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Abstract

We consider semi-discrete and fully discrete approximations of nonlinear parabolic equa-
tions in the limit of unbounded domains, which by a scaling argument is equivalent to the
limit of vanishing viscosity. We define the spatial densityzeéntropy, topological entropy

and dimension for the attractors and show that these quantities are bounded. We also pro-
vide practical means of computing lower bounds on them. The proof uses the property that
solutions lie in Gevrey classes of analyticity, which we define in a way that does not depend
on the size of the spatial domain. As a specific example we discuss the complex Ginzburg—
Landau equation.
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1 Introduction

We consider the following general parabolic equation,
Ou = vAu+ yu+ F(u) , r € [~Lm, Ln]?, t>0, (1.1)

for a complex valued function = u(x,t) and bounded continuous initial conditiatiz, 0) =
uo(z). We restrict ourselves tb € N for convenience. The coefficients df.{) satisfy

veC, Re(v) >0, v € R,
and we assume th&#e(F') andIm(F') are real analytic functions dfe(u) andIm(u).

We are interested in the large volume limit (~ oo) of the long time dynamics (in particular

the attractor) of 1.1) and its approximation by numerical schemes. In the latter case we are
interested in the limit when the mesh size of our discretisation is kept constant while taking the
limit L — oo, thereby obtaining an infinite-dimensional, but still discrete system (see Séction
for results of upper semicontinuity of the attractors in terms of the different parameters of the
problem).

We remark that by a scaling transformation, the large volume limit can be interpreted as a small
viscosity limit. The rescaled functiar(y, t) = u(Ly, t) with y € [, ]¢ satisfies the following
equation
1%
O = ﬁAv + v+ F(v) ,

with periodic boundary conditions gr-, 71]¢. It is however easier to work withl(1) (with
periodic boundary conditions) and take— oc. Indeed, since the problem on the full spate
is well-posed, we have a priori bounds for &ll< co. In fact, we view the periodic boundary
conditions on— L, Lr]¢ for large L as an approximation of the infinite volume.

For each fixed, < oo, (1.1) generates a semi-flo®, . We discretise this time-evolution spatially

by truncating to a finite number of (Fourier) modes. We make this truncation by multiplying by a
smooth function in Fourier space (rather than a sharp indicator function), to have a better control
asL — oo (when the spectrum becomes dense). We then discretise in time using an explicit
scheme inspired by’[]. This scheme is amenable to analysis and also proves to be an efficient
numerical scheme for smooth initial conditions.

It is not the purpose of this paper to prove the existence of global attractors. o for the
discretisations, this has been considered in different setups in a large number of publications (see
for example 7, 24, 3, 1, 29)). Instead, we assume the existence a semi-flow and of a family of
global attractorsA(L), for the continuous and discrete problems (see Defin&ti@h

We compute bounds on statistical quantities that are valid both for the discrete and continuous
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systems. The first of these statistical quantities is the (Kolmogareantropy

. log (e, A(L))
H. = hgisolip (L) ,

whereV is the minimum number of balls of radiusin the topology ofZ*> that are needed to
cover the attractad (L) (see Definitior8.3). We prove thafd. is a finite number in Theores 3.
We thereby get a bound on the upper density of dimension

dyp = hr? jélp loge
This is to be compared with the results of Kolmogorov and Tikhomifay, [where they obtain
a bound of the same type for the set of all entire analytic functions of exponential type. This
result follows from a sampling result for such functions (Proposifio), namely any of these
analytic functions can be reconstructed by interpolation of a discrete set of values. Although the
functions onA are not entire functions, they are still determined by a discrete sampling.

Remark that it is appropriate to take th& topology, since the diameter QTf(L) does not depend
on L in this topology, unlike the topology of Sobolev spaces of non-zero order. We remark that
the L> topology is stronger than the? topology, hence our results do not follow from B, 29.

