
Topological andε–entropy for Large Volume Limits
of Discretised Parabolic Equations

Gabriel J Lord Jacques Rougemont

Department of Mathematics, Heriot–Watt University, Edinburgh EH14 4AS, United Kingdom.

July 12, 2002

Abstract

We consider semi-discrete and fully discrete approximations of nonlinear parabolic equa-
tions in the limit of unbounded domains, which by a scaling argument is equivalent to the
limit of vanishing viscosity. We define the spatial density ofε–entropy, topological entropy
and dimension for the attractors and show that these quantities are bounded. We also pro-
vide practical means of computing lower bounds on them. The proof uses the property that
solutions lie in Gevrey classes of analyticity, which we define in a way that does not depend
on the size of the spatial domain. As a specific example we discuss the complex Ginzburg–
Landau equation.
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1 Introduction

We consider the following general parabolic equation,

∂tu = ν∆u+ γu+ F (u) , x ∈ [−Lπ,Lπ]d , t ≥ 0 , (1.1)

for a complex valued functionu = u(x, t) and bounded continuous initial conditionu(x, 0) =
u0(x). We restrict ourselves toL ∈ N for convenience. The coefficients of (1.1) satisfy

ν ∈ C , Re(ν) > 0 , γ ∈ R ,

and we assume thatRe(F ) andIm(F ) are real analytic functions ofRe(u) andIm(u).

We are interested in the large volume limit (L → ∞) of the long time dynamics (in particular
the attractor) of (1.1) and its approximation by numerical schemes. In the latter case we are
interested in the limit when the mesh size of our discretisation is kept constant while taking the
limit L → ∞, thereby obtaining an infinite-dimensional, but still discrete system (see Section6
for results of upper semicontinuity of the attractors in terms of the different parameters of the
problem).

We remark that by a scaling transformation, the large volume limit can be interpreted as a small
viscosity limit. The rescaled functionv(y, t) = u(Ly, t) with y ∈ [−π, π]d satisfies the following
equation

∂tv =
ν

L2
∆v + γv + F (v) ,

with periodic boundary conditions on[−π, π]d. It is however easier to work with (1.1) (with
periodic boundary conditions) and takeL→∞. Indeed, since the problem on the full spaceRd

is well-posed, we have a priori bounds for allL < ∞. In fact, we view the periodic boundary
conditions on[−Lπ,Lπ]d for largeL as an approximation of the infinite volume.

For each fixedL <∞, (1.1) generates a semi-flowΦt
L. We discretise this time-evolution spatially

by truncating to a finite number of (Fourier) modes. We make this truncation by multiplying by a
smooth function in Fourier space (rather than a sharp indicator function), to have a better control
asL → ∞ (when the spectrum becomes dense). We then discretise in time using an explicit
scheme inspired by [26]. This scheme is amenable to analysis and also proves to be an efficient
numerical scheme for smooth initial conditions.

It is not the purpose of this paper to prove the existence of global attractors for (1.1) or for the
discretisations, this has been considered in different setups in a large number of publications (see
for example [27, 24, 3, 1, 29]). Instead, we assume the existence a semi-flow and of a family of
global attractors,̂A(L), for the continuous and discrete problems (see Definition3.2).

We compute bounds on statistical quantities that are valid both for the discrete and continuous
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systems. The first of these statistical quantities is the (Kolmogorov)ε–entropy

Hε := lim sup
L→∞

logN (ε, Â(L))

(2Lπ)d
,

whereN is the minimum number of balls of radiusε in the topology ofL∞ that are needed to
cover the attractor̂A(L) (see Definition3.3). We prove thatHε is a finite number in Theorem4.3.
We thereby get a bound on the upper density of dimension

dup = lim sup
ε→0

Hε

log ε−1
.

This is to be compared with the results of Kolmogorov and Tikhomirov [15], where they obtain
a bound of the same type for the set of all entire analytic functions of exponential type. This
result follows from a sampling result for such functions (PropositionD.3), namely any of these
analytic functions can be reconstructed by interpolation of a discrete set of values. Although the
functions onÂ are not entire functions, they are still determined by a discrete sampling.

Remark that it is appropriate to take theL∞ topology, since the diameter of̂A(L) does not depend
onL in this topology, unlike the topology of Sobolev spaces of non-zero order. We remark that
theL∞ topology is stronger than theL2 topology, hence our results do not follow from [9, 8, 29].

We also wish to emphasise here that the order of the limits in our definition ofdup is important.
A more ‘naive’ definition would be

d̂up = lim sup
L→∞

lim sup
ε→0

logN (ε, Â(L))

(2Lπ)d log ε−1
.

The two limits do not commute in general, see [5]. We believe our approach is more natural from
an experimental/numerical point of view, in the sense thatL is a parameter that can be varied in
a series of measurements/simulations made at a fixed accuracyε.

We also consider the density of topological entropy in Section5. We show that the spatial
densities satisfy the analogue of the following well known inequalities [14, 22]

V ≤ htop ≤ λdup ,

whereV is the volume expansion rate,λ is the largest Lyapunov exponent,htop is the topological
entropy anddup is the upper Hausdorff dimension.

The paper is organised as follows: in the remainder of this section we introduce the notation for
the paper. In Section2 the semi-discrete and fully discrete approximations to (1.1) are presented.
In Section3, we define the density ofε–entropy, topological entropy, of upper dimension and
the volume growth rate and state our assumptions on the equation and its approximations. A
key result of the paper is Lemma4.2 (proved in AppendixA), which states that the evolution
has a fast local smoothing effect, a property which allows us to establish upper bounds on the
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ε-entropy (Section4). This is then applied in Section5 to show that the topological entropy is
finite. We also show that it is bounded below by the volume expansion rate (Section5.2). We
discuss the upper-semicontinuity of the attractors in Section6. Technical proofs are given at
the end of the paper: AppendixB contains a proof of analyticity for the fully discrete scheme,
AppendixC contains a Lemma on analytic functions and AppendixD recalls some results on
Gevrey and Bernstein classes.

1.1 Notation

We use the following conventions:z is the complex conjugate ofz and|z| =
√
zz its modulus.

