L2
per

(
[0, 2π),C

)
, we writeFn(u) for thenth coefficient in the Fourier series ofF (u). The

integer part ofx is written[x]:

[x] = max{n ∈ Z : n ≤ x } .

We denote byPN the projection ontospan{ϕ−N, . . . , ϕN}, the first2N + 1 Fourier modes.

2.2 Nonlinear Term

We assume two types of Lipschitz conditions on the nonlinear termF . The first of these is
in Cper

(
[0, 2π],C

)
: there is a polynomial functionB on [0,∞)2 such that

|F (x)− F (y)| ≤ B(|x|, |y|)|x− y| .
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The second of these is in the discrete Gevrey space (see Eq.(2.2)): there is anα > 0 and a
continuous functionB on [0,∞)2 such that

‖F (u)− F (v)‖Gα ≤ B(‖u‖Gα , ‖v‖Gα)‖u− v‖Gα . (2.3)

In addition to these Lipschitz conditions we assume that the nonlinearityF is polynomially
bounded, that is there are positive constantsC andr such that

|x||F ′(x)|+ |F (x)| ≤ C(1 + |x|r) . (2.4)

Finally we assume thatF is dissipative inCper

(
[0, 2π],C

)
, that is, there is anη ∈ R such

that
Re
(
(F (x)− F (y))(x− y)

)
≤ η|x− y|2 . (2.5)

These assumptions hold for the Ginzburg–Landau nonlinearityFGL(u) = −|u|2u (see [20]
for Eq.(2.3)), and this is the example we consider in Section7. Dissipativity assumptions
usually requireη < 0 in Eq.(2.5). This can be achieved by changing the definition of the
linear operator: letL = ∆ + 2η andG(x) = F (x)− 2ηx. Then Eq. (1.1) is the same as

u̇(t) = Lu(t) +G
(
u(t)

)
+QẆ (t) ,

where the nonlinearityG satisfies a bound like (2.5) with a negative constant and the linear
operatorL generates a compact quasi-bounded semi-group, hence the existence of solutions
follows from standard results (see3.1). We consider here the regularity and strong numerical
approximation of solutions.

2.3 Noise Term

LetW be the cylindrical Wiener process onH andQ a Hilbert–Schmidt operator overGα.
We restrict ourselves to the following type of noise terms:

QẆ (t) =
∑
n∈Z

bnϕnβ̇n(t) , with
∑
n∈Z

e2α|n|(1 + n2)|bn|2 < ∞ , (2.6)

wherebn ∈ C, {βn ∈ R : n ∈ Z} are mutually independent ordinary Brownian motions
andϕn(x) = exp(inx). We also assumeb0 = 0. Without loss of generality, we may assume
thatα in this section andα in Section2.2 are the same number. We often use the notation
b(x) for the function

∑
n bnϕn(x). In Section7, Figure1, we plot a sample path for noise

that satisfies (2.6).
We make the assumption that∆ (the linear operator in Eq.(1.1)) andQ can be diago-

nalised simultaneously. This greatly simplifies the notation, but is not crucial.

3 Numerical Scheme

We next describe our numerical scheme to integrate Eq.(1.1). Schemes similar to this were
considered for the deterministic case in [20, 13]. We first take Fourier series and obtain the
infinite system of coupled equations

un(t) = e−tn
2
un(0) +

∫ t

0
e−(t−s)n2

Fn
(
u(s)

)
ds+

∫ t

0
e−(t−s)n2

bn dβn(s) , n ∈ Z ,
(3.1)
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where we recall thatFn(u) is the nth Fourier coefficient ofF (u). Let h > 0 denote the time
step andN the size of the Galerkin truncation. We consider the discretisation of Eq.(1.1)
given by

uN
n

(
(k + 1)h

)
= e−hn2

(
uN
n (kh) + hFn

(
uN(kh)

)
+ bn
√

hXk+1,n

)
, (3.2)

wheren ∈ {−N, . . . ,N}. The noise terms{Xk,n : n ∈ {−N, . . . ,N}, k = 1, . . . , [T/h]}
are defined by

Xk,n = h−1/2
(
βn(kh)− βn((k − 1)h)

)
(3.3)

and are (by definition of the Brownian motions) i.i.d.N (0, 1) random variables. In Section6
we discuss how higher order methods may be obtained and in Section7 implementation
of the scheme is considered. In particular, we compare Eq.(3.2) with the classical Euler–
Maruyama approximation [12, Sec. 9.1]:

uN
n

(
(k + 1)h

)
= (1− hn2)uN

n

(
kh
)

+ hFn
(
uN(kh)

)
+ bn
√

hXk+1,n (3.4)

and to the implicit Euler–Maruyama scheme [12, Sec. 12.2]

uN
n

(
(k + 1)h

)
= (1 + hn2)−1

(
uN
n

(
kh
)

+ hFn
(
uN(kh)

)
+ bn
√

hXk+1,n

)
. (3.5)

Notice that the corrections to Eq.(3.4) introduced in Eq.(3.2) are non-uniform inn:

e−hn2
= (1− hn2) +O(n4h2) .

The relationship between Eq.(3.2) and Eq.(3.1) is quite obvious when we iterate Eq.(3.2):

uN
n (t) = e−tn

2
uN
n (0) +

[t/h]∑
k=1

e−(t−(k−1)h)n2
(

hFn
(
uN
(
(k − 1)h

))
+ bn
√

hXk,n

)
. (3.6)

The discrete scheme is only defined fort/h ∈ N, but the above formula makes sense for any
t > 0: it is the solution at timet ∈ (kh, (k + 1)h] of the linear differential equation

u̇N(t) = ∆uN(t) , (3.7)

uN(kh + 0) = uN(kh) + hPNF
(
uN(kh)

)
+
√

heh∆QXN(k) .

The second sum in Eq.(3.6) is indeed an approximation to the Itô stochastic integral and
it is easy at this point to modify the scheme to approximate any another type of stochastic
integral. See also Section6 for higher order schemes.

Proposition 3.1 Eq.(1.1) has a uniqueH–strong solutionu(t) on [0, T ] with

sup
0≤t≤T

E
(
‖u(t)‖2H

)
< ∞ .

Proof. The Laplacian operator∆ generates an analytic compact semi-group onCper

(
[0, 2π],C

)
.

This and the dissipativity ofF (inCper

(
[0, 2π],C

)
, see Eq.(2.5)) imply existence and unique-

ness inCper

(
[0, 2π],C

)
by Theorem 7.13 in [3].

To extend this result toH, we only need to remark that the heat kernelGt(x) satisfies∫ T
0 ‖∇Gt‖dt <∞ in dimension 1. Hence applying∇ to Eq.(1.2) and usingCper

(
[0, 2π],C

)
bounds and Eq.(2.4), we get a bound inH.

The first main result of this paper is a regularity result: solutions of Eq.(3.2) are in a
Gevrey space of analytic functions.
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Theorem 3.2 For all T > 0, there exists a positive random variableγ and constantsc,Cm,
andR such that

E

(
sup
t≤T

exp(c‖u(t)‖2Gγ )

)
≤ R , E

(
γ−m

)
≤ Cm , ∀m > 0 .

Proof. This Theorem will be restated as Corollary4.5 in Section4.
Remark that similar results for the stochastic PDE (1.1) can be found in the literature

[19, 1] and [16, Ch. 5], although this has not been considered for numerical approximations
to our knowledge. For the deterministic equation a number of regularity results exist for the
numerical approximations. The scheme considered in [13] is similar to the case considered
here and Gevrey regularity is proved. The scheme considered in [20] is different and employs
a different definition of discrete Gevrey spaces. Our techniques could be applied to the
scheme and functional setup of [20], but we feel our approach is notationally simpler and
more intuitive.

This regularity result on the numerical scheme allows us to prove (see Section5) the
following strong error estimate.

Proposition 3.3 Eq.(3.6) converges strongly inH to a solution of Eq.(1.1) asN → ∞ and
h→ 0. If u0 ∈ Gα, then we have the error estimate

E

(
sup
t∈(0,T ]

‖u(t)− uN(t)‖H

)
≤ K(T,m)(N−m + h) ,

for all m > 0.

Proof. This is considered in Section5.
This is an improvement over the results for the standard Euler-Maruyama Eq.(3.4), for

which the error bound is

E
(
‖u(t)− uN(t)‖H

)
≤ K(t)(N−1 + N5h) ,

see [7]. It must be said, however, that for our result we have made restrictive assumptions on
the noise (Gevrey class of regularity), which is not the case in [7]. The rate of convergence
in N cannot be expected to be faster than the rate of decay ofbn. Strong convergence for
the implicit Euler–Maruyama scheme has been considered for Galerkin approximations of
SPDEs by [8] (who also examines other discretisations in space and time) and in [11].

4 Smoothing Action of the Semi-Flow

In this section, we explore the contraction properties of the semi-flow generated by Eq.(3.6)
in various spaces. LetF = {Fm : m ∈ Z} denote the nonlinear term of Eq.(3.6):

Fm
(
v
)
(t) =

[t/h]∑
k=1

e−(t−(k−1)h)m2
hFm

(
v
(
(k − 1)h

))
,
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acting on the metric space

BR,γ(τ) =

{
v : [0, τ ]× [0, 2π) → R ; |||v|||γ ≡ sup

t∈[0,τ ]
‖v(t)‖Gγt ≤ R

}
.

We prove a contraction result forF in the following lemma, from which all the results of
Section3 will follow.

Lemma 4.1 For all R > 0 and0 < γ < α, whereα is such that Eq.(2.3) holds, there is a
τ > 0 such that the mapF is a contraction onBR,γ(τ).

Proof. Let v1 andv2 be such that|||v1,2|||γ ≤ R. First note that

[t/h]∑
k=1

h
(∑
|n|≤N

e−(t−(k−1)h)n2

)1/2

≤
√
π

[t/h]∑
k=1

h(t− (k − 1)h)−1/2 ≤
√
πt .

Using these estimates, we compute the Lipschitz constant ofF in BR,γ(τ):∑
|n|≤N

e2γt|n|(1 + n2)
∣∣Fn(v1

)
(t)−Fn

(
v2

)
(t)
∣∣2

=
∑
|n|≤N

∣∣∣∣[t/h]∑
k=1

he−(t−(k−1)h)n2
eγ(t−(k−1)h)|n|

eγ(k−1)h|n|
√

1 + n2
(
Fn
(
v1

(
(k − 1)h

))
− Fn

(
v2

(
(k − 1)h

)))∣∣∣∣2

≤
([t/h]∑
k=1

h
(∑
|n|≤N

e2(t−(k−1)h)|n|(γ−|n|)
)1/2

B(R)
∥∥v1

(
(k − 1)h

)
− v2

(
(k − 1)h

)∥∥
Gγ(k−1)h

)2

≤ B2(R) |||v1 − v2|||2γ
([t/h]∑
k=1

h
(∑
|n|≤N

e2(t−(k−1)h)|n|(γ−|n|)
)1/2)2

≤ B2(R) |||v1 − v2|||2γ
([t/h]∑
k=1

h
(∑
|n|≤N

e(t−(k−1)h)(γ2−n2)

)1/2)2

≤ πB2(R)eγ
2ττ |||v1 − v2|||2γ ,

whereB(R) = supx,y<RB(x, y) with B from Eq.(2.3).
By taking the sup overt < τ , we obtain the estimate

|||F(v1)−F(v2)|||γ ≤ πB(R)eγ
2τ√τ |||v1 − v2|||γ ≤ (1− δ) |||v1 − v2|||γ ,

whereδ > 0 if
√
τeγ

2τ < 1/(2B(R)).
Remark here that the inverse of the maximal Gevrey index,(γτ)−1, is bounded by a

polynomial inR. This will be used in the proof of Corollary4.5.
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We now consider the noise term in Eq.(3.6) which we denoteh(t):

hn(t) =
[t/h]∑
k=1

e−(t−(k−1)h)n2
bn
√

hXk,n ,

andg(t) the linear part of the evolution, for the initial conditionuN
0 ∈ Cper([0, 2π)):

gn(t) = e−tn
2
uN
n (0) .

To use Lemma4.1 to deduce properties of solutions of Eq.(3.2), we need estimates on the
processesg(t) andh(t).

Lemma 4.2 GivenC > 0 there is ac > 0 such that

E
(

sup
t≤1

exp(c‖h(t)‖2Gα)
)
≤ C ,

whereα is such that Eq.(2.6) holds.

Proof. Let Yk,m = exp(−(t− (k− 1)h)m2)
√

hXk,m. Remark that theYk,m (for simplicity
of notation, we setYk,0 = 0) are mutually independentN (0,h exp(−2(t − (k − 1)h)m2))
random variables. Therefore, for anyt ≥ t1 > t0 + h > t0 ≥ 0, the sum

∑[t1/h]
k=[t0/h]+1 Yk,m

is a Gaussian random variable with variance

[t1/h]∑
k=[t0/h]+1

Var(Yk,m) = he−2tm2
[t1/h]−1∑
k=[t0/h]

e2khm2

= he−2tm2

(
e2[t1/h]hm2 − e2[t0/h]hm2

e2hm2 − 1

)
≤

(
[t1/h]− [t0/h]

)
h .

Therefore, givenC > 0, for c0 sufficiently small we get

E

exp
(
c0|

[t1/h]∑
k=[t0/h]

Yk,m|2/(t1 − t0)
) ≤ C .

We now choose the constantc such that

c‖b‖2Gα ≡ c
∑
n∈Z

e2α|n|(1 + n2)|bn|2 ≤ c0 .

Then, usingE (Xq) ≤ (E (X))q for q ≤ 1 (Jensen’s inequality) and mutual independence
of the random variables, we get

E
(

exp
(
c‖h(t1)− e(t1−t0)∆h(t0)‖2Gα/(t1 − t0)

))
= E

exp
(∑
m∈Z

ce2α|m|(1 +m2)|bm|2
∣∣∣ [t1/h]∑
k=[t0/h]+1

Yk,m

∣∣∣2/(t1 − t0)
)



Stochastic PDEs with Gevrey Regularity 8

=
∏
m∈Z

E

exp
(
ce2α|m|(1 +m2)|bm|2

∣∣∣ [t1/h]∑
k=[t0/h]+1

Yk,m

∣∣∣2/(t1 − t0)
)

≤
∏
m∈Z

(
E

exp
(
c‖b‖2Gα

∣∣ [t1/h]∑
k=[t0/h]+1

Yk,m

∣∣∣2/(t1 − t0)
))exp(2α|m|)(1+m2)|bm|2‖b‖−2

Gα

≤ C . (4.1)

We can write the noise termh(t) from (3.6) as

h(t) = h(t)− e(t−tn)∆h(tn) + e(t−tn)∆
(
h(tn)− e(tn−tn−1)∆h(tn−1)

)
+ · · ·

+e(t−t1)∆
(
h(t1)− et1∆h(0)

)
+ et∆h(0) ,

(note thath(0) = 0) for an arbitrary choice of0 < t1 < · · · < tn < t. Each term in
this sum satisfies an inequality like Eq.(4.1), hence the claim follows from an application of
Kolmogorov’s maximal inequality [10].

We now considerg(t) from the linear part of the evolution.

Lemma 4.3 For all γ > 0,

sup
t>0
‖g(t)‖Gγ(t∧1)

≤ eγ
2/4‖uN(0)‖H ,

(wheret ∧ 1 = min(t, 1)).

Proof. This is an elementary calculation:

‖g(t)‖2Gγ(t∧1)
=

∑
n∈Z

e2γ|n|(t∧1)−2n2t(1 + n2)|uN
n (0)|2

≤ eγ
2(t∧1)2/(2t)

∑
n∈Z

(1 + n2)|uN
n (0)|2

≤ eγ
2/2‖uN(0)‖2H .

To obtain the regularity result we introduce a new mapF̃g,h defined as follows:

F̃g,h(f) = F(f + g + h) .

Obviously, if f̃ is a fixed point ofF̃g,h, thenf̃ + g + h is a solution of Eq.(3.2).

Lemma 4.4 Let α be such that Eq.(2.3) holds and leth ∈ BR,γ(1) for some0 < γ < α.
ThenF̃g,h has a unique fixed point inBR,γ(1).

Proof. By Eq.(2.2) and Lemmas4.2–4.3, there is aC such thatsupt≤1 ‖g(t)+h(t)‖Gα < C,

thusg + h is inBC,α(1) henceF̃g,h is well-defined onBC,α(τ) for τ < 1.
Lemma4.1 shows thatF̃g,h is a contraction forτ small enough, hence by the Banach

fixed point Theorem, it has a fixed point. The result can be iterated to get a fixed point in
BC,α(1).

We next apply this result to the random process defined by Eq.(3.2):
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Corollary 4.5 Letu(t) be defined by Eq.(3.2) with u0 ∈ Gα. For all T > 0, there exists a
random variableγ and constantsc, Cm andR such that

E

(
sup
t≤T

exp(c‖u(t)‖2Gγ )

)
≤ R , E

(
γ−m

)
≤ Cm , ∀m > 0 . (4.2)

Proof. By Lemma4.4, sinceτ > 0 almost surely,u satisfies Eq.(4.2) withR = R0E
(

exp(c‖h‖2Gγ )
)

providedh ∈ Gγ , which is true almost surely by Lemma4.2, andγ is such that Lemma4.4
holds inB|||h|||α,γ(t). The bound on the distribution ofγ follows from the fact thatγ−1 can
bounded by a polynomial in‖h‖Gγ (see remark at the end of the proof of Lemma4.4) since

E
(
γ−m

)
≤ E

(
|||h|||C(m)

α

)
≤ C(m)E

(
sup
t<T

ec‖h(t)‖2Gα

)
.

5 Strong Error Estimate

We want to estimate the strong error of Proposition3.3

E

(
sup
t∈(0,T ]

‖u(t)− uN(t)‖2H

)
,

whereu(t) is the solution of Eq.(1.2) anduN(t) the solution of Eq.(3.2) with the same initial
conditionu0 (see [12], p.324–325).

We split the problem into Fourier modes with|n| ≤ N and |n| > N and consider the
non-linear and noise terms separately. First we look at the non-linear term.

E

 sup
t∈(0,τ ]

∑
|n|≤N

∣∣∣∣∣∣
[t/h]∑
k=1

∫ kh

(k−1)h
e−(t−(k−1)h)n2

(1 + n2)
(
e(s−(k−1)h)n2

Fn(u(s))− Fn(uN(tk))
)

ds

∣∣∣∣∣∣
2

≤
∑
|n|≤N

E
(

sup
t∈(0,τ ]

[t/h]∑
k=1

∫ kh

(k−1)h
e−(t−(k−1)h)n2

(1 + n2)
(
|Fn(uN(s))− Fn(uN(tk))|

+ |Fn(u(s))− Fn(uN(s))|+ |(e(s−(k−1)h)n2 − 1)Fn(u(s))|
)

ds
)2

We use the bounds on the nonlinearity Eq.(2.3)–(2.4)

≤ C

(
τ2h2 +

∫ τ

0
E

(
sup
s∈(0,t]

‖F (u(s))− F (uN(s))‖2H

)
dt+ E

(
τ2h2 sup

s∈(0,τ ]
‖u(s)‖2rGγ

))

≤ C

(
τ2h2 +

∫ τ

0
E

(
sup
s∈(0,t]

‖u(s)− uN(s)‖2H

)
dt

)
.
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Similarly, for |n| > N, using Eq.(2.4), form > 0

E

 sup
t∈(0,τ ]

∑
|n|>N

∣∣∣∣∫ t

0
e−(t−s)n2

(1 + n2)Fn(u(s)) ds
∣∣∣∣2


≤ CmN−mE
(
N2me−2γN

)1/2
E

(
sup
s∈(0,τ ]

‖F (u(s))‖4Gγ

)1/2

≤ CmN−mE

(
sup
s∈(0,τ ]

‖u(s)‖4rGγ

)1/2

,

whereγ is as in Theorem3.2.
Next the noise contribution is analysed: using Doob’s martingale inequality [15] as in

[9], we get

E

 sup
t∈(0,τ ]

∑
|n|≤N

(1 + n2)

∣∣∣∣∣∣
[t/h]∑
k=1

(∫ kh

(k−1)h
e−(t−s)n2

bn dβn(s)− e−(t−(k−1)h)n2
bn
√

hXk,n

)∣∣∣∣∣∣
2

≤ 4
∑
|n|≤N

(1 + n2)|bn|2E
(∫ τ

0

(
e−(τ−s)n2 − e−(τ−[s/h])h)n2

)
dβn(s)

)2

= 4
∑
|n|≤N

(1 + n2)e2α|n||bn|2
∫ τ

0

(
e−(τ−s)n2 − e−(τ−[s/h])h)n2

)2
e−2α|n| ds

≤ Cτh2‖b‖2Gα ,

where‖b‖2Gα =
∑

n(1 + n2)e2α|n||bn|2, and for|n| > N,

E

 sup
t∈(0,τ ]

∑
|n|>N

(1 + n2)
∣∣∣∣∫ t

0
e−(t−s)n2

bn dβn(s)
∣∣∣∣2
 ≤ C(τ)e−2αN‖b‖2Gα .

Putting it all together, we obtain by Gronwall’s inequality:

E

(
sup
t∈(0,τ ]

‖u(t)− uN(t)‖2H

)
≤ Cm

(∫ τ

0
E

(
sup
s∈(0,t]

‖u(s)− uN(s)‖2H

)
dt+ τ2h2 + N−m

)
≤ Cm(τ)(h2 + N−m) .

Jensen’s Inequality then gives Proposition3.3.

6 Higher Order Schemes

The easiest way to obtain higher order schemes is to apply an Itô–Taylor expansion (see
[12]). For example:

un(h) = e−hn2
un(0) +

∫ h

0
e−(h−s)n2

Fn(u(s)) ds+
∫ h

0
e−(h−s)n2

bn dβn(s)
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= e−hn2
un(0) + e−hn2

hFn(u(0))

+
∫ h

0

(∫ s

0
e−(h−σ)n2

(
n2Fn(u(σ)) +

∑
j

∂jFn(u(σ))
(
−j2uj(σ) + Fj(u(σ))

)
+

1
2

∑
j

b2j∂
2
jFn(u(σ))

)
dσ

+
∫ s

0
e−(h−σ)n2

∑
j

bj∂jFn(u(σ)) dβj(σ)
)

ds

+
∫ h

0

(
e−hn2

+
∫ s

0
n2e−(h−σ)n2

dσ
)
bn dβn(s) .

Using the same discretisation procedure as in Section3 (projecting onto a finite set of modes
and replacingσ by 0) we get

un((k + 1)h)

= e−hn2

(
un(kh) + h(1 +

1
2

hn2)Fn(u(kh))

+
1
2

h2
N∑

j=−N

(
∂jFn(u(kh))

(
− j2uj(kh) + Fj(u(kh))

)
+

1
2
b2j∂

2
jFn(u(kh))

)

+
1√
3

h3/2
N∑

j=−N

bj∂jFn(u(kh))Zk+1,j

+ bn
√

h(1 + hn2)Xk+1,n − bnn2 1√
3

h3/2Zk+1,n

)
, (6.1)

where

Zk,n =
√

3h−3/2

(∫ kh

(k−1)h
βn(s) ds

)
areN (0, 1) random variables. They are not independent of the variablesXk,n:

E (Xk,nZk,n) =
1
2

h2 .

We refer to [12], p.19, for a method to generate these correlated Gaussian variables. The
scheme obtained in Eq.(6.1) has strong order3/2. Other schemes, both weak and strong,
may be derived in the standard way [12].

7 Numerical Results

We have implemented the scheme Eq. (3.2) and, for comparison, the implicit Euler-Maruyama
method of Eq. (3.5) for the Ginzburg-Landau nonlinearityFGL(u) = −|u|2u. In practice,
for the nonlinear term we compute the coefficientsFn

(
uN(kh)

)
by first applying the inverse
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Figure 1: (a) A sample path of Gevrey noise withbn = exp(−n), n 6= 0. In (b) we plot sample
noise att = 1 (top) Gevrey noise, (middle) noise withbn = n−1, n 6= 0, (bottom) noise with no
decay in the coefficientsbn = 1 corresponding to spatially white noise.

fast Fourier transform touN(kh), computingF (u) in real space followed by the fast Fourier
transform.

We examine the regularity of solutions and strong convergence for smooth (Gevrey)
noise and non-smooth (non-Gevrey) noise. In Figure1 (a) we have plotted a sample noise
path which satisfies (2.6), for which we have takenbn = exp(−µ|n|), n 6= 0. The spatial
smoothness of the noise is parameterized byµ, and in this exampleµ = 1. In (b) we compare
at t = 1 the Gevrey noise (top) against noise withbn = n−1, n 6= 0 (middle) and against
noise with constant values ofbn = 1, spatially white noise (bottom). Neitherbn = n−1 or
bn = 1 satisfies the hypothesis (2.6). In each case we took the same seed for the random
number generator,210 Fourier coefficients and a time step ofh = 0.01. Figure1 shows the
smooth spatial nature of the forcing satisfying (2.6) (although it is white noise in time).

In Figures2-4 we plot sample solutions (top) and the corresponding (semilog) of the
Fourier spectrum (bottom). The computations for these figures used211 Fourier modes. In
Figure2 smooth noise was taken with two different time steps, in (a)h = 10−4 and in (b)
h = 10−3. In (a) we see that the spectrum decays exponentially with wave number where
as in (b) for large wave numbers we see a faster decay in the spectrum. This is can be
understood from the factorexp(−hn2) in Eq. (3.2), for exponential decay in the spectrum
we requireh to scale likeN−1. As we have seen in Eq.(3.7), at each timeu(t) is the solution
of the linear heat equation, which is known to be an entire analytic function. Thus, our
numerical scheme consists in approximating the Gevrey analytic solutionu(t) of the PDE
(which possibly has a singularity in the complex plane) by a sequence of entire analytic
functionsuh<rN (t), which have increasingly rapid growth along the imaginary axis as we
let h go to0 (but no singularity).

In contrast to Figure2 the solutions of Figure3(a) and (b) were computed with non-
smooth noise (a)bn = n−1 and (b)bn ≡ 1. For smooth noise the spectrum decays exponen-
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tially in wave number (in accordance with the theory) and comparing Figures2 and3 we see
much slower decay in the spectrum for the non-smooth noise.

Figure4shows similar calculations for the implicit Euler–Maruyama scheme with smooth
(a) and non-smooth noise,bn = n−1, n 6= 0 in (b). Although we have not proved that im-
plicit Euler–Maruyama has solutions in a Gevrey class of regularity with smooth forcing,
these results indicate that this is probably the case. The non-smooth case is similar to that
observed in Figure3.

We also tested strong convergence numerically (see Figures5–6). To approximate a
“true” solution we computed a solution with212 Fourier modes andh = 10−5. In Fig-
ure 5 (a) the average of theL2

per

(
[0, 2π),C

)
–norm of the error is displayed for10 orbits

againsth. Each curve corresponds to a different number of Fourier modesN = 2q with
q = 7, 8, 9, 10, 11, 12 and a reference straight line of slope1 is shown for comparison. In
Figure5 (b) we have taken smooth noise. We observe that the order of convergence is con-
sistent with the theory. Figure5 (b) shows similar calculations for the case ofbn = n−1,
so (2.6) is no longer satisfied (and the noise is no longer in a Gevrey space of regularity).
Comparing Figure5 (a) and (b) we see that the scheme exhibits stiffness for non-smooth
noise and is less accurate.

In Figure6 (a) we show the results of the same calculations performed for the implicit
Euler-Maruyama scheme of Eq. (3.5) with smooth noise. We see qualitatively the same
behaviour as the scheme given by (3.2) with smooth noise, shown in Figure5 (a). In Figure6
(b) we show the results of the standard Euler-Maruyama scheme of Eq. (3.4) with smooth
noise, and again we observe qualitatively the same behaviour as the scheme given by (3.2)
of Figure5 (a). However, the standard Euler-Maruyama scheme Eq. (3.4) has worse stability
properties (see [7, 8]), and a restriction is required thath < 2/N2. As a consequence, this
scheme is unlikely to be used for practical computations. This stability constraint meant that
the “true” solution was found withh = 10−6 and210 modes and we show computations
performed with27 modes andh = 2 × 10−6, 5 × 10−6, 10−5, 2.5 × 10−5, 5 × 10−6, 10−4.
Like the implicit Euler-Maruyama scheme we have no result on the regularity of the solution
for the standard Euler-Maruyama with smooth noise.

Similar numerical results are found for the case ofmultiplicative noise

u̇(t) = ∆u(t) + F
(
u(t)

)
+ u(t)QẆ (t) . (7.1)

We adapt the scheme (3.2) and consider

uN
n

(
(k + 1)h

)
= e−hn2

(
uN
n (kh) + hFn

(
uN(kh)

)
+ dn

√
hXk+1,n

)
, (7.2)

wheredn are the Fourier coefficients ofuQẆ . In figure7 we have plotted in (a) the solution
and spectrum using this scheme forN = 211 andh = 10−4. In (b) we have plotted the solu-
tion and Fourier modes for the multiplicative noise case using the implicit Euler-Maruyama
method. In Figure8 (a) we examine convergence of the scheme (7.2) with multiplicative
noise with211 Fourier modes. In (b) we have looked at convergence for the the implicit
Euler-Maruyama scheme with multiplicaitve noise. The average of theL2

per

(
[0, 2π),C

)
–

norm of the error is displayed for5 orbits againsth. The reference solution was computed
with h = 10−6 and212 Fourier modes. A reference line with slope1 is also shown. Nu-
merically we observe the same convergence rate as in the additive noise case and that the
Euler-Maruyama and the scheme (7.2) have similar properties.
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Figure 2: Solution att = 1 (top) and spectrum (below) using scheme (3.2) with smooth noise.
Computed with211 modes and step size (a)h = 10−4 and (b)h = 10−3.
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Figure 3: Solution att = 1 (top) and spectrum (below) using the scheme (3.2) with non-smooth
noise (a)bn = n−1 and (b)bn ≡ 1. Computed with211 modes and withh = 10−4.
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Figure 4: Solution att = 1 (top) and spectrum (below) using the implicit Euler-Maruyama
scheme (3.5) with (a) smooth noise and (b) non-smooth noise (bn = n−1). Solution computed
with 211 modesh = 10−4.
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Figure 5: Strong error estimates for (a) smooth noise and (b) non-smooth noise for the scheme
(3.2) with different values ofh andN = 2q, q = 7, 8, 9, 10, 11, 12. Also shown in each case is a
reference line of slope 1.
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Figure 6: Strong error estimates with smooth noise for (a) the implicit Euler–Maruyama scheme
(3.5) (N = 2q, q = 7, 8, 9, 10, 11, 12) and (b) the standard Euler–Maruyama scheme (3.4) (N =
27). For stability reasons the reference solution for the (b) was computed withh = 10−6 and
N = 210. Also shown in each case is a reference line of slope 1.
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