We also wish to emphasise here that the order of the limits in our definitidg, a$ important.
A more ‘naive’ definition would be

—~ . - logN(e, A(L))
dyp = hznﬁsolip 11121 jélp QL) loget

The two limits do not commute in general, ség We believe our approach is more natural from
an experimental/numerical point of view, in the sense thata parameter that can be varied in
a series of measurements/simulations made at a fixed accuracy

We also consider the density of topological entropy in SeclionWe show that the spatial
densities satisfy the analogue of the following well known inequaliti€és{”]

V S htop S )\dup7

where) is the volume expansion ratgjs the largest Lyapunov exponeht,,, is the topological
entropy andl,,, is the upper Hausdorff dimension.

The paper is organised as follows: in the remainder of this section we introduce the notation for
the paper. In Sectioadthe semi-discrete and fully discrete approximationslta)(are presented.

In Section3, we define the density af-entropy, topological entropy, of upper dimension and

the volume growth rate and state our assumptions on the equation and its approximations. A
key result of the paper is Lemm&a2 (proved in AppendixA), which states that the evolution

has a fast local smoothing effect, a property which allows us to establish upper bounds on the
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e-entropy (Sectior®). This is then applied in Sectignto show that the topological entropy is
finite. We also show that it is bounded below by the volume expansion rate (Sécf)orWe
discuss the upper-semicontinuity of the attractors in Sediioifechnical proofs are given at
the end of the paper: Appendik contains a proof of analyticity for the fully discrete scheme,
AppendixC contains a Lemma on analytic functions and Apperidirecalls some results on
Gevrey and Bernstein classes.

1.1 Notation

We use the following conventions:is the complex conjugate afand|z| = v/2Z its modulus.
A function f = f; + if, with both f; and f, real-analytic is identified with the vector-valued
function f = (f1, f2). Its analytic extension to the complex plane has the foff-ig,, fo+igs)
and we write|f| = (/1> + |fo]* + |o1]* + \g2|2)1/2 which, on the real axis, is equal to the
modulus of the complex functiofi The convolution of two functiong, g is denotedf xg(x) :=

[ flz—y)g(y)dy.

If « is a function oft (time) andz (space), then we consider it either as a function of two
variables with values irC, written u(z,t) € C, or as a function of time with values in the
functions ofz, writtenu(t) € C,(R?) (the set of bounded continuous functions). A function in
the setC,..([—Ln, Ln]?) of 2Lr—periodic continuous functions, will often be identified with its
lift (by periodic extension) t@;, (R%).

The space§,(R?) andC,.,([— L, L7]?) are Banach spaces with the sup ndrm|., and may
be viewed as subspaces @>(R?), | - ||) and (L>([—Lm, Lx]?), | - ||) respectively. We
also make extensive use of the Gevrey clgs&”) and the Bernstein clads, (C'). These are
both discussed in Append®. If Re(f) andIm(f) belong to the Gevrey clagk,(C), we use
the notationf € [G.(R)]? (similarly for B,(C)).

We denote by7 the standard Fourier transform operator

1 ik-x —1 L e—ik-x T
(TF) (k) = (%)d/e f@de, (T ._/ @) dk .

The Fourier series operator fof. 7—periodic functions is denoted with the same symbol:

1 in-x/L -1 o —in-x/L
(71), = W/mqwe L f(x)dx (T7'f)(z) = Ze IEf (1.2)

nezd

We introduce two different smooth cutoff functions. The first of thesects in real space and
serves as a weight if? norms, in order to get bounds that do not depend.on
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Definition 1.1 Lety be a real-space cutoff function satisfying
d Ve
pla)>0 Ve ER' o(-2) = pl@), [p@)dr=1, |=F < oo,

and, moreovery~! is a tempered distributionf(¢ ! f < oo for any Schwartz functioff).

Examples.The function
1

0 = AF G
satisfies all of our requirements (he€g, is a normalisation constant determined by the equation
[ ¢ =1, similarly for C;, below). However, the function
1
cosh(Cyx1) - - - cosh(Cyxg) ’
which has a sharper decay at infinity, cannot be used because it fails the last property, namely
cosh(z) is not a tempered distribution. The importance of this may be seen in Lehiina

U(r) =

Note that for (L.1) the functiony could be used, and would provide sharper bounds in our proofs.
This does not work however with the truncation to a finite number of modes (such as given by
the semi-discrete syster.f) or fully discrete system25)).