A function f = f1 + if2 with both f1 andf2 real-analytic is identified with the vector-valued
functionf = (f1, f2). Its analytic extension to the complex plane has the form(f1 +ig1, f2 +ig2)

and we write|f | = (|f1|2 + |f2|2 + |g1|2 + |g2|2
)1/2

which, on the real axis, is equal to the
modulus of the complex functionf . The convolution of two functionsf , g is denotedf ?g(x) :=∫
f(x− y)g(y)dy.

If u is a function oft (time) andx (space), then we consider it either as a function of two
variables with values inC, written u(x, t) ∈ C, or as a function of time with values in the
functions ofx, writtenu(t) ∈ Cb(Rd) (the set of bounded continuous functions). A function in
the setCper([−Lπ, Lπ]d) of 2Lπ–periodic continuous functions, will often be identified with its
lift (by periodic extension) toCb(Rd).

The spacesCb(Rd) andCper([−Lπ, Lπ]d) are Banach spaces with the sup norm‖ · ‖∞ and may
be viewed as subspaces of

(
L∞(Rd), ‖ · ‖∞

)
and

(
L∞([−Lπ,Lπ]d), ‖ · ‖∞

)
respectively. We

also make extensive use of the Gevrey classGα(C) and the Bernstein classBσ(C). These are
both discussed in AppendixD. If Re

(
f
)

andIm
(
f
)

belong to the Gevrey classGα(C), we use
the notationf ∈ [Gα(R)]2 (similarly forBσ(C)).

We denote byT the standard Fourier transform operator(
T f
)
(k) :=

1

(2π)d

∫
eik·xf(x) dx ,

(
T −1f

)
(x) :=

∫
e−ik·xf(x) dk .

The Fourier series operator for2Lπ–periodic functions is denoted with the same symbol:(
T f
)
n

:=
1

(2Lπ)d

∫
|x|≤Lπ

ein·x/Lf(x) dx ,
(
T −1f

)
(x) :=

∑
n∈Zd

e−in·x/Lfn . (1.2)

We introduce two different smooth cutoff functions. The first of these,ϕ, acts in real space and
serves as a weight inLp norms, in order to get bounds that do not depend onL.
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Definition 1.1 Letϕ be a real-space cutoff function satisfying

ϕ(x) > 0 ∀x ∈ Rd, ϕ(−x) = ϕ(x) ,

∫
ϕ(x) dx = 1 ,

∥∥∥∥∇ϕϕ
∥∥∥∥
∞
< ∞ ,

and, moreover,ϕ−1 is a tempered distribution (
∫
ϕ−1f <∞ for any Schwartz functionf ).

Examples.The function

ϕ(x) =
1

(1 + |Cϕx|2)d/2+1

satisfies all of our requirements (here,Cϕ is a normalisation constant determined by the equation∫
ϕ = 1, similarly forCψ below). However, the function

ψ(x) =
1

cosh(Cψx1) · · · cosh(Cψxd)
,

which has a sharper decay at infinity, cannot be used because it fails the last property, namely
cosh(x) is not a tempered distribution. The importance of this may be seen in Lemma4.2.

Note that for (1.1) the functionψ could be used, and would provide sharper bounds in our proofs.
This does not work however with the truncation to a finite number of modes (such as given by
the semi-discrete system (2.3) or fully discrete system (2.5)).

Our second cutoff function,ξK , is defined in terms of its Fourier transform. It smoothly truncates
to a finite set of Fourier modes hence produces a finite dimensional problem.

Definition 1.2 LetK > 1 and letξ̂K be aC∞ function taking the following values:

ξ̂K(k) =

{
1 if |k| ≤ K − 1 ,
0 if |k| ≥ K .

Its inverse Fourier transformξK = T −1(ξ̂K) is an (entire) Schwartz function.

Note that iff is a Schwartz function, thenξK ? f is a Schwartz function whose Fourier transform
has support in[−K,K]d, hence it belongs toBK(C) for someC, see [23].

Acknowledgements. We are grateful to Jan Kristensen for useful discussions, especially in
relation to LemmaC.1. The work of J.R. has been supported by the Fonds National Suisse de la
Recherche Scientifique and the EPSRC GR/R29949/01.

2 Semi-Discrete and Fully-Discrete Approximations

In this section, we propose a spatial discretisation of (1.1) and a fully discrete scheme.



Large Volume Limits of Discretised Parabolic Equations 5

ϕ(x)

x

ξ̂K(k)

k

ξK(x)

x

Figure 1: The cutoff functions of Definitions1.1–1.2

2.1 Galerkin Scheme

The semi-discretisation we describe here is a spectral method. LetN ∈ N, then we use the
Fourier cutoffξK of Definition1.2withK = N to define the operatorsPN andQNf := f−PNf
where

PNf := ξN ? f = T −1
(
ξ̂NT (f)

)
, (2.1)

i.e.,
PN

∑
n∈Zd

fne
−in·x/L :=

∑
|n|≤NL

ξ̂N(n/L)fne
−in·x/L ,

Notice thatPN truncates to(2NL)d modes, not(2N)d. In this wayT
(
PNf

)
has support con-

tained in[−N,N ]d for all L. The operatorPN is not a projector sincePNPN 6= PN .

The Galerkin approximation is defined as follows: the solutionu(x, t) to (1.1) is replaced by a
finite Fourier series

uN(x, t) :=
∑
|n|≤NL

un(t)e−in·x/L . (2.2)

The evolution equation is obtained by applyingPN to the nonlinear term of (1.1) and to the initial
conditionu0:

∂tu
N =

(
γ + ν∆

)
uN + PNF (uN) , uN(x, 0) =

(
PNu0

)
(x) . (2.3)

2.2 Fully Discrete Scheme

The time-discretisation is an exact exponential integrator for the linear part and a simple (order1)
quadrature for the nonlinear term appearing in the variation of constants formula. It is similar to
that considered in [26], although they need a different definition of discrete Gevrey space, which
depends on the time step. The full discretisation is obtained by applying this time-discretisation
to the Galerkin scheme (2.3). We use this particular scheme because it makes it straightforward to
prove that solutions are (Gevrey) analytic functions (uniformly in the parameters of the scheme,
see AppendixB), a fact that we rely on heavily in the next sections.
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LetL = γ + ν∆ andK(x, t) be the convolution kernel associated with the operatorexp(tL):

K(x, t) =
1

(2π)d

∫
e−ik·x+(γ−ν|k|2)t dk . (2.4)

Note that the operatorPN commutes withK ? · since both are convolution operators. Leth > 0
denote the time-step. Then the fully discrete approximation tou(x, t) is defined iteratively by

uN
(
(n+ 1)h

)
= K(h) ?

(
uN(nh) + hPNF

(
uN(nh)

))
. (2.5)

In terms of the Fourier coefficients, (2.2), we get

uNm
(
(n+ 1)h

)
= ehλm

(
uNm(nh) + hPNT F

(
T −1uN(nh)

)
m

)
= ehλm

(
uNm(nh) + hξ̂N(m/L)T F

(
T −1uN(nh)

)
m

)
,

where{λm}m∈Zd are the eigenvalues ofL, namelyλm = γ − ν|m|2/L2, n is the time index,m
is the Fourier index, andT is the Fourier transform (1.2).

For the purposes of analysis, it is useful to consider this scheme in terms of piecewise solutions
of a linear differential equation. Indeed,uN(x, (n+ 1)h) is the solution at timet = h of

∂tu(x, t) = ν∆u(x, t) + γu(x, t) (2.6)

with initial conditionuN(x, nh) + hPNF
(
uN(x, nh)

)
at t = 0.

Remark. We could apply our techniques to other numerical schemes. We only require the
numerical approximation to belong to the Gevrey classGα(C) of bounded real analytic functions
for someα > 0,C > 0 (see AppendixD). There exists many wavelet and finite element schemes
satisfying this requirement, see [7, 18]. In particular, PropositionsD.2 andD.3 provide a natural
example of a different basis of analytic functions on which our problem can be decomposed and
then a truncation applied: this basis consists of the functions

Ψj,k(x) =
3eik·x sin

(
2x− 1

3
jπ
)

sin
(
6x− jπ

)
(6x− jπ)2

,

for j, k ∈ Zd. These functions have the advantage of being localised both in real space and in
Fourier space although the numerical implementation is more involved.

3 Definitions and Assumptions

Since we are interested in the large volume limit we specify this dependence in the definitions
below.
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Assumption 3.1 For initial data u0 ∈ Cper([−Lπ, Lπ]d), we assume that

• equation (1.1) is the generator of a semi-flowΦt
L : u0 7→ u(t);

• for all N > N0, the semi-discrete equation (2.3) is the generator of a semi-flowΦt
L,N : u0 7→

u(t);

• for all N > N0 andh < h0 the fully discrete equation (2.5) is the generator of a semi-flow
Φt
L,N,h : u0 7→ u(t) with t = nh, n ∈ N.

Furthermore we assume for each of the semi-flows above that there exists constantsα > 0 and
R > 0, independentL andt, such thatRe

(
u(t)

)
andIm

(
u(t)

)
belong to the Gevrey classGα(R)

for all t > T (u) and sou(t) ∈ [Gα(R)]2. In other words, the following sets are absorbing balls
for their corresponding semi-flows:

B(L) := Cper([−Lπ,Lπ]d)
⋂

[Gα(R)]2 ,

BN(L) := PNCper([−Lπ,Lπ]d)
⋂

[Gα(R)]2 ,

BN,h(L) := PNCper([−Lπ,Lπ]d)
⋂

[Gα(R)]2 .

Throughout the paper we usêΦt to denote any of the semi-flows (witht taken appropriately)
defined above and̂B(L) to denote the corresponding absorbing balls.

We next define the attractors of the different evolutions introduced above.

Definition 3.2 We define the following invariant attracting sets for the flows defined in Assump-
tion 3.1

A(L) :=
⋂
t>0

Φt
L

(
B(L)

)
,

AN(L) :=
⋂
t>0

Φt
L,N

(
BN(L)

)
,

AN,h(L) :=
⋂
n∈N

Φnh
L,N,h

(
BN,h(L)

)
.

Throughout the paper we usêA(L) to denote any of the above attracting sets.

Clearly finite trigonometric sums like (2.2) are entire functions. However, the assumption that
there exists a strip around the real axis whereuN is bounded by the same constant for allN is not
trivial. Results of this type are know for a number of parabolic partial differential equations of the
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form (1.1), under the assumptions thatF is dissipative in an appropriate sense (see for example
[1, 25]). For numerical approximations, existence of semi-flows and global attractors is a well
considered problem (see for example [24]). Gevrey regularity of solutions for numerical schemes
has not been so widely considered, two different approaches are in [17, 26]. AppendixB contains
a sketch of how to obtain this result for the fully discrete scheme given by (2.5). The proof only
relies on an a prioriL∞ bound on the solutions and the assumption that the nonlinearityF is
analytic.

We next introduce the notion ofε–entropy. The proof that this is a finite quantity will be given
in Section4. From this we define the upper density of dimension.

Definition 3.3 LetY be a subset of a metric spaceX. A setU = {U1, . . . , UN} of open sets in
X is called a cover ofY if

⋃N
n=1 Un ⊃ Y . It is called anε–cover ifmaxn=1,...,N diam(Un) ≤ ε.

Let Â(L) be endowed with the metric defined by the norm‖ · ‖∞. Let

N (ε, Â(L)) := inf
{

card(U) : U is anε–cover ofÂ(L)
}
.

We define theε–entropyHε as the limit

Hε := lim sup
L→∞

logN (ε, Â(L))

(2Lπ)d
.

The upper density of dimensiondup is defined by

dup := lim sup
ε→0

Hε

log ε−1
.

Remark. In [4, 5, 6], Hε was defined with a limit instead of a limit superior. The existence of the
limit followed from a subadditivity argument which cannot be used here because of the boundary
conditions. That is, the set̂A(L) we are considering here changes withL, whereas in the papers
[4, 5, 6], only the topology onA depended onL, not the set itself. See also [31, 32] for similar
results.

Another, more classical notion of entropy is the topological entropy. It serves to measure to
complexity of a dynamical system. Similarly to the previous definition, we consider here the
spatial density of topological entropy. See Section5 for results on the topological entropy.

Definition 3.4 For τ > 0, we define a pseudo-metricdm,τ onCper([−Lπ,Lπ]d) by

dm,τ (u, v) := max
k=0,...,m−1

‖Φ̂kτ (u)− Φ̂kτ (v)‖∞ .
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An (m, ε)–cover ofÂ(L) is a collection of open sets whose diameter in the metricdm,τ is at
mostε and whose union containŝA(L). LetMm,τ (ε, Â(L)) be the cardinality of such a minimal
(m, ε)–cover.

The (spatial density of) topological entropy is defined as follows:

htop := lim sup
ε→0

lim sup
L→∞

1

(2Lπ)d
lim
m→∞

1

mτ
logMm,τ (ε, Â(L)) . (3.1)

The existence of the first limit in (3.1) can be proved by a subadditivity argument, see [4, 6, 14].
A useful way of computing a lower bound on the topological entropy is by measuring the volume
expansion rate (see Section5.2).

Definition 3.5 LetL 7→ D(L) be a family of̀ –dimensionalC∞ sub-manifolds of the absorbing
ball B̂. We defineV, the volume expansion rate, by

V := lim sup
L→∞

1

(2Lπ)d
lim sup
m→∞

1

mτ
log Vol`

(
Φ̂mτ (D(L))

)
,

whereVol` is the`–dimensional (Euclidean) volume.

4 Upper Bound on theε–Entropy

We now work towards proving our main result which is a bound on theε–entropy. First we
discuss a preliminary result on the smoothing property of the semi-flow which is proved in Ap-
pendixA.

4.1 Smoothing Property of the Semi-Flow

We consider here differencesw = u − v of two orbitsu andv of the semi-flowΦ̂t of Assump-
tion 3.1. We define functionsG1 andG2 in such a way thatw satisfies

∂tw =
(
γ + ν∆

)
w + PN

(
G1(u, v)w +G2(u, v)w

)
(4.1)

for continuous time and

w
(
(n+ 1)h

)
= K(h) ?

(
w(nh) + hPN

(
G1(nh)w(nh) +G2(nh)w(nh)

)
(4.2)

for discrete time. From now on we viewG1 andG2 as functions ofx andt (rather than ofu and
v) and we use the following consequence of Assumption3.1:
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Lemma 4.1 There existsα > 0 andR > 0, both independent ofN , L, and t, such thatw(t),
G1(t) andG2(t) all belong to[Gα(R)]2 for all t > 0 (andt/h ∈ N for (4.2)).

Remark. We may assume without loss of generality that theR and theα of Assumption3.1
and Lemma4.1are equal, and that they are also equal for the fully continuous, semi-discrete and
fully discrete equations.

We compute bounds on the weightedL2–norm ofw shifted in the complex plane over a finite time
interval. Instead of taking the usual (flat)L2 norm over[−Lπ, Lπ]d, which would not behave
well in the limit L → ∞, we take a norm over the whole ofRd weighted with the function
ϕ from Definition 1.1. Therefore,L disappears completely from our estimates. However, in
Definition3.3, we chose to work with theL∞ topology. We therefore use the following bootstrap
argument. From a bound inL∞ at timet = 0, we get a bound in weightedL2 at timet = 0.
Using the next lemma we deduce a bound att = 1 in a weightedL2 space on a strip of the
complex plane. This is in turn combined with LemmaC.1and provides anL∞ bound att = 1.

Lemma 4.2 There is a constantb > 0 such that for anyβ ∈ (−α, α), anyN andL, the following
bound holds onw a solution of (4.1) (or (4.2)) as long ast ≤ 1 (and t/h ∈ N in the case of a
fully discrete scheme):

sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβt, t)|2 dx ≤ e2bt sup

|y|≤Lπ

∫
ϕ(x− y)|w(x, 0)|2 dx . (4.3)

The proof of Lemma4.2 is given in AppendixA.

TheseL2 norms shifted in the complex plane can be understood in terms of the classical Gevrey
norms. Consider firstϕ ≡ 1. Then, using Fourier series and takingβ > 0, we see that∫ (

|f(x+ 2iβ)|2 + |f(x− 2iβ)|2
)
dx =

∥∥∥Γeβ(−∆)1/2

f
∥∥∥2

2
, (4.4)

whereΓ is the bounded invertible operator defined by(
T (Γf)

)
n

= (1 + e−2β|n|/L)(T f)n .

This means that the left-hand side of (4.4) is equivalent to a Gevrey norm (similar norms have
been used in [11, 12]). We apply a non-constant weight functionϕ to this norm in order to get
estimates which are independent ofL and take the sup over|β| ≤ α to be able to use LemmaC.1.
Similar issues have been raised in the paper [21] but our approach is different in that we never
explicitly work in Fourier space. We note also that the norms used in [21] grow with the domain
size (due to the embedding constant), a problem we avoid here by using the cutoffϕ.
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4.2 Proof of the Upper Bound

We next show that theε–entropyHε (Definition3.3) is of orderlog ε−1 at most.

Theorem 4.3 There exists a constantC <∞, independent ofε such that

Hε ≤ C log

(
R

ε

)
,

whereR is the radius of the absorbing ball̂B(L) in Assumption3.1.

The proof is based the following Lemma:

Lemma 4.4 There is a constantC > 0 such that for allε > 0, the following holds:

Hε ≤ H2ε + C .

Proof. The proof is a consequence of the smoothness result of the previous section. We give the
proof for the time continuous cases (1.1), (2.3). The time discrete case (2.5) is similar, it only
requires restrictingt to multiples ofh.

Suppose we are given a2ε–cover{U1, . . . , UN} of Â(L). Then by invariance of̂A the set

{Φ̂t(U1), . . . , Φ̂t(UN )}

is a cover ofÂ(L) for all t > 0. Moreover, if u, v ∈ U1, by LemmaC.1 combined with
Lemma4.2, we have

sup
|x|≤Lπ , 2|y|≤α

|
(
Φ̂1(u)− Φ̂1(v)

)
(x+ iy)| ≤ Cε .

That is, if we letw = Φ̂1(u)− Φ̂1(v), thenw ∈ [Gα/2(Cε)]2 with C independent ofL andε.

We now use an argument due to Tikhomirov [28], discussed in [15], §8, Theorem XXII. By
PropositionD.2w can be written as

w(z) =
∑
n∈Zd

e−α|n|/2ein·zwn(z) , (4.5)

with wn in the Bernstein class[B2(C ′ε)]2 (see AppendixD for the definition ofB2). Thus,
splitting the sum in (4.5) in two, we can find aK independent ofε andL, and aw̃ ∈ [BK(C ′ε)]2,
such that

‖w − w̃‖∞ ≤
ε

2
.
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If w̃ ∈ [BK(Cε)]2, then by PropositionD.3,

w̃(x) =
∑
n∈Zd

w̃
(
xK(n)

)
FK
(
x− xK(n)

)
,

hence there is aδ > 0 depending only onK such that‖w̃‖∞ ≤ ε/2 if |w̃(xK(n))| ≤ δε for
all n ∈ Zd for which xK(n) = (nπ)/(3K) ∈ [−Lπ,Lπ]d. There arec(K)(2Lπ)d such points,
hence at most (

Cε

δε

)c(K)(2Lπ)d

=: C(2Lπ)d

∗

balls of radiusε/2 will be needed to cover[BK(Cε)]2. This covers all the functions̃w obtained
from the set̂Φ1(U1) by the above construction. Consequently,Φ̂1(U1) can be covered with the
same number of balls of diameterε.

Repeating the operation with each one of theN (2ε, Â(L)) sets of diameter2ε of the original
cover{U1, . . . , UN}, we obtain a cover with at most

N (ε, Â(L)) ≤ N (2ε, Â(L))C(2Lπ)d

∗

elements. Taking the logarithm, dividing by(2Lπ)d and passing to the limitL→∞, we obtain
Lemma4.4.

Proof of Theorem 4.3. It trivially holds thatHR = 0, becauseN (R, Â(L)) = 1 by Assump-
tion 3.1. Let k be the smallest integer larger thanlog(R/ε)/ log 2, then by Lemma4.4we have

Hε ≤ H2ε + C ≤ · · · ≤ H2kε + Ck ≤ C ′ logR/ε .

This proves Theorem4.3.

5 The Topological Entropy

5.1 Upper Bound by the Dimension

In this section, we prove that the topological entropy of the attractorsÂ is bounded by a mul-
tiple of the upper density of dimension, a quantity related to theε–entropy. The corresponding
inequality for finite dimensional dynamical systems is well-known, see [14].

Theorem 5.1 There is ab <∞ such that

htop ≤ bdup < ∞ . (5.1)
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Proof. The right-hand inequality is a direct consequence of Theorem4.3. The left-hand in-
equality follows from the arguments in [4, 14] that we summarise here. Letρ > 0 be such that
Hε ≤

(
dup + ρ

)
log 1/ε for all ε < ε0 and then letL0 = L0(ε, ρ) be such that for allL > L0,

logN (ε, Â(L))

(2Lπ)d
≤ Hε + ρ ≤

(
dup + ρ

)
log

1

ε
+ ρ .

By iterating LemmaC.1and Lemma4.2, there is ab > 0 such that for allL and all (sufficiently
small)ε > 0, if ‖u− v‖∞ ≤ ε then fort > 0,

‖Φ̂t(u)− Φ̂t(v)‖∞ ≤ ebtε .

Let ε′ = exp(−bT )ε. Let anε′–cover ofÂ(L) (in the sense of Definition3.3) be given. Then it
is also a(T/τ, ε)–cover (in the sense of Definition3.4), hence

MT/τ,τ (ε, Â(L)) ≤ N (ε′, Â(L)) .

It follows that

htop = lim sup
ε→0

lim sup
L→∞

1

(2Lπ)d
lim
T→∞

1

T
logMT/τ,τ (ε, Â(L))

= lim sup
ε→0

lim sup
L→∞

1

(2Lπ)d
inf
T

1

T
logMT/τ,τ (ε, Â(L))

≤ lim sup
ε→0

lim sup
L→∞

1

T

logN (ε′, Â(L))

(2Lπ)d

≤ lim sup
ε→0

lim sup
L→∞

1

T

(
(dup + ρ) log

1

ε′
+ ρ
)
.

Sincelog 1/ε′ = bT + log 1/ε, the limitT →∞ andρ→ 0 leaves onlybdup on the r.h.s. above.

5.2 Lower Bound by the Expansion Rate

We provide here a way of computing a lower bound on the topological entropy (hence on the
upper dimensiondup by Theorem5.1), based on Yomdin’s Theorem [30], an account of which
may be found in [22].

Theorem 5.2 Lethtop be as in Definition3.4. Then for all choices ofD(L) in Definition3.5,

V ≤ htop .

Remark. The lower bound in [5] is in the same spirit. An adequate sequence of sub-manifolds
is chosen (small balls around the trivial solution). The volume expansion rate of that sequence
can be controlled, yielding a lower bound on the (ε–)entropy.
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Proof. The proof follows from the argument by Yomdin and Gromov [10, 30]. By a Lemma of
Gromov [10], there exists aC > 0 such that ifΦ̂τ is Cr, then

Vol`
(
Φ̂mτ (D(L))

)
≤ Mm,τ (ε, Â(L))(C‖DΦ̂τ‖∞)m`/r ,

hence

lim sup
L→∞

1

(2Lπ)d
lim sup
m→∞

1

mτ
log Vol`

(
Φ̂mτ (D(L))

)
≤ lim sup

L→∞

1

(2Lπ)d
lim sup
m→∞

1

mτ
logMm,τ (ε, Â(L))

+ lim sup
L→∞

`/r

(2Lπ)d
log
(
C1/τ‖DΦ̂τ‖1/τ

∞
)
.

Sinceτ can be arbitrarily large, the constantC drops out, and sincêΦτ is C∞, the second term is
arbitrarily small by lettingr →∞. The first term tends tohtop upon lettingε→ 0.

6 Upper Semicontinuity of the Infinite Volume Attractors

In this section we discuss four different invariant sets and their mutual relationship. The first
two invariant sets areAN,h(L) andA(L) from Definition3.2. Then we also introduce two large
volume limits:

AN,h(∞) :=
⋃
L∈N

AN,h(L) , A(∞) :=
⋃
L∈N

A(L) , (6.1)

where the closure is taken in the uniformly local topology of [19]. We define the distance between
a point and a set and between two sets in the standard way

dist
(
U,V

)
:= inf

V ∈V
‖U − V ‖L∞([−Lπ,Lπ]d) ,

dist
(
U ,V

)
:= sup

U∈U
dist
(
U,V

)
.

We claim that

lim
N→∞,h→0

dist
(
AN,h(L),A(L)

)
= 0 , lim

N→∞,h→0
dist
(
AN,h(∞),A(∞)

)
= 0 , (6.2)

and the following relations are straightforward from (6.1):

lim
L→∞

dist
(
AN,h(L),AN,h(∞)

)
= 0 ,

lim
L→∞

dist
(
A(L),A(∞)

)
= 0 .
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Hence we obtain the following diagram, in which each arrow represents a relation of upper semi-
continuity:

AN,h(L)

L→∞
��

N→∞
h→0

// A(L)

L→∞
��

AN,h(∞)N→∞
h→0

// A(∞) .

The relation (6.2) is a consequence of the following (seee.g. [13, 17, 19, 20]).

Theorem 6.1 For all ε > 0, there is aT1, anh1 and anN1 such that ifh < h1 andN > N1,
then for allL ∈ N

ΦT
L,N,h (BN,h(L)) ⊂ Uε(A(L)) ∀T > T1 ,

whereUε(A(L)) is theε–neighbourhood ofA(L) in L∞.

Proof. The proof is by induction using the attracting property of the attractor and a finite time
error estimate.

By the attraction property ofA(L), there exists aT such that∀T > T1

ΦT
L (B(L) ∪BN,h(L)) ⊂ Uε/2(A(L)) ,

for all L ∈ N. Hence for anyu0 ∈ BN,h(L) we have

dist
(
Φnh
L,N,h(u0),A(L)

)
= inf

u∈A(L)
‖Φnh

L,N,h(u0)− u‖∞

≤ inf
u∈A(L)

‖Φnh
L (u0)− u‖∞ + ‖Φnh

L,N,h(u0)− Φnh
L (u0)‖∞

≤ ε

2
+ ‖Φnh

L,N,h(u0)− Φnh
L (u0)‖∞ , (6.3)

providednh > T .

We next show thatN, h can be chosen in such a way that the second term above is smaller than
ε/2 for all T ∈ (0, 2T1].

Let v(t) = Φt
L(u0) andw(nh + s) = Φs

LinΦnh
L,N,h(u0) whereΦs

Lin is the solution semi-flow of
(2.6). We thus have fors < h

∂t
(
v(nh+ s)− w(nh+ s)

)
=
(
γ + ν∆

)(
v(nh+ s)− w(nh+ s)

)
+ F

(
v(nh+ s)

)
=

(
γ + ν∆

)(
v(nh+ s)− w(nh+ s)

)
+ PN

(
F
(
v(nh+ s)

)
− F

(
w(nh+ s)

))
−PNF

(
w(nh+ s)

)
+ QNF

(
v(nh+ s)

)
.
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Using PropositionD.2 we see that

sup
s<h
‖QNF

(
v(nh+ s)

)
‖∞ ≤ C(R)e−αN .

It is also quite easy (using Fourier transforms) to see that

‖
∫ h

0

(
PNF

(
w((n+ 1)h)

)
−K(s) ? PNF

(
w((n+ 1)h− s)

))
ds‖∞ ≤ C(R)h .

Hence, using the same analysis as in the proof of Lemma4.2, we obtain

‖v((n+ 1)h)− w((n+ 1)h)‖∞ ≤ ech‖v(nh)− w(nh)‖∞ + C(R)h
(
1 + e−αN

)
.

By iteration, we obtain

‖v(nh)− w(nh)‖∞ ≤ ecnh‖v(0)− w(0)‖∞ + C(R)ecnhh(1 + e−αN) . (6.4)

Taking h small enough, we can make the second term of (6.3) smaller thanε/2 for all T ∈
(0, 2T1].

To complete the induction we note that the absorbing ball is forward invariant and so we can
repeat the argument forT > 2T1.

7 Discussion: The Complex Ginzburg–Landau Equation

An interesting example to which our results apply is the (cubic) complex Ginzburg–Landau
equation ind = 1 space dimension

∂tu(x, t) = (1 + ia)∂2
xu(x, t) + u(x, t)− (1 + ib)|u(x, t)|2u(x, t) . (7.1)

In terms of the notations of (1.1), we have:

d = 1 , ν = 1 + ia , γ = 1 , F (u) = −(1 + ib)|u|2u .

Remark that the equation for the differencew = u − v of two solutionsu andv that we use in
Section4.1admits a simple expression:

∂tw(x, t) = (1 + ia)∂2
xw(x, t) + w(x, t)

+

∫
ξN(x− y)

(
G1(y, t)w(y, t) +G2(y, t)w(y, t)

)
dy ,

where

G1(x, t) = −(1 + ib)
(
|u(x, t)|2 + |v(x, t|2

)
, G2(x, t) = −(1 + ib)u(x, t)v(x, t) .

The CGL equation (7.1) arises as a ‘normal form’ in certain types of bifurcation with continuous
spectrum, see [1, 3]. Assumption3.1 for the continuous case follows from the works [2, 1, 25].
In particular, the following results have been proved:
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Theorem 7.1 Equation7.1defines a semi-flowΦt onL∞(R) which has an absorbing ballB in
Gα(C) for someC > 0 andα > 0 (see AppendixD). The attractorA = ∩t>0Φt(B) exists and is
compact inL∞([−L,L]) for anyL > 0.

Remark that these results hold on the whole space without boundary conditions, but they ob-
viously remain true on the set of spatially periodic solutions, which is invariant under the time
evolution.

The following rigorous upper and lower bounds on theε–entropy in unbounded volumes were
obtained in [5]:

Theorem 7.2 LetA be the attractor of Eq.(7.1) for general initial conditions inL∞(R) and let
N (ε,A) be the minimum the number of balls in anε–cover ofA in the topology ofL∞([−L,L]).
There is aC > 0 for which

C−1 log(1/ε) ≤ Hε(A) = lim
L→∞

logN (ε,A)

2L
≤ C log(1/ε) .

In particular, the limit exists.

The discretisation (2.5) in the particular case of the CGL equation is

uNm
(
(n+ 1)h

)
= e(1−(1+ia)m2)nh

(
1− h(1 + ib)ξ̂N(m/L)|uNm(nh)|2

)
uNm(nh) , (7.2)

wheren = 0, 1, . . . is the time index andm = −N, . . . , N is the Fourier index.

A closely related time discretisation was considered in [26]. Although there is no formal proof of
existence of a semi-flow and global attractor for the modified Galerkin scheme considered here,
this can be seen to be true by considering the error bound6.4and the results of Theorem7.1over
a finite time interval[0, T ]. This suffices to prove that the discretised evolution is well defined
and solutions stay bounded on that time interval. Iterating over[qT, (q + 1)T ] for all q > 0
we obtain the existence of a global semi-flow. The proof of existence of the absorbing balls of
Assumption3.1 is sketched in AppendixB. This implies that the following theorem holds as a
special case of Theorem4.3:

Theorem 7.3 Consider the CGL equation7.2. There exists a constantC < ∞, independent of
ε such that

Hε ≤ C log

(
R

ε

)
,

whereR is the radius of the absorbing ballB in Gevrey space for7.2, andHε is defined in
Definition3.3.
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A Proof of Lemma 4.2

We first consider the time-continuous case (4.1). We write the analytic extension ofw as a vector
valued function with componentswr andwi (each of which is complex-valued) and its complex
argumentx+ iy is also written as a vector of reals. Namely

w(x+ iy, t) =
(
wr(x, y; t), wi(x, y; t)

)
.

As a preparation for the proof, we estimate the following expression:

Re ν

∫
ϕ(x)

(
wr(x, y; t)∆xwr(x, y; t) + wi(x, y; t)∆xwi(x, y; t)

)
dx

+Re iβ

∫
ϕ(x)

(
wr(x, y; t)∇ywr(x, y; t) + wi(x, y; t)∇ywi(x, y; t)

)
dx (A.1)

By using the Cauchy–Riemann equations (|∇yur,i| = |∇xur,i|), we obtain:

Re ν

∫
ϕ
(
wr∆xwr + wi∆xwi

)
dx+ Re iβ

∫
ϕ
(
wr∇ywr + wi∇ywi

)
dx

= −Re ν

∫
ϕ
(
|∇xwr|2 + |∇xwi|2

)
dx− Re ν

∫
∇xϕ

(
wr∇xwr + wi∇xwi

)
dx

+Re iβ

∫
ϕ
(
wr∇ywr + wi∇ywi

)
dx

≤ −Re ν

∫
ϕ
(
|∇xwr|2 + |∇xwi|2

)
dx+ |ν|

∥∥∥∥∇ϕϕ
∥∥∥∥
∞

∫
ϕ
(
|wr||∇xwr|+ |wi||∇xwi|

)
dx

+|β|
∫
ϕ
(
|wr||∇xwr|+ |wi||∇xwi|

)
dx

≤ |β|2 + |ν|2‖∇ϕ/ϕ‖2
∞

2Reν

∫
ϕ
(
|wr|2 + |wi|2

)
dx

=: b0

∫
ϕ
(
|wr|2 + |wi|2

)
dx . (A.2)

Define
ϕy(x) := ϕ(x− y) , ξ∗y(x) := ξN(x− y) ,

whereϕ andξN are as in Definitions1.1–1.2. We next compute the time-derivative of the left-
hand side of (4.3). The expression (A.1) is the linear part of the time-derivative, hence we simply
insert the bound (A.2) and compute the non-linear part:

1

2
∂t sup

y

∫
ϕy(x)|w(x+ iβt, t)|2 dx ≤ 1

2
sup
y
∂t

∫
ϕy(x)|w(x+ iβt, t)|2 dx

≤
(
γ + b0

)
sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx
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+Re sup
y

∣∣∣∫ ϕy(x)w(x+ iβt, t)

×
(∫

ξ∗x(z)
(
G1(z + iβt, t)w(z + iβt, t) +G2(z + iβt, t)w(z + iβt, t)

)
dz

)
dx
∣∣∣

≤
(
γ + b0

)
sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

+ sup
y

∫
ϕy(x)|w(x+ iβt, t)|

×

(∫
|ξ∗x(z)|√
ϕx(z)

√
ϕx(z)

(
|G1(z + iβt, t)|+ |G2(z + iβt, t)|

)
|w(z + iβt, t)|dz

)
dx .

At this point, we apply the Cauchy–Schwarz inequality to each of the two integrals on the right-
hand side. Using Lemma4.1we know that

sup
|β|≤α

sup
t≤1

sup
x∈Rd

(
|G1(x+ iβ, t)|+ |G2(x+ iβ, t)|

)
≤ 2R .

This gives

1

2
∂t sup

y

∫
ϕy(x)|w(x+ iβt, t)|2 dx ≤

(
γ + b0

)
sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

+ sup
y

(∫
ϕy(x)|w(x+ iβt, t)|2 dx

)1/2(∫
ϕ(x) dx

∫
ξ2
N(z)

ϕ(z)
dz

)1/2

× 2R

(
sup
x

∫
ϕx(z)|w(z + iβt, t)|2 dz

)1/2

≤

(
γ + b0 + 2R

(∫
ξ2
N

ϕ

)1/2
)

sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

=: b sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx ,

where we used that by Definition1.1,
∫
ξ2
N/ϕ < ∞ becauseξ2

N is a Schwartz function and1/ϕ
a Schwartz distribution. Equation (4.3) now follows from Gronwall’s Lemma.

In the discrete case, we solve the linear differential equation (see (2.6))

∂tw(nh+ t) =
(
γ + ν∆

)
w(nh+ t)

for t ∈ [0, h) with initial conditionw(nh)+hξN ?
(
G1(nh)w(nh)+G2(nh)w(nh)

)
, and then we

iterate forn = 0 ton = [1/h]+1. Over one time-step, the same calculations as in the continuous
case give

sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβ(n+ 1)h, (n+ 1)h)|2 dx

≤ e2bh sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβnh, nh)|2 dx ,
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and similarly

sup
|y|≤Lπ

∫
ϕ(x− y)|hξN ?

(
G1((n+ 1)h)w((n+ 1)h) +G2((n+ 1)h)w((n+ 1)h)

)
|2 dx

≤ (2Rh)2

(∫
ξ2
N

ϕ

)
sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβ(n+ 1)h, (n+ 1)h)|2

≤ eCh sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβ(n+ 1)h, (n+ 1)h)|2 ,

hence we can iterate:

sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβnh, nh)|2 dx ≤ e2bnh sup

|y|≤Lπ

∫
ϕ(x− y)|w(x, 0)|2 dx .

This completes the proof of Lemma4.2.

B Analyticity for the Fully Discrete Scheme

The full discretisation discussed in Section2.2is similar to that introduced in [26], where Gevrey
regularity is proved. We give here another simple and direct proof that the semi-group generated
by (2.5) maps intoGα(C) (see AppendixD) for someα andC independent ofN andL. Our proof
is in the spirit of Collet [1] or Takáč et al. [25]. We assume that the solutionu(x, nh) of (2.5) has
reached an absorbing ball inL∞, hence there is anR > 0 such that‖u(nh)‖∞ ≤ R irrespective
of u0 andn. We then use a contraction argument to show that for smallT , for nh ∈ [0, T ], there
is a unique solution to (2.5) in the metric space of functions satisfying|||u||| ≤ R, where

|||f ||| = max
nh∈[0,T ]

sup
|x|≤Lπ

|f(x+ i
√
nh, nh)| .

Remark that ifT < h, there is nothing to prove (the solutions are entire functions anyway). The
purpose of this section is to provide bounds on the radius of analyticity which are independent
of h andN , hence we may assumeh to be small.

We seek a solution to the equationu(nh) = Y
(
u, u0

)
(nh) with Y defined by

Y
(
f, f0

)
(nh) = K(nh) ? f0 +

n−1∑
j=0

hK
(
h(n− j)

)
? PNF (f(jh)) ,

whereK is given by (2.4).

It is easy to see that for smallT > 0, Y(·, f0) is a contraction:∣∣Y(f, f0

)
(x+ i

√
nh, nh)− Y

(
g, f0

)
(x+ i

√
nh, nh)

∣∣
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≤
n−1∑
j=0

∫
h|PNK

(
y − z + i(

√
nh−

√
jh), h(n− j)

)
|

×
∣∣∣F(f(z + i

√
jh, jh)

)
− F

(
g(z + i

√
jh, jh)

)∣∣∣dz
≤ Lip(F,R) |||f − g|||

[T/h]∑
j=0

∫
h|PNK

(
x+ i(

√
nh−

√
jh), h(n− j)

)
| dx

(hereLip(F,R) is the Lipschitz constant ofF in the ball of radiusR) hence by takingT small
enough (depending onLip(F,R) only) the solution to the fixed point problem exists and is
unique. Sinceu belongs to an absorbing ball ofL∞, the argument can be iterated indefinitely,
henceu is analytic for all times thereafter.

C Uniform Bounds on Complex Analytic Functions

In this section we show that anLp bound in a strip of the complex plane provides anL∞ bound
in a smaller strip.

Lemma C.1 Let p ≥ 1. There is a constantC = C(ϕ, δ) such that any functionf analytic in
|Im(x)| ≤ δ satisfies:

|f(y + iz)|p ≤ C sup
|γ|≤δ

∫
ϕ(x− y)|f(x+ iγ)|p dx ,

for all y ∈ Rd and|z| ≤ δ/2.

Proof. We takey = 0 andδ = 1 for simplicity. The general case is obtained by translation and
scaling. Since analytic functions are harmonic the following Mean Value Property holds (see
[16]). LetD be the unit ball centred at0 in then–dimensional complex space, then

f(0) =
1

Vol(D)

∫
D
f(x+ iγ) dx dγ .

We apply Jensen’s inequality and use that there is aC for which

inf
|x|≤1

Cϕ(x) ≥ 1

(see Definition1.1), to obtain

|f(0)|p ≤ 1

Vol(D)

∫
D
|f(x+ iγ)|p dx dγ
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≤ 1

Vol(D)
sup
|γ|≤1

∫
|x|≤1

|f(x+ iγ)|p dx

≤ C

Vol(D)
sup
|γ|≤1

∫
ϕ(x)|f(x+ iγ)|p dx .

D Gevrey and Bernstein Classes of Analytic Functions

We introduce here the metric spacesBσ(C) (the Bernstein class) andGα(C) (the Gevrey class)
and recall two properties of functions belonging to these spaces (see [7, 15, 18] for details).

Definition D.1 The Bernstein classBσ(C) is the set of all functionsf having an analytic exten-
sion to the whole ofCd with exponential growth along the imaginary directions:

|f(x+ iy)| ≤ Ceσ|y| ,∀(x, y) ∈ Rd × Rd .

The Gevrey classGα(C) is the set of all functionsf admitting an analytic extension to a strip of
width 2α around the real axes and which are uniformly bounded in this strip:

|f(x+ iy)| ≤ C , ∀(x, y) ∈ Rd × [−α, α]d .

The first result states that any function inGα(C) can be written as a sum of entire functions:

Proposition D.2 Letf ∈ Gα(C). Then there exists aC ′ depending onC only such that

f(z) =
∑
n∈Zd

e−α|n|ein·zfn(z) ,

with fn ∈ B2(C ′).

The second result is a classical sampling formula (see [7] or [15] where it is called the Cartwright
formula).

Proposition D.3 For all f ∈ Bσ(C), the following identity holds:

f(z) =
∑
n∈Zd

f
(
xσ(n)

)
Fσ
(
z − xσ(n)

)
,

where

xσ(n) =
nπ

3σ
, Fσ(x) =

sin(3σx) sin(σx)

3σ2x2
.
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