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Abstract

The Baer and Rinzel model of dendritic spines uniformly distributed along a den-

dritic cable is shown to admit a variety of regular traveling wave solutions including

solitary pulses, multiple pulses and periodic waves. We investigate numerically the

speed of these waves and their propagation failure as functions of the system param-

eters by numerical continuation. Multiple pulse waves are shown to occur close to

the primary pulse, except in certain exceptional regions of parameter space, which

we identify. The propagation failure of solitary and multiple pulse waves is shown to

be associated with the destruction of a saddle-node bifurcation of periodic orbits.

The system also supports many types of irregular wave trains. These include waves

which may be regarded as connections to periodics and bursting patterns in which

pulses can cluster together in well-defined packets. The behavior and properties of

both these irregular spike-trains is explained within a kinematic framework that is

based on the times of wave pulses. The dispersion curve for periodic waves is impor-

tant for such a description and is obtained in a straightforward manner using the

numerical scheme developed for the study of the speed of a periodic wave. Stability

of periodic waves within the kinematic theory is given in terms of the derivative

of the dispersion curve and provides a weak form of stability that may be applied

to solutions of the traveling wave equations. The kinematic theory correctly pre-

dicts the conditions for period doubling bifurcations and the generation of bursting
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states. Moreover, it also accurately describes the shape and speed of the traveling

front that connects waves with two different periods.

Key words: neural traveling waves, dendritic spines, connections to periodics,

kinematic formalism
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1 Introduction

As dendrites form the predominant elements in neurons, so dendritic spines

form the dominant component of many types of dendritic trees. They are small

mushroom like appendages with a bulbous head (with surface area of order

1µm2) and a tenuous stem (of length around 1µm) and may be found in their

hundreds of thousands on the dendritic tree of a single cortical pyramidal cell.

These extensions of the dendritic tree provide junction points for the axons

of other neurons (i.e., provide surface area for synapses), and thus serve as

loci for receiving inputs (especially of the excitatory kind). There is increasing

evidence that dendritic spines may be important components in many kinds

of neural microcircuits. In the human nervous system, dendritic spines are

especially prominent in the cerebellar cortex, basal ganglia, and cerebral cor-

tex. In the cerebral cortex approximately 80 percent of all excitatory synapses

are made onto dendritic spines, whereas only around 30 percent of inhibitory

synapses are made onto dendritic spines. Dendritic spines are thought to have

several different functional roles that include subserving cognitive functions

such as learning and memory [1,2,3], logical computations [4] and pattern

matching tasks [5,6].

Experimental methods have been developed that can measure the electrical

events in dendrites directly and other, more recent, techniques have also al-

lowed optical recordings from dendritic spines. These types of direct observa-

tions confirm earlier speculations that spine heads possess excitable channels

capable of generating action potentials (see [7] for a discussion). As a con-

sequence signal processing in the spatially extended dendritic tree is likely

to be highly nonlinear, due to the excitable nature of spine heads. Theoret-

ical explorations of the biophysical consequences of such nonlinearities have

shown that global signals, in the form of traveling waves, may arise from a

succession of local all-or-none events at the spine heads. Most of this theoret-

ical work has been done using simulations of the biophysically realistic model

of Baer and Rinzel [8] or with mathematical treatments of reduced versions

of this model such as in the work by Chen [9], Zhou [10,11] and Coombes

[12,13]. In this paper we present further results regarding traveling waves in
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the full Baer and Rinzel model using a mixture of computational analysis and

a kinematic formalism. The combination of these two branches of mathemat-

ical analysis allows us to explore the conditions for the existence of traveling

waves, previously observed with direct numerical simulations by Baer and

Rinzel [8]. Moreover, these techniques lend themselves naturally to the con-

struction of previously unobserved double and multi-pulse solutions. Periodic

traveling waves are also found to co-exist alongside with these multi-pulse type

solutions and, once again, the same set of numerical techniques may be used

to construct the dispersion relation (i.e. wave speed as a function of period).

The kinematic formulation treats the times of wave crests as fundamental and

complements the numerical construction (and continuation) of traveling waves

in that it provides a natural way in which to determine the stability (in some

weak sense) of a periodic wave in terms of its dispersion relation. This kine-

matic stability condition is found to correctly determine the conditions for

a period doubling bifurcation. Importantly, the kinematic formalism may be

applied to the study of non-periodic waves. Numerically obtained dispersion

curves are used within the kinematic framework to predict the existence of two

types of irregular wave within the full Baer and Rinzel model. The first are

obtained as exact solutions to the kinematic equations of motion and describe

waves that (in the traveling frame) connect periodic waves of differing periods

via some smooth transition layer. We adopt the term from dynamical systems

and call these solutions heteroclinic connections between periodic orbits. The

second may be regarded as arising through an instability, predicted from the

kinematic theory, that gives rise to a wave in which the crests of a short wave

train bunch together into packets which are separated by larger intervals, but

which may themselves repeat regularly. We term these as bursting solutions.

In section 2 we introduce the Baer and Rinzel (BR) model which describes

a uniform unbranched dendritic tree with a continuous distribution of active

spines, and describe previously observed numerical behavior. Since the major-

ity of numerical results for the BR model relate to traveling waves we introduce

a traveling wave coordinate in section 3 and outline the procedures we use to

construct solitary waves and multi-bump solutions (homoclinic connections to

a fixed point) and periodic waves (possessing multiple periods). The funda-

mental parameters of the BR model are identified as the spine stem resistance
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r and spine density ρ. A thorough exploration of the (r, ρ) parameter space

is used to illustrate the properties of such waves (most notably speed) and

to determine the borders in parameter space defining propagation failure. A

comparison of these various types of waves suggests that periodic orbits bi-

furcate from homoclinic orbits at a co-dimension one point whilst multi-pulse

solutions branch from single pulse solutions at a co-dimension two point. In

fact the BR model is found to support both a family of n-pulse solutions,

denoted Hn, and a family of n-periodic orbits, denoted Pn, all of which are

found to branch from the single pulse solution. In the (r, ρ) parameter plane

the regular traveling wave solutions that branch from the single are all found

to lie close to the primary H1 orbit. In section 4 we develop a kinematic theory

of non-periodic waves based around the dispersion curves obtained in section

3 and derive the conditions for stability of waves in this framework. Period

doubling bifurcations are shown to be associated with the coalescence of a pair

of stable and unstable waves of so-called super-normal speed. The kinematic

theory predicts the existence of connections to periodics, recently observed

numerically by Coombes [13] and previously unobserved bursting solutions.

The transition layer of a connection is shown to have a universal shape with

a group velocity that is a function of the periods of the wave at large dis-

tances from the transition layer. Bursting solutions are predicted to occur in

the neighborhood of an unstable wave of supernormal speed. Direct numeri-

cal simulation is used to show the success of the kinematic approximation in

describing these types of irregular waves. Finally in section 5 we summarize

the results of our analysis and discuss extensions of this work.

2 The biophysical model

In order to analyze the interactions between spines Baer and Rinzel formulated

a new type of cable theory for dendritic systems which has a continuous dis-

tribution of excitable spines [8]. The formulation retains the notion that there

is no direct electrical coupling between neighboring spines. Voltage spread

along a uniform passive cable is the only way for the spines to interact; spines

are electrically independent from one another. The active membrane in the

5



spine-head is modeled by Hodgkin-Huxley kinetics. The continuum model of

Baer and Rinzel with constant spine density ρ is written with the following

equations:

C
∂V

∂t
= −gL(V − VL) +

1

raπd

∂2V

∂x2
+ ρ

V̂ − V

r
(1)

Ĉ
∂V̂

∂t
= −I(V̂ ,m, n, h) − V̂ − V

r
. (2)

Equation (1) describes the dynamics of a uniform passive cable (which we

take to be of infinite extent) of diameter d with voltage V (x, t) such that

the last term on the right hand side is proportional to the flow of current

between the cable shaft and the spine-head above the shaft via an ohmic

spine-stem resistance of strength r. The terms VL and gL are respectively a

constant leakage reversal potential and leakage conductance (or inverse leakage

decay constant). The parameter ra represents the intracellular resistance per

unit length of the cable. The electronic length constant λ is given by λ2 =

1/(πdragL) and the membrane time constant (of the dendritic cable) by τ =

C/gL. (Note that in the original paper of Baer and Rinzel the spine density

is defined in terms of unit length. To convert to the notation of this original

paper simply write ρ = n(R∞/Rm), where n is the spine density per unit

electronic length, R∞ is the input resistance if the branch were semi-infinite

and Rm is the resistance across a unit area of passive membrane. Equivalently

one may write ρ = n(λragL)). The excitable dynamics of the voltage in the

spine-head V̂ (x, t) is driven by the flow of current from the shaft to the spine

and is described with equation (2). The function I in (2) is used to denote the

Hodgkin-Huxley dynamics. In the Hodgkin-Huxley model of excitable nerve

tissue the membrane current arises mainly through the conduction of sodium

and potassium ions through voltage dependent channels in the membrane.

The contribution from other ionic currents is assumed to obey Ohm’s law. In

fact the Hodgkin-Huxley dynamics is considered to be a function of V̂ and

three time and voltage dependent conductance variables m, n and h:

I(V̂ ,m, n, h) = gKn4(V̂ − VK) + gNahm3(V̂ − VNa) + gL(V̂ − VL), (3)

where gK , gNa and gL are constants and VL, VK and VNa represent the con-

stant membrane reversal potentials associated with the leakage, potassium
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and sodium channels respectively. For simplicity we have considered the cur-

rents due to the leakage terms in the model of the cable and those in the

model of the spine-head to be identical. The conductance variables m, n and

h take values between 0 and 1 and approach the asymptotic values m∞(V̂ ),

n∞(V̂ ) and h∞(V̂ ) with time constants τm(V̂ ), τn(V̂ ) and τh(V̂ ) respectively.

Summarizing, we have that

τX(V̂ )
∂X

∂t
= X∞(V̂ ) − X, X ∈ {m,n, h}. (4)

The six functions τX(V̂ ) and X∞(V̂ ), X ∈ {m,n, h}, are obtained from fits

with experimental data [14] (given in appendix A). From now on we choose

capacitances C and Ĉ in (1) and (2) such that C = Ĉ and take C = 1

without loss of generality. It is also convenient to choose a length scale such

that raπd = 1.

Baer and Rinzel have shown that the combination of diffusion along the cable

combined with input from electronically separated active spines can lead to

the propagation of a traveling wave. In essence a brief external input, say in

the form of a synaptic current, leads to a spread of potential along the cable.

The dynamics in the spine head is driven by this potential and for sufficiently

large drive an action potential may be generated. There is then a large re-

injection of current back into the dendrite that causes a further spread of

potential along the cable so that the process is self-perpetuating. Thus one

expects firing activity in the spines to ride the crests of a succession of diffusing

pulses in the dendritic cable. Simulations show that the speed of this traveling

wave decreases as a function of the spine density and there is propagation

failure for too large a spine-stem resistance or too small a spine density.

An exact mathematical treatment of the BR model is yet to be performed,

due in part to its complexity. By replacing the model spine head dynamics

with the FitzHugh-Nagumo system and further ignoring the dynamics of the

refractory variable precise statements about wave initiation [9] and traveling

wave fronts have been made [11]. The inclusion of dynamics describing the

refractory process complicates any analysis. In order to make mathematical

progress Coombes and Bressloff [12] formulated a reduction of the BR model,

the so-called spike-diffuse-spike model, which retains a description of refrac-
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toriness. In this model the excitable spine head dynamics is described with a

simple integrate-and-fire process rather than the full Hodgkin-Huxley dynam-

ics. By using a crude representation for the shape of an action potential this

has allowed the analytical construction of both traveling wave solutions and

dispersion curves [13]. In the next section we focus on the numerical construc-

tion of traveling waves in the full BR model and show that it supports many

of the types of waves suggested by direct numerical simulations and the anal-

ysis of similar models with reduced descriptions of the excitable spine head

dynamics. Importantly, this numerical approach allows the study of multi-

pulse solutions and is useful in helping to organize the bifurcation structure

of regular traveling waves. Moreover, we are able to numerically calculate the

dispersion curves for periodic waves and to use these to predict the existence

of waves of so called supernormal speed.

3 Traveling wave frame

To construct traveling wave solutions in the BR model we assume solutions

of the form V (x, t) = V (ξ) where ξ = ct − x and similarly for V̂ , m, n and h

and look for bounded orbits. Once an initial solution has been constructed one

may then numerically continue the speed of the wave in one or more system

parameters. Traveling waves of speed c are described by the following system

of six coupled ordinary differential equations:

Vξ = W

Wξ = cW + εV − ρ

r
V̂ − gLVL

cV̂ξ = −ε̂V̂ +
V

r
− gKn4(V̂ − VK) − gNahm3(V̂ − VNa) + gLVL

cτXXξ = X∞(V̂ ) − X, X ∈ {m,n, h}, (5)

where ε = gL+ρ/r and ε̂ = gL+1/r. We solve the system of ODEs given by (5)

as a boundary value problem and impose either periodic boundary conditions

to compute periodic traveling waves or projection boundary conditions [15] to

compute traveling pulse solutions.

The fixed point of this system is given by (V,W, V̂ ,m, n, h) = (V ∗, 0, V̂ ∗,m∗, n∗, h∗)
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where X∗ = X∞(V̂ ∗), X ∈ {m,n, h}, V ∗ = (ρV̂ ∗/r + gLVL)/ε and V̂ ∗ satisfies

V̂ ∗ = G(V̂ ∗) with

G(x) =
gKn4

∞(x)VK + gNah∞(x)m3
∞(x)VNa + gLVL(1 + 1/(εr))

ε̂ + gKn4∞(x) + gNah∞(x)m3∞(x) − ρ/(εr2)
. (6)

For parameter values considered in this paper we have found numerically that

there is only one solution to V̂ ∗ = G(V̂ ∗). Since the fixed point equations

X∞(V̂ ∗) = X∗ also have unique solutions (for X ∈ [0, 1]) we expect that gener-

ically the traveling wave BR equations possess a single fixed point. Uniqueness

of the fixed point excludes the possibility of bifurcations involving multiple

fixed points such as global heteroclinic bifurcations. Numerical construction

of the eigenvalues of the Jacobian matrix of the traveling wave system (5) also

shows that, for the considered parameter ranges, the fixed point has a five di-

mensional stable manifold with a single pair of complex conjugate eigenvalues

and a one dimensional unstable manifold.

3.1 Homoclinic orbits

To construct homoclinic orbits in the BR model we look for bounded orbits

that are homoclinic connections to the rest state in the traveling coordinate

frame. We implemented in Auto97 [16] the projection boundary conditions of

[15]. We truncate and rescale (5) to the interval [0, 1] and project out the 5

dimensional stable manifold at ξ = 0, the 1 dimensional unstable manifold at

ξ = 1 and impose an integral phase condition. It is then possible to perform

numerical continuation of solutions in any two of the system parameters such

as wave-speed c, resistance r or density ρ (the homoclinic orbits exist in a

co-dimension one subset of parameter space). To continue a limit point of

homoclinic orbits we introduce a further free parameter and continue in c, r

and ρ. Projection boundary conditions are more accurate than a large fixed

period periodic approximation since the error due to truncation to a finite

interval is exponentially small [15,17]. Good initial guesses are required for

Newton’s method, involved in the solution to the boundary value problem, to

converge. For the approximation of a single pulse homoclinic orbit we used a

periodic orbit of large period. By following the period doubled solutions that
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arise from period doubling bifurcations out to large period it is also possible

to obtain initial guesses for 2-pulse and 4-pulse homoclinics. In general it is

also possible to compute an n-pulse homoclinic by pasting together multiple

copies of the 1-pulse solution (or other available multi-pulse solutions). This

technique was applied to find an initial guess for the 3-pulse solutions.

By continuing the speed of the solitary pulse as a function of the spine density

ρ and the spine stem resistance r it is a simple matter to quantify the original

observation of Baer and Rinzel [8] that propagation failure may result for too

large a spine stem resistance and too small a spine density. In more detail,

consider a fixed resistance of r = 0.05 and examine the wave speed as the

density varies (figure 1). We see from figure 1 (a) that the speed of the solitary

wave decreases as the spine density increases. Figure 1 (b) magnifies the region

around the turning point in figure 1 (a), from which we see that the multi-

pulse solutions exist for lower densities than the 1-pulse homoclinic H1. This

figure clearly shows the co-existence of multiple forms of homoclinic orbits at

a given parameter value. Note that, for clarity, we have not plotted in figure

1 (a) and (b) all curves of H2, H3 and H4 solutions. In figure 1 (c) and (d)

we have plotted a more complete picture for the H2 curve of solutions. Note

there are two limit points shown in the blow up in (d) indicating that the

secondary branches of homoclinics do not always co-exist alongside the main

branch (seen in figure 1 (a)).

In common with many other models of excitable nerve tissue we find that the

n-pulse orbits may be categorized into slow and fast solutions. In figure 2 we

show some examples of n-pulse solutions to the traveling wave equations of

the full BR model with r = 0.05 and ρ = 25. Figure 2 (a) shows the fast and

slow 1-pulse homoclinic orbit that exist at the same parameter values. For the

multi-pulse orbits the situation is similar except there are sets of fast and slow

waves that differ in the separation between peaks (and so the time spent in

the neighborhood of the origin). This can be seen in figure 2 (b), (c) and (d)

for the 2, 3 and 4-pulse homoclinics where we have split the plots into fast

and slow waves (for clarity only one of each type of wave is plotted for the

4-pulse homoclinic).
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Fig. 1. (a) The speed of homoclinic orbits H1, H2, H3 and H4 for r = 0.05 as a

function of the spine density ρ. (b) Blow-up of (a) showing that, that for a fixed

(small) r, multi-pulse solutions can exist at smaller values of ρ than for H1. Note

that, for clarity, only the main solution branches have been plotted for H2, H3 and

H4. (c) Main and secondary branches of H2 solutions. (d) Blow ups of (c) showing

that the secondary branches occupy smaller windows of parameter space than the

main branch.

In figure 3 we plot the homoclinic solutions from figure 2 at a larger value of

the spine-stem resistance, r = 1. Figure 3 (a) is the partner to figure 2 (a),

and likewise for (b), (c) and (d). By comparing figures 2 and 3 it is apparent

that multi-bump solutions have well separated peaks for large r, whilst for

smaller r the peaks can run into one another.
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Fig. 2. Examples of traveling pulse solutions in the BR model obtained as homoclinic

connections to the fixed point for r = 0.05 and ρ = 25. In each of (a) to (d) the

waves in the upper window have speeds greater than those in the window below.

(a) H1. (b) H2. (c) H3. (d) H4.

For both fast and slow waves, the overshoot of a homoclinic connection around

the saddle-focus is typically heavily damped so that in numerical simulations

it can be hard to make out more than one maxima in the oscillatory tails of

orbits such as those in figures 2 and 3. We suggest later, using a weak notion

of stability, that for waves on a common main branch it is the faster of the

two branches that is in some sense stable. Note that wave speed can be read

off from figure 4
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Fig. 3. Examples of traveling pulse solutions in the BR model obtained as homoclinic

connections to the fixed point, for a larger value of the spine stem resistance than in

figure 2, namely r = 1. (a) H1. Upper (lower) window shows fast (slow) solution (b)

H2. Upper (lower) window shows two fast (slow) solutions. (c) H3. Upper (lower)

window shows two fast (slow) solutions. (d) H4. Upper (lower) window shows one

fast (slow) solution. In all cases the density is given by ρ = 25.

In figure 4 (a) we show the results of continuation of the 1-pulse homoclinic in

resistance r and wave speed c (solid line) for a fixed density ρ = 25. Included

on this plot is the saddle node of periodic orbits SN1 (the point where a fast

and slow periodic orbit coalesce, further discussed in section 3.2). In figure 4

(b) we have plotted the 2, 3 and 4 pulse homoclinics on a common window

of parameter space. These have been plotted separately to allow the reader
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Fig. 4. In (a) we show the speed of the solitary wave H1 as a function of the

spine-stem resistance r for ρ = 25. The open circles denote the point where the

stable and unstable P1 orbits coalesce, labeled SN1. In (b) we have plotted H2–H4

in the same region of parameter space. SN2 denotes the point where a stable and

unstable P2 orbit coalesce. Note the existence of gaps for H2, H3 and H4, where

solutions cease to exist. In the final of these four figures we show a blowup this small

r phenomenon (on the side of the gap with smallest r).

to distinguish the individual curves. We find that slow multi-pulse solutions

cease to exist in a small region of parameter space (roughly 0.2 < r < 0.4)

and that there are disconnected branches of Hn solutions for n > 1. The H1

solution branch is, in contrast, connected. We include a blow up around r = 0.2

to show that the multi-pulse solutions have a fine structure of two branches

that coalesce at a limit point. A similar picture is obtained on the right hand

side of the multi-pulse gap at around r = 0.4. Hence, one might expect the

creation of a stable/unstable pair of Hn solutions (n > 1) at limit points in

the (r, ρ) plane. The observation of gaps in parameter space for multi-bump

homoclinic orbits is unusual and would not seem to have a counterpart in

the Hodgkin-Huxley model with pure diffusive coupling. It is already known

that if a primary pulse converges to a saddle-focus (for semilinear parabolic

equations on the real line), that, under suitable conditions, infinitely many Hn

solutions may bifurcate and among them are infinitely many stable ones [18].

This raises the interesting technical question of how to assess the stability of

non-primary homoclinic solutions that emerge from the boundaries of a gap.
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From the structure of the speed curves c = c(r) and c = c(ρ) given in figures 4

and 1 it can be seen that the region of parameter space where n-pulse solutions

fail to exist may be constructed by following the locus of points that define

either of the limit points where dr/dc = 0 or dρ/dc = 0 (where the fast

and slow pair of homoclinic orbits coalesce). In fact at these points it would

appear that a bifurcation to a periodic orbit can occur. We illustrate this in

figure 4 by tracing out the locus of points where periodic P1 and P2 orbits

cease to exist (see later). It can be seen that the point where a homoclinic

orbit ceases to exist coincides with the appearance of a pair of (large period)

periodics. In figure 5 (a) we plot the locus of H1, H2, H3 and H4 for fixed

c = 0.1 in the physiologically significant (ρ, r) parameter plane. As in figure

4 we have plotted each branch separately for clarity. A blowup of figure 5 (a)

is given in (b), where once again it is possible to see that multi-pulse solution

branches are disconnected. In figure 5 (c) we plot the locus of points which

define borders of existence for the solitary pulse (by continuation in c of limit

points in the (ρ, r) plane). Note that for too high a spine-stem resistance or too

low a spine density ρ that the solitary pulse may fail to propagate. In figure

5 (d) we show the region in the (ρ, r) plane, for small r, where multi-pulses

H1, H2, H3, H4 can exist. Note that Homoclinic orbits H2, . . . , Hn appear to

bifurcate tangentially from H1 in a co-dimension two bifurcation.

In Fig 6 we have brought together the information on the H1 homoclinic into

a 3D figure. We have added 3 parameter continuation of the limit points of

H1 and included the projections from figures 1, 4 and 5.

3.2 Periodic orbits

Periodic orbits of the system of ODEs (5) correspond to periodic traveling

waves, sometimes termed cnoidal waves. These are obtained by following

branches of solutions that arise at Hopf bifurcation points in the ODE sys-

tem. Once the initial periodic was located, period doubling bifurcations were

detected automatically as numerical continuation was performed. Some exam-

ples of periodic traveling waves are shown in figure 7. Homoclinic orbits are

expected to arise, in a co-dimension one bifurcation, as the limit of periodic
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Fig. 5. Homoclinic orbits in the physiologically important (r, ρ) parameter space.

(a) H1-H4 for fixed wave speed c = 0.1. (b) Detail for small density ρ. (c) H1

branch with c = 0.1 and continuation of limit points (varying c) delimiting borders

of existence. (d) Co-existence of H1, H2, H3 and H4 at small r.

orbits when the period tends to infinity.

The situation for the periodic solutions is similar to that for the homoclinics in

that periodic waves can come in fast/slow pairs, of which we predict that it is

the faster of the two that is stable (see section 4). Unlike homoclinic solutions,

the periodic orbits can exist for a range of periods ∆, where v(ξ + ∆) = v(ξ)

(and similarly for V̂ (ξ), m(ξ), n(ξ), h(ξ)). For excitable nerve equations it

is common to express properties of periodic orbits in terms of the dispersion

curve c = c(∆). This is easily calculated within the numerical framework
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presented here by treating the unknown period ∆ as a bifurcation parameter.

Examples of dispersion curves for P1 and P2 are given in figure 8. It would seem

that periodic orbits can fail to exist at a bifurcation point where fast/slow pairs

of solutions coalesce at the limit point at minimum speed. For fixed parameters

this typically happens for small periods. This is expected on physical grounds

since the Hodgkin-Huxley dynamics of the excitable spine-head possesses a

natural refractory period such that no action-potentials can be elicited for a

certain time after a spiking event. Hence, the period at which propagation

failure of periodics occurs is determined largely by the refractory period of

the spine-head. For large periods we expect the speed of Pn to approximate

the speed of Hn.

Focusing on the faster (stable) branches of the dispersion curves of figure 8 we

see that for large periods the speed of the wave is approximately that of the

associated homoclinic orbit. However, as ∆ decreases the speed can actually

increase, resulting in a wave of so-called supernormal speed [19]. As ∆ is
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Fig. 7. Examples of periodic traveling waves in the BR model, with one, two and four

fundamental periods (P1, P2 and P4 respectively). The two and four period solutions

are obtained by following orbits that arise from period doubling bifurcations of the

regular traveling periodic wave. Parameters are ρ = 25, r = 0.05.

decreased further the speed of the wave drops off before finally failing at the

limit point where d∆/dc = 0. At this point it joins with the slower wave which

persists with increasing ∆. Note that on the slower branch it is also possible

to see waves of subnormal speed (with respect to the speed of the unstable

homoclinic). The dispersion curve for P1 will play a key role in the kinematic

formalism developed later in section 4. In figure 8 (b) we plot the dispersion

curve for P2 orbits of period ∆ combined with the dispersion curve for P1 orbits

of period ∆/2. We find that the P2 orbits cease to exist at stationary points on

the P1 dispersion curve, as illustrated in figures 8 (c) and (d). Interestingly the

kinematic theory predicts a change in stability of P1 orbits at just such points,

suggesting that a P1 orbit of supernormal speed can undergo a period doubling

bifurcation to a P2 orbit. A similar observation holds for waves of subnormal

speed. Hence, we may associate period doubling bifurcations with stationary
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Fig. 8. Dispersion curves, c = c(∆), for periodic waves with fixed ρ = 25 and (a)

r = 1 for P1 (b) dispersion curve for P2 with dispersion curve for P1 (with period

∆/2 superimposed). In (c) and (d) we produce blow-ups of (b) to illustrate that P2

orbits cease to exist at stationary points of the P1 dispersion curve.

points in the dispersion curve. It is therefore possible that bifurcations of

waves of super and subnormal speed may lead to a period doubling cascade.

A similar observation is expected to hold for other excitable systems coupled

purely by diffusion.

In figure 9 we trace the locus of period doubling points in the (ρ, r) parameter

plane for a fixed value of the wave speed, PDn, as well as the set of points

defining propagation failure of P1. We denote this latter border by SN1 in
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bifurcations of P1 and P2 respectively.

loose analogy to a saddle-node bifurcation since it describes the coalescence

of a stable and unstable periodic orbit. Referring back to figure 4 we find

that tracing the locus of points where d∆/dc = 0 ends at the point in the

(r, c) plane where homoclinic orbits cease to exist. As expected we find that

at this point ∆ → ∞. The propagation failure of multi-pulse solutions, Hn,

is therefore associated with the loss of a saddle-node bifurcation SNn. From

figure 9 and more clearly from 10 (a blowup of figure 9) we see that the family

of homoclinic orbits Hn exists in a parameter window bordered by SN1 and

PD1. Hence, homoclinic orbits may be found close to the primary periodic

orbit P1 in the (ρ, r) parameter plane.

It would seem that the set of ordinary differential equations describing trav-

eling waves in the full BR model allows a period-doubling cascade. Moreover,

the orbit describing the primary regular periodic traveling may collide with

the equilibrium point to create a homoclinic orbit. The same holds for each

subsequent orbit in the period-doubling cascade. A system in which such a

phenomenon exists must have at least two parameters, one controlling the

period-doubling bifurcations and one controlling the period of the orbits. In

parameter space, this corresponds to a sequence of period-doubling bifurca-

tion curves, all ending in co-dimension two bifurcations involving homoclinic
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orbits. Similar bifurcations are known to occur for excitable nerve equations

whose fixed point (in the traveling wave frame) is unique and has real eigen-

values (see Glendinning [20] for a discussion). However, the fixed point in

our study typically has a complex pair of eigenvalues and has more in com-

mon with nerve axon equations with a saddle focus in the the traveling wave

frame. Since the equilibrium point is of the saddle focus type it is also likely

that there exists a window of parameter space supporting horseshoe dynamics

[21]. In terms of traveling wave dynamics we would therefore expect irregular

(possibly chaotic) wave trains in this region of parameter space. The spatially

extended FitzHugh-Nagumo equations with a piece-wise linear nonlinearity is

one such example (where one can guarantee complex eigenvalues) and admits

to mathematical analysis. For this model it has been possible to extend results

due to Šilnikov and show the existence of an uncountable discrete family of

traveling waves which are trains of infinitely many pulses [22]. Periodic and

solitary waves in this model have also been extensively analyzed by Rinzel and

Keller [23]. The study of more general nonlinearities in the FitzHugh-Nagumo

model has also been possible, in some singular limit, and predicts a similar rich

array of traveling wave solutions [24]. In the case that all the eigenvalues of the

fixed point are real, Homoclinic-doubling can be caused by co-dimension two

bifurcations involving a change in the orientation of the vector field around
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the homoclinic orbit: so called orbit flips and inclination flips [25] and is ex-

pected to be generic for traveling wave reductions of high dimensional nerve

axon equations [20]. This interesting phenomenon would also be expected in

the BR model if parameters of the Hodgkin-Huxley model were changed so as

to guarantee real eigenvalues of the equilibrium point. In this case traveling

pulses would not display any overshoot or oscillations in their tails.

4 A kinematic analysis of spike train propagation

Up until now we have focused on traveling waves that are either periodic or ho-

moclinic to the fixed point (in the traveling wave frame). Since the underlying

excitable dynamics of the spine-head is of Hodgkin-Huxley type these trav-

eling waves have certain similarities with trains of action potentials. Hence,

it is natural to identify the periodic wave with an infinite sequence of travel-

ing pulses and homoclinic orbits as finite sets of traveling pulses. As for the

Hodgkin-Huxley model of an axon, the BR model also supports action po-

tentials that are irregularly spaced and that travel with different speeds (see

Carpenter [24] for a discussion of irregular wave trains in nerve axon equa-

tions). A kinematic theory of wave propagation is one attempt to follow the

progress of action potentials at the expense of a detailed description of the

pulse shape [26]. Suppose that a pulse has a well defined arrival time at some

position x then we denote the arrival of the nth pulse at position x by T n(x). A

periodic wave, of period ∆, is then completely specified by the set of ordinary

differential equations
dT n(x)

dx
=

1

c(∆)
, (7)

with solution T n(x) = n∆ + x/c, where c(∆) is the dispersion curve obtained

previously by numerical means. The kinematic formalism assumes that there

is a description of irregular spike trains in the above form such that

dT n(x)

dx
= F (T n(x), T n−1(x), T n−2(x), . . .), (8)

which must reduce to (7) for periodic waves. Assuming that the most re-

cent spike in the train has the strongest influence it is further assumed that

F (T n(x), T n−1(x), T n−2(x), . . .) ≈ F (T n(x), T n−1(x)), which can only reduce

22



to (7) if F (T n(x), T n−1(x)) = F (T n(x)−T n−1(x)). The function F (∆) is then

chosen as C−1(∆), the reciprocal dispersion curve for the periodic wave. Hence,

within the kinematic framework the dynamics of irregular traveling wave trains

are described by (7) with the replacement c(∆) → c(T n(x)− T n−1(x)), where

T n(x) − T n−1(x) is recognized as the instantaneous period of the wave train

at position x.

A steadily propagating wave train is stable if under the perturbation T n(x) →
T n(x) + un(x) the system converges to the unperturbed solution during prop-

agation, or un(x) → 0 as x → ∞. For the case of uniformly propagating

periodic traveling waves of period ∆ we insert the perturbed solution in (7),

so that to first order in the un

dun

dx
= − c′(∆)

c2(∆)
[un − un−1]. (9)

Thus, a uniformly spaced, infinite wave train with period ∆ is stable (within

the kinematic approximation) if and only if c′(∆) > 0. Hence, for the dis-

persion curves of section 3 it would seem to a first approximation that it is

always the faster of the two periodic branches that is stable. Note that where

there are bumps in the dispersion curve defining so-called supernormal wave

speeds (wave speeds are faster than the corresponding speed of the large period

wave) then it is only the supernormal wave of smaller period that is stable.

Corresponding conclusions can also be made about subnormal waves (waves

of slower speed compared to the wave of large period) on the slower branch.

Since homoclinic orbits bifurcate from periodic orbits we shall also conjecture

that for a pair of fast/slow solitary waves the fast one is stable and the slow

one unstable. These stability results are consistent with exact traveling wave

solutions for the FitzHugh-Nagumo nerve equations with a piece-wise linear

nonlinearity [23] and for solitary pulses in the Hodgkin-Huxley nerve equations

[27].

We now consider the stability of finite non-uniform trains, rather than the

more involved case of general trains of infinite extent. This allows us to make

the realistic assumption that the speed of the leading pulse is c0 (the speed of

a solitary pulse) so that we may write T n(x) = x/c0 +
∑n

k=1 ∆n, n = 1, . . . , N
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[28]. Proceeding as before we find the linear equations

du1

dx
= 0,

dun

dx
= − c′(∆n)

c2(∆n)
[un − un−1], n = 2, . . . , N. (10)

Thus a non-uniform train is stable if and only if c′(∆n) > 0 for each n (ignoring

the zero eigenvalue associated with translations of the leading pulse).

4.1 Connections to periodics

For large periods the slope of the dispersion curve in the BR model is es-

sentially flat and the speed of the two periodic waves approximates that of

the two solitary pulses. For smaller values of the period, where one does not

encounter super-normal waves the stable branch of period waves has an expo-

nential shape, which may be fitted with an equation of the form

1

c(∆)
= K + A exp(−B∆), (11)

for some constants K, A and B. After a rescaling T n(x) → B(T n(x)− n∆r +

x/c(∆r)) and x → AB exp(−B∆r)x for some arbitrary ∆r the kinematic

equations become

dT n

dx
= exp(−T n(x) + T n−1(x)) − 1, (12)

where we choose ∆r such that [K − c−1(∆r)] exp(B∆r)/A = −1. The gen-

eral solution of this system has previously been given by Horikawa [29] and

discussed within the context of models of dendritic spines by Coombes [13].

Importantly, for initial data in the form of a step change in the ISIs of the

form

T n(0) =


n∆(1) n ≤ n∗

n∗∆(1) + (n − n∗)∆(2) n > n∗
n∗ = constant, (13)

the general solution shows that the interspike intervals ∆n(x) = T n(x) −
T n−1(x) may be written as a sequence with ∆n(x) = ∆(κx − ωn), for ω =

∆(2) − ∆(1) and κ = exp(−∆(1)) − exp(−∆(2)) (assuming ∆(2) > ∆(1)) where

∆(z) = − log

(
exp(−∆(1)) +

exp(−∆(2)) − exp(−∆(1))

1 + exp(z)

)
. (14)
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Fig. 11. A graphical illustration of the traveling front obtained analytically from the

kinematic description of the SDS model. Initial data at x = 0 is a step sequence in

the interspike intervals with ∆(1) = 1 and ∆(2) = 2.

It is clear that ∆(z) → ∆(1) as z → ∞ and ∆(z) → ∆(2) as z → −∞. Hence,

solutions may be regarded as connections to periodic spike trains of interspike

intervals ∆(1) and ∆(2). Moreover, the position of the front connecting the two

periodic orbits moves with a constant group velocity dn/dω = κ/ω. The front

moves backwards for ∆(2) > ∆(1) and forwards for ∆(1) > ∆(2). In figure 11 we

show a plot of the sequence of ISIs given by (14). Since the solutions describing

connections between periodic orbits are constructed from a dispersion curve

with c′(∆) > 0 for all realizable ∆, we expect them to be stable. To check

the prediction of the kinematic theory we have driven the full BR model with

initial data (at one end of a cable of length L) with a spike train that has a

step change in the interspike intervals.

Using the standard finite difference spatial discretization (or compartmen-

talization) of the system with a forward difference scheme allows a simple

numerical study of the Baer and Rinzel system. For N compartments (with

Neumann boundary conditions) we use a spatial step size ∆x = L/N and a

temporal step size of ∆t = 1/4(∆x)2 (to satisfy the linear stability constraint).

We denote here a spike train by the sequence T n(x): the set of times at which

the nth spike in the train passes at a position x on the cable. At x = 0 spike
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times are specified externally by T n(0), but for x > 0 we need to be more

precise about the nature of a spike. We define the time at which the nth spike

occurs at position x by introducing a threshold parameter Vth (which we take

to be −30mV) such that

T n(x) = inf{t | V̂ (x, t) ≥ Vth,
∂V̂ (x, t)

∂t
> 0 ; t ≥ T n−1(x)} (15)

Interspike intervals are defined by ∆n(x) = T n(x) − T n−1(x). A general rect-

angular stimulus train has the form I(t) =
∑

n P (t − T n(0)) with P (t) =

I0Θ(t)Θ(τd − t), where I0 is the magnitude of an applied pulse, τd its duration

and Θ(x) is a step function with Θ(x) = 1 for x ≥ 0 and is zero otherwise. An

example of such a direct simulation with T n(0) given by (13) (I0 = 100mV,

τd = 2ms and n∗ = 200) is shown in figure 12 where it is clearly seen that the

step change can smooth out to form a transition layer of the form predicted

by equation (14).

15

16

200 240 280 320 360n

∆ n

Fig. 12. An example of a connection between periodic orbits in the BR model.

Initial data is in the form of a spike train with a step change in the ISIs between

∆(1) = 15 and ∆(2) = 16. The initial data evolves to form a smooth connection

between the periodic orbits (periodic spike trains with constant ISIs ∆(1) and ∆(2))

that can then propagate in an invariant fashion with constant speed. r = 1, ρ = 25,

∆(1) = 15, ∆(2) = 16. Data is shown at the following positions along the cable

of length L: 0, L/4, L/2 and 3L/4 (the arrow indicates the data with increasing

position).
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4.2 Bursting solutions

From the kinematic theory, dispersion curves with stationary points (away

from the minimum period) are suggestive of wave instabilities. The dispersion

curve for the BR model has been shown numerically to support at least one

maxima (on the faster branch), associated with waves of supernormal speed.

A change in stability of periodic waves occurs when dc/d∆ = 0. From the

dispersion curve of figure 8 (a) the BR model can have two different equally

spaced impulse trains with the same supernormal speed. One of these is stable

and the other unstable (according to the kinematic approach). Any compound

trains, which are composed by the concatenations of these two solutions are

also expected to be unstable [26]. Hence for a stimulus period which is larger

than the average of the two supernormal wave periods (and less than the period

of the unstable supernormal wave) one might expect the generation of an

irregular wave train. Direct numerical simulations of the full model under these

conditions show that a repetitive pulsatile stimulus can cause traveling pulses

that group together to form successively larger (and less unstable) bunches.

This is illustrated in figure 13 where we show the sequence of ISIs ∆n(x) at a

fixed distance along the cable.

5 Discussion

In this paper we have discussed systematic ways of describing both regular

traveling waves (periodics and homoclinics) within the BR model of spine

studded dendritic tissue as well irregular trains (connections to periodics and

general wave trains). The former were analyzed with a numerical study of

ODEs in the traveling wave frame and allowed us to describe the bifurcation

sequence of regular waves in the physiologically important parameter plane

comprising spine stem resistance and spine density. Both multi-pulse and pe-

riodic solutions were found to bifurcate tangentially from a solitary pulse at a

co-dimension two point. The regions for propagation failure of regular waves

were also constructed within this numerical framework. Importantly we also

calculated the dispersion curves for periodic waves. These were then used to
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Fig. 13. An example of a bursting solution in the BR model with r = 1 and ρ = 25.

Initial data is in the form of a periodic spike train with period ∆ = 6. According

to the kinematic theory the periodic wave of this period is unstable. The initial

data evolves such that spikes tend to bunch together. Data is shown at position L/4

(with numerical parameters as in figure 12).

develop a kinematic formulation of wave trains appropriate for the study of

irregular wave trains and a weak form of stability for periodic and finite wave

trains. A similar approach has recently been adopted by Or-Guil et al. in a

study of spike trains in an excitable system with finite extent [30]. We have

also used the kinematic theory to predict the existence of two special forms of

irregular wave trains, both of which were subsequently found with direct nu-

merical simulations. Moreover, stationary points of the dispersion curve were

shown to be associated with period doubling bifurcations.

In a real neuron one might expect scattering of electrical waves from branch

points where there is some impedance mismatch between parent and daughter

dendrites. An increase in diameter or a decrease in excitability or a variation

in spine density may lead to the blocking of a traveling wave with or without

reflection. For an analytic or numerical study one must consider a branched

structure that consist of finite pieces of spine studded cable with boundary

conditions at branch points determined by Kirchoff’s laws. Interestingly re-

flected waves have been suggested by Goldstein and Rall [31] and Ermentrout
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and Rinzel [32] to underly a form of neural pacemaker. With a suitable choice

of dendritic geometry, say a piece of cable with a thin central region, a re-

flected wave may become trapped and bounce around periodically in some

region of the dendritic tree. The kinematic approximation is likely to play an

important role in the study of branched and inhomogeneous spine studded

dendritic cable. In particular because small inhomogeneities can be viewed as

perturbations that add to the interactions between pulses causing a modifica-

tion of the instantaneous speed of a pulse in some wave train. The study of

branching geometries, reflected waves and non-uniform distributions of spines

are topics that are currently being investigated.
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Appendix A

For the Hodgkin-Huxley model of excitable nerve tissue it is common practice

to write

τX(V̂ ) =
1

αX(V̂ ) + βX(V̂ )
(16)

X∞(V̂ ) = αX(V̂ )τX(V̂ ) (17)

for X ∈ {m,n, h} where

αm(V̂ ) =
0.1(V̂ + 40)

1 − exp[−0.1(V̂ + 40)]
(18)

αh(V̂ ) = 0.07 exp[−0.05(V̂ + 65)] (19)

αn(V̂ ) =
0.01(V̂ + 55)

1 − exp[−0.1(V̂ + 55)]
(20)

βm(V̂ ) = 4.0 exp[−0.0556(V̂ + 65)] (21)

βh(V̂ ) =
1

1 + exp[−0.1(V̂ + 35)]
(22)

βn(V̂ ) = 0.125 exp[−0.0125(V̂ + 65)] (23)

All potentials are measured in mV, all times in ms and all currents in µA

per cm2. We use the following parameter values: Ĉ = 1µF cm−2, gL = 0.3,

gK = 36, gNa = 120, VL = −54.402, VK = −77 and VNa = 50.
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