Our second cutoff functiory, is defined in terms of its Fourier transform. It smoothly truncates
to a finite set of Fourier modes hence produces a finite dimensional problem.

Definition 1.2 Let K > 1 and Ieth be aC function taking the following values:

~ o [1 if k| < K-1,
5K(k){o if |k| > K.

Its inverse Fourier transfornix = T*l(gK) Is an (entire) Schwartz function.

Note that iff is a Schwartz function, thefx ~ f is a Schwartz function whose Fourier transform
has support if— K, K]%, hence it belongs t8 (C') for someC, see P3].

Acknowledgements. We are grateful to Jan Kristensen for useful discussions, especially in
relation to LemmaC.1 The work of J.R. has been supported by the Fonds National Suisse de la
Recherche Scientifiqgue and the EPSRC GR/R29949/01.

2 Semi-Discrete and Fully-Discrete Approximations

In this section, we propose a spatial discretisatioriLaf)(and a fully discrete scheme.
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Figure 1. The cutoff functions of Definitioris 1-1.2

2.1 Galerkin Scheme

The semi-discretisation we describe here is a spectral method/V LetN, then we use the
Fourier cutoff i of Definition 1.2with K = N to define the operatoi?" andQ” f := f—PNf
where

PV = v f = T (EVT(N) 1)

ie.,

PV 3" fue = 3T Ev(n/L) fue

nezd In|<NL

Notice thatP” truncates tq2N L)? modes, no{2N)<. In this way7 (P" f) has support con-
tained in[— N, N4 for all L. The operatoP” is not a projector sincBNP" # P,

The Galerkin approximation is defined as follows: the soluti¢n, t) to (1.1) is replaced by a
finite Fourier series
uN(x,t) = Z Uy (t)e e/ (2.2)

In|<NL

The evolution equation is obtained by applyinj to the nonlinear term ofi(1) and to the initial
conditionuy:

o = (v+vA) +PVFWY), uMN(z,0) = (PMuo) (). (2.3)

2.2 Fully Discrete Scheme

The time-discretisation is an exact exponential integrator for the linear part and a simplel jorder
guadrature for the nonlinear term appearing in the variation of constants formula. It is similar to
that considered infd], although they need a different definition of discrete Gevrey space, which
depends on the time step. The full discretisation is obtained by applying this time-discretisation
to the Galerkin scheme (3). We use this particular scheme because it makes it straightforward to
prove that solutions are (Gevrey) analytic functions (uniformly in the parameters of the scheme,
see AppendixB), a fact that we rely on heavily in the next sections.
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Let £ = v+ vA andK(z,t) be the convolution kernel associated with the operato(tL):

1 . >
K(x,t) = ) / e~ ihat (VIR g (2.4)

Note that the operatd?” commutes withC x - since both are convolution operators. ket 0
denote the time-step. Then the fully discrete approximatiar(iot) is defined iteratively by

uN((n+1)h) = K(h)* (u¥(nh) + RPYF (u™(nh))) . (2.5)
In terms of the Fourier coefficients).¢), we get
uh (n+1)h) = e (u)(nh) + hPYTF(T 'u®(nh)), )
= e (ull(nh) + hén(m/D)TF (T~ (nh),) .

where{\,, },.cze are the eigenvalues df, namely)\,, = v — v|m|*/L?, n is the time indexm
is the Fourier index, and is the Fourier transforml(2).

For the purposes of analysis, it is useful to consider this scheme in terms of piecewise solutions
of a linear differential equation. Indeed) (z, (n + 1)h) is the solution at time = h of

Owu(x,t) = vAu(z,t) + yu(x,t) (2.6)
with initial conditionu® (z, nh) + hPY F (u" (z,nh)) att = 0.

Remark. We could apply our techniques to other numerical schemes. We only require the
numerical approximation to belong to the Gevrey clgs&”') of bounded real analytic functions

for somex > 0, C' > 0 (see AppendiD). There exists many wavelet and finite element schemes
satisfying this requirement, seg, [L&]. In particular, Proposition®.2 andD.3 provide a natural
example of a different basis of analytic functions on which our problem can be decomposed and
then a truncation applied: this basis consists of the functions

etk sin(2x — %jﬂ') sin(6x — jﬂ')

Vir(r) = (6x — jm)? ’

for j,k € Z. These functions have the advantage of being localised both in real space and in
Fourier space although the numerical implementation is more involved.

3 Definitions and Assumptions

Since we are interested in the large volume limit we specify this dependence in the definitions
below.
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Assumption 3.1 For initial data uy € Cpe:([— L, L]?), we assume that

e equation (.1) is the generator of a semi-flo®/, : ug — u(t);
e forall N > N,, the semi-discrete equatiofi.Q) is the generator of a semi-roWLjN DU
u(t);

e forall N > Nyandh < hq the fully discrete equatior?2(5) is the generator of a semi-flow
DY oy uo — u(t) witht = nh,n € N,

Furthermore we assume for each of the semi-flows above that there exists constantand

R > 0, independent andt, such thafRe(u(t)) andIm(u(t)) belong to the Gevrey clagk,(R)
forall t > T'(u) and sou(t) € [G.(R)]?. In other words, the following sets are absorbing balls
for their corresponding semi-flows:

B(L) = Cper([_Lﬂ'vLﬂ]d) ﬂ Ga(R))?
By(L) = PNCpor([—Lm, L7)*) () [Ga(R))?
Byn(L) = PNCper([—Lm, Lu]")[)[Ga(R)] .

Throughout the paper we usé to denote any of the semi-flows (withaken appropriately)
defined above ané& (L) to denote the corresponding absorbing balls.

We next define the attractors of the different evolutions introduced above.

Definition 3.2 We define the following invariant attracting sets for the flows defined in Assump-
tion 3.1

A(L) = (2L(B(L) .

t>0

An(L) = () ®Ly(Bn(L)),

t>0

Avi(L) = () ¥, (Byn(L)) .

neN
Throughout the paper we usZa(L) to denote any of the above attracting sets.
Clearly finite trigonometric sums like2(2) are entire functions. However, the assumption that

there exists a strip around the real axis wheYds bounded by the same constant for/élls not
trivial. Results of this type are know for a number of parabolic partial differential equations of the
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form (1.1), under the assumptions th&tis dissipative in an appropriate sense (see for example
[1, 25]). For numerical approximations, existence of semi-flows and global attractors is a well
considered problem (see for exampi€]). Gevrey regularity of solutions for numerical schemes
has not been so widely considered, two different approaches are ind). AppendixB contains

a sketch of how to obtain this result for the fully discrete scheme give by. (The proof only
relies on an a priorl.>° bound on the solutions and the assumption that the nonline&risy
analytic.

We next introduce the notion ef-entropy. The proof that this is a finite quantity will be given
in Sectiond. From this we define the upper density of dimension.

Definition 3.3 LetY be a subset of a metric spaéé A set/ = {U;,...,Uy} of open sets in

.....

Let A(L) be endowed with the metric defined by the ndjrf|... Let
N (e, A(L)) := inf{card(Yf) : U is ane—cover of A(L)} .
We define the—entropyH. as the limit

L log/\/(e,ﬁ(L))
H. = han_)solip BLr)

The upper density of dimensidp, is defined by

dyp, = limsu )
P 0 P log et

Remark. In[4, 5, 6], H. was defined with a limit instead of a limit superior. The existence of the
limit followed from a subadditivity argument which cannot be used here because of the boundary
conditions. That is, the se4(L) we are considering here changes withwhereas in the papers

[4, 5, 6], only the topology on4 depended oL, not the set itself. See alsa1, 37] for similar
results.

Another, more classical notion of entropy is the topