
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS–SERIES B
Volume 00, Number 0, Xxxx XXXX pp. 000–000

CYLINDRICAL SHELL BUCKLING: A CHARACTERIZATION
OF LOCALIZATION AND PERIODICITY

Abstract. A hypothesis for the prediction of the circumferential wavenumber
of buckling of the thin axially-compressed cylindrical shell is presented, based
on the addition of a length effect to the classical (Koiter circle) critical load
result. Checks against physical and numerical experiments, both by direct
comparison of wavenumbers and via a scaling law, provide strong evidence
that the hypothesis is correct.
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1. Introduction. For an important class of long structures, applied in-plane com-
pression is relieved by buckling on a local wavelength ` that is small in comparison
with the overall length L. Two distinctive types of response, distributed and lo-
calized, have been found in such circumstances. Some buckle patterns, like that
formed by the long thin compressed plate supported around its perimeter, distrib-
ute themselves along the full length of the structure; depending on the boundary
conditions the induced pattern may be periodic or near-periodic, but the tendency
is to spread or share out the imposed end-shortening. Others are predominately
localized, the structure finding it easier to accommodate the shortening by concen-
trating it to some portion of the available length. The difference is fundamental,
and it is our primary purpose here to illustrate this difference by direct reference
to the buckling of a thin cylindrical shell under axial compression.

The most important criterion for determining the form of response is found at
the critical bifurcation point, where the buckle pattern first emerges as a linear
eigenvalue problem. If this is of the stable-symmetric or supercritical form, the
buckle pattern which emerges is likely to be periodic or distributed. If on the
other hand it is unstable-symmetric or subcritical, the pattern is likely to emerge as
periodic but then rapidly localize as the deflection grows. Examples of both forms
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of behaviour are many, and are often summarised by reference to the compressed
elastic strut on a nonlinear elastic foundation. (See Wadee [17] for a recent review
of subcritical responses, and Everall and Hunt [9] for supercritical behaviour.)

But certain problems do not fall neatly into either of these two categories. The
buckle pattern of the long, unpressurized, axially-compressed, cylindrical shell is a
hybrid, localized with respect to the length but periodic around the circumference
[13]. This offers a unique perspective on the instability process in general, and
in particular on the contrasting mechanisms of localization and periodicity. Mode
locking and mode jumping, for example, which are strong features of periodic be-
haviour [9], have no role in localization. This leads to the observation that, whereas
the circumferential wavenumber appears to be fixed at the pre-buckling stage of the
loading and remains so until far into the post-buckling range, localization only ap-
pears at an early stage of the post-buckling. However, it does takes effect rapidly
and is effectively complete at load levels commensurate with the actual buckling
load of the system.

Based on these observations, we hypothesise that the classical linear eigenvalue
view, as seen in well-known Koiter circle [12], can be reinterpreted to predict the
circumferential wavenumber of initial buckling. From a combination of reference
to well-known experiments [1, 19, 8], modern implicit time-stepping dynamic finite
element analyses [15], and our own numerical solutions of the von Kármán–Donnell
equations employing a Galerkin circumferential reduction, we find evidence to sup-
port this hypothesis. This comes from two complementary directions. First, direct
experimental evidence of the circumferential wave number offers straightfoward
comparisons. Secondly, when coupled with the wavelength prediction, the mini-
mum load reached in the numerical Galerkin scheme is found to scale as (t/R)α,
where t is the shell thickness, R is the radius, and α is about 1.3. This compares
well with the variation of failure load in a five different sets of experiments, which
span the range 1.30 < α < 1.49. It has been noted by Calladine [5] and others that
the scaling of the failure load differs significantly from the value of α = 1 predicted
by linearized theory, and this lends further weight to the argument that the initial
buckling is governed more by the position of the classically defined Maxwell load
[11, 4] than that obtained from the linear eigenvalue result.

The numerics suggest that a large number of possible equilibria coexist at the
post-buckling load levels of interest, resulting in part from the large number of
coincident eigenvalues at the Koiter circle load; the resulting tangle of equilibrium
paths is much reduced in complexity by the identification of the circumferential
wavenumber.

2. Linear eigenvalue (Koiter circle) result. For a thin elastic cylindrical shell
of radius R, thickness t, and Young’s Modulus E, the linearized buckling equations
lead to the critical stress [12],

σcrit =
E√

3 (1 − ν2)

(
t

R

)
(1)

with a mode shape that is sinosoidal both axially and circumferentially. Note that
there is no apparent dependency on the length L. The locus of possible waveforms
that can arise at this stress can be expressed as a semi-circle in “wavenumber space”,
given by,

(m − mcrown)2 + n2 = m2
crown
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Figure 1. The Koiter circle

and shown in Fig.1, where the axial wavenumber m ≤ 2mcrown can take any real
value for an infinitely long cylinder, while the circumferential wavenumber n ≤
ncrown must be an integer. The crown represents square waves where,

ncrown = mcrown =
[(

3
4

)(
1 − ν2

)] 1
4

√
R

t

so m refers to the number of whole axial waves in a cylinder of length 2πR. Cylin-
ders of different lengths therefore need rescaling to determine their appropriate
axial wavenumber, as described below.

The classical view is that all waves on the Koiter circle are possible, and it singu-
larly fails to distinguish that which might occur in practice. Experiments, however,
show a clear preference for a single circumferential wavenumber that appears to
be length-dependent [19]. Extending the argument of Croll & Yamada [18], we
propose the following mechanism for wavenumber selection:

• For relatively short shells, the critical buckling mode is that which occurs on
the Koiter circle with a single half wave over the length L of the cylinder.
This is the suggestion made by Croll & Yamada (1999).

• For longer shells, the mode likewise occurs on the Koiter circle, but comprises
two half waves over the length.

• For even longer shells, the mode may theoretically span three or more half
waves over the length L; however, the available experimental data does not
appear to contain shells that are sufficiently long for this to occur.

As the localization imposes a rapid change in axial wavelength, we would not expect
these modes to bear any relation to the final deflected shape. However, it is known
from experiments that short shells end up in a single tier [8] or symmetric [19] form
of buckling, while those that are slightly longer finish in a two-tier, asymmetric, or
cross-symmetric [13] form. If M represents the number of axial half-waves at the
point of buckling in the shell of length L, we further propose that, on completion
of buckling, M = 1 will have led to the single tier, and M = 2 to the two-tier,
form. Rescaling to a length of 2πR as described above then gives m = MπR/L,
and substituting into the Koiter circle equation leads to the following prediction of
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circumferential wavenumber,

n2 = Mπ 4
√

12(1 − ν2)
R

L

√
R

t
− M2π2

(
R

L

)2

. (2)

We next see how this compares with both physical and numerical experiments.

3. Direct evidence.

3.1. Physical experiments. Many experiments on axially-compressed cylindri-
cal shells are reported in the literature, but few give enough details of the deflected
shapes to enable direct comparison with equation (2). Of particular interest is
the early contribution of Arbocz & Babcock [1], who mapped surfaces with a non-
contact probe, and removed the shape of the initial imperfections to give accurate
representations of both the pre and the post-buckled deflections. Tests were con-
ducted on copper shells for which R = 4 in., L = 8 in., and t = 0.004 in. For an
assumed value of Poisson’s ratio ν = 0.3, equation (2) gives n = 9.37 for M = 1
and n = 13.07 for M = 2; the latter agrees well with the experiments.

A typical set of results from Arbocz & Babcock [1] is given in Fig.2. At zero
load, the imperfection shape is dominated by an n = 2 ovalization. However, this is
clearly bears no relation to the triggering instability, as seen in the middle plot taken
just before buckling with the initial imperfections removed. Long axial waves with
a high circumferential wavenumber of n = 13 are now observed, having amplified
components of the imperfections that are not seen at the scale of the mapping
at zero load. This is plotted at a load level of 0.637 of the classical Koiter circle
load (1), yet the thickness bars shown at the right indicate that the amplitude of
this triggering mode is much smaller than that of the initial ovalization. In the
post-buckling range shown at the bottom the amplitude is again large, and the
same circumferential wavenumber of n = 13 is found, although the response has
localized axially into the two-tier (asymmetric) form of the diamond post-buckling
pattern. These results support the thesis that the circumferential wavenumber n
is determined at the pre-buckling stage by the Koiter circle result, and remains
fixed until advanced post-buckling. Axial buckling on the other hand is strongly
influenced by the localization, and soon bears no relation to points on the Koiter
circle. Arbocz & Babcock [1] also performed a Fourier breakdown of the pre-buckled
shape, and found strongly developing components of both the one half wave mode
at n = 9 and the two half waves mode at n = 13.

The experiments of Yamaki [19] on elastic shells made of Mylar are also of
interest. A typical set of load/end-shortening curves is given in Fig.3(a). Here
the elasticity of the material allows deflection far into the post-buckling range,
and a continuous sequence of mode jumps to lower circumferential wavenumbers is
observed. Yamaki tested cylinders of radius R = 100 mm and thickness t = 0.247
mm, ranging in length from L = 22.7 mm to 160.9 mm. The full set of comparisons
of the initial mode of instability with equation (2) are given in Table 1. Note that
the symmetric (single tier) form of buckling denoted by S occurs naturally only for
the shorter cylinders; longer cylinders first buckle into the asymmetric (two-tier)
form, A, but can also be persuaded into S. When it exists, the highest wavenumbers
for each form is therefore included.

Experiments by Eßlinger and co-workers, again on Mylar cylinders, are similarly
documented with both mode (S or A) and wavenumber, and are also suitable for
comparison with equation (2). For one test highlighted by Eßlinger & Geier [8],
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Figure 2. Top: imperfection shape at zero load. Middle: De-
flections just before buckling with initial imperfections removed.
Bottom: Post-buckled shape. Note that the bars at the right in-
dicate the scale of deflection relative to thickness t. (After Arbocz
& Babcock [1].)

t = 0.190 mm, R = 100 mm, L = 100 mm, and the asymmetric form of buckling
occurs at n = 15; this compares well with the prediction of n = 14.9 from equation
(2). A second series of tests is given in Table 2. Again comparison is good except
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Figure 3. Buckling of an elastic cylinder with L = 160.9 mm,
R = 100 mm, t = 0.247 mm, E = 5.56 GPa, and ν = 0.3 (after
Yamaki [19], p.231). (a) load/end-shortening response. (b) load
vs. maximum and minimum deflection. (c) buckle pattern for
n = 11. (d) buckle pattern for n = 8.

for the longest cylinder, which goes against the general trend and is likely to have
buckled into 3 or more tiers.

3.2. Dynamical time-stepping finite element analysis. The same trends can
be observed in recent numerical experiments employing dynamical time-stepping
routines such as LS-DYNA (see for example [15]). Such simulations avoid some of
the pitfalls of purely static formuations, which can be prone to tracking unstable
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Table 1. Yamaki cylinders: t = 0.247 mm, R = 100 mm.

L (mm) Mode n (expt) M n (eq.(2))

22.7 S 18 1 17.7
35.9 S 15 1 15.6
51.0 S 14 1 13.7
71.9 S 12 1 11.9
71.9 A 14 2 15.6
113.9 S 11 1 9.7
113.9 A 12 2 13.1
160.9 S 9 1 8.2
160.9 A 11 2 11.3

Table 2. Eßlinger cylinders: t = 0.254 mm, R = 100 mm

L (mm) Mode n (expt) M n (eq.(2))

50 S 14 1 13.7
75 S 12 1 11.6
100 A 13 2 13.7
145 A 11 2 11.7
150 A 11 2 11.6
200 A 10 2 10.2
235 A 9 2 9.4
240 A 9 2 9.4
245 A 9 2 9.3
300 A 8 2 8.4
350 A 10 2 7.8
350 10 3 9.5

or barely stable solutions, and when adjusted to model the effects of small imper-
fections have been found to reproduce accurately the observed behaviour. Schweiz-
erhof et al [15] are primarily interested in rapidly-loaded shells, where buckling
loads are above those of slow-loading and consequently initial wavelengths are sig-
nificantly different from those on the Koiter circle. However, they do provide the
slowly-loaded case seen here in Fig.4 as a benchmark example.

The buckling sequence is illustrated at a constant end-shortening, as load drops
to the stable post-buckling limit with the diamond-pattern asymmetric form shown
in the final plot. The dynamical routine self-selects a circumferential wavenumber of
n = 15. The prediction of (2) gives n = 15.2 for M = 2, relating to the asymmetric
(A) post-buckling mode. The sequence shows a buckling process that involves the
growth of a single post-buckling dimple, which stabilizes to the specific determined
by n = 15 and then propagates circumferentially.
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Figure 4. Finite element modelling of an imperfect cylinder (L =
966 mm, R = 625 mm, t = 0.56 mm) using implicit time-stepping
procedures (see Schweizerhof et al [15]). Growing post-buckling
deflections under constrained end-shortening.

4. Galerkin reduction of von Kármán–Donnell equations. Post-buckling
deflections of a thin (shallow) cylindrical shell of radius R and thickness t can be
described by the governing nonlinear von Kármán–Donnell differential equations:

κ2∇4w + λwxx − ρφxx = wxxφyy + wyyφxx − 2wxyφxy (3)

∇4φ + ρwxx = (wxy)2 − wxxwyy, (4)

where ∇4 is the two dimensional bi–harmonic operator, x ∈ IR is the axial and y ∈
[0, 2πR) is the circumferential co-ordinate, w is the radial displacement measured
from a non-trivial (fundamental) unbuckled state, φ is a stress function, ρ = 1/R,
the geometric constant, κ2 = t2/12(1 − ν2), ν is Poisson’s ratio, the bifurcation
parameter, λ = P/Et, where P is the compressive axial load applied per unit
length and E is Young’s modulus. Equation (3) is an equilibrium, and equation (4)
is a compatibility, equation.



CYLINDRICAL SHELL BUCKLING 9

A Galerkin approximation is introduced via the circumferential expansion

w(x, y) =
K−1∑
k=0

ak(x) cos(knρy)

φ(x, y) =
K−1∑
k=0

bk(x) cos(knρy) n ∈ IN

for some finite K, where cos(nρy) is referred to as the seed mode. The outcome is
a system of 8K first-order ordinary differential equations in x, that is then solved
numerically on a truncated domain under parametric variation of the loading pa-
rameter λ, using the continuation code AUTO [6], with boundary conditions which
match the symmetry properties at one end (the centre of the localization) and ho-
moclinic (decaying) conditions at the other. This process is described in detail in
Lord et al [13].

Generally K = 6 is found to provide a good compromise between accuracy and
numerical efficiency, and a full set of curves for integer values of n running from
8 to 12 is given in Fig.5, on a plot of λ against a measure of the end-shortening,
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Figure 5. Numerically obtained equilibrium paths for cross-
symmetric (A) buckling of the longest cylinder of Yamaki [19]:
effect of altering the circumferential wavenumber n.
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defined by

arclength =
∫ L

2

0


1 +

(
K−1∑
k=0

∂ak

∂x

)2



1/2

dx, at y = 0. (5)

All paths are virtually coincident as they emerge from the critical point, but even-
tually each circumferential wavenumber n results a different snaking form of equi-
librium path, as described more fully in Hunt et al [10] and illustrated for the
particular case of n = 11 in Figs.6 and 7. The full picture for a particular n is one
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Figure 6. Snaking sequence of post-buckling equilibria for a cylin-
der of dimensions t = 0.247, R = 125, and for which n = 13. Under
controlled end-displacement this gives a punctuated or “cellular”
form of buckling, in which individual cells buckle in sequential
fashion to give the patterns of Fig.7 (see Lord et al [13]).

of successive destabilization and restabilization, in a so-called “cellular” buckling
sequence. The rapid onset of localization along a typical falling path is clearly seen
in Fig.8, where it is found to be effectively complete at load levels commensurate
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Figure 7. Deflection w and stress function φ on the snaking path
of Fig.6, demonstrating the cellular nature of the buckle pattern.
Top, point 223; centre, point 240; bottom, point 254.

with experimental buckling loads. Without some other criterion for selection, it
is impossible to determine from the tangle of equilibria shown in Fig.5, the initial
expected value of n.

The hypothesis of Section 2 offers just such a criterion, and we next examine
both the experimental and the numerical data from a scaling perspective to assess
its significance.

5. Scaling considerations.
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Figure 8. (a) Points on initial unloading path for the cylinder
of Fig.5 and n = 11: (18) σ ≈ 0.78σcrit; (17) σ ≈ 0.52σcrit; (16)
σ ≈ 0.30σcrit. (b) Amplitudes of the “seed” Galerkin component
a1 at these points, plotted over the half-length L/2.

5.1. Physical experiments. As Calladine [5] indicates, the linear eigenvalue re-
sult of equation (1), which suggests that the buckling load for cylindrical shells
should vary as (t/R), does not square with experimental evidence. Von Kármán,
Dunn & Tsien [16] suggest that, for axially-compressed cylinders for which L/R >
1.5, experiments scale more as (t/R)1.4, whereas Calladine offers a heuristic argu-
ment for an exponent of 1.5. To arrive at more objective estimates of such exponents
we shall revert to original data, where it occurs in tabular rather than graphical
form.



CYLINDRICAL SHELL BUCKLING 13

Table 3 describes five different data sets from four teams of experimentalists; for
each of these data sets a power law relationship

σexp

σcrit
= a

(
t

R

)b

(6)

has been fit (by the least-squares method). Here σexp is the experimental buckling
stress, and it should be noted that σcrit of equation (1) itself scales as (t/R).

Reference R/t range number of points a b

Bridget et al. [3] 237–919 15 2.35 0.31
Ballerstedt & Wagner [2] 455–4167 18 3.20 0.32
Donnell (steel) [7] 332–1424 19 2.53 0.36
Donnell (brass) [7] 161–1468 21 1.61 0.30
Lundquist [14] 360–1400 45 10.64 0.49

Table 3. Experimental fit to equation (6).

5.2. Numerical experiments. Having been computed for the perfect shell, the
equilibrium paths of Fig.5 all emerge from the Koiter critical load (1). However,
each has a distinctive first minimum, where the response restabilizes. A good
approximation to the load level of this first minimum is found in the so-called
Maxwell load, where the total potential energy of the pre-buckled and post-buckled
(periodic) states are the same [11, 10]. If the Maxwell load, rather than the Koiter
load, governs the load level of initial buckling, then this might be expected to show
up in the scaling with respect to t/R.

Of course, this can only be checked if the relevant circumferential wavelength is
known. Fig.9 uses the hypothesis of equation (2) to define this wavenumber, and
tracks the first post-buckling minimum for two different L/R ratios as the thickness
t is altered, using the continuation code AUTO [6]. These log-log plots appear as
straight lines with an index of -1.287 for R = 100 and -1.297 for R = 125, indicating
that the Maxwell load level of our prediction varies approximately as (t/R)1.3. This
compares well with the experimental evidence reviewed in the previous section,
and is significantly different from the linear scaling suggested by the Koiter load
expression (1).

6. Concluding Remarks. In an attempt to untangle the plethora of equilibrium
paths seen in Fig.5, we suggest here that the circumferential wavenumber n can
be picked from the small-deflection Koiter circle load (1). This relies on two sep-
arate conjectures – that a long (M = 1 or 2) wavelength mode, from amongst all
other possibilities, acts as the triggering instability, and that the circumferential
wavenumber thus produced persists far into the post-buckling range. We can of-
fer no proof for either of these suppositions. Instead, we have reviewed a mix of
experimental and numerical evidence from two complementary angles. First, there
are direct experimental wavecounts, seen for example in the two sets of tabulated
data from [19] and [8]. Secondly, there is the evidence of the numerical scaling law
employing the prediction, which reflects the scaling found by a number of different
experimentalists.
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Figure 9. Scaling law from numerical experiments. Lower line,
R = 100; upper line, R = 125. Crosses at log(R/t) = 6.0 denote
the minima of Fig.5.

The first conjecture, that long waves are picked from the Koiter circle to the
exclusion of others, was suggested by Yamada & Croll [18] for short cylinders buck-
ling into the symmetric (S) mode, and we explore it no further here. The second,
that the periodic wavenumber as seen in the pre-buckling state persists into ad-
vanced post-buckling, is worthy of futher discussion. Long structures with stable
(plate-like) post-buckling responses and periodic or near-periodic buckling modes
are known to exhibit mode-locking and mode-jumping phenomena [9]. The present
periodicity, although orthogonal to the direction of loading and part of an unstable
buckling process, is nevertheless prone to the same mechanisms. An imposed peri-
odicity can be maintained, or a jump can take place to a different periodic state,
but unlike for localized responses, smooth transition is ruled out. It is therefore
not altogether surprising that the circumferential peridocitiy is retained, although
attempts to define axial wavelengths in the post-buckling range are likely to be
unsuccessful.
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It is interesting in this regard to compare and contrast the pre-buckled shape
seen experimentally by Arbocz & Babcock [1] (middle plot, Fig.2), with the post-
buckling shape seen on the falling post-buckling path in the numerical simulations
(point 18, Fig.8). Both appear at about the same relative load level, and there-
fore would appear close to one another on a load/end-shortening plot. However,
the experimental point is stable (just before buckling), while the latter is unstable
and would not be seen in a normal loading sequence. It therefore represents an
energy hump, which the shell must surmount before ultimately reaching the stable
post-minimum state. This hump is clearly easily eroded by imperfections, and a
significant numerical challenge is therefore to be found in the search for an algo-
rithm to describe a route to instability that might mirror this. Numerical [15] and
experimental [8] evidence suggests that such a route may be through the growth of
a single dimple on the shell surface. As such equilibrium states are unstable, this
is likely to require some kind of “mountain pass” algorithm.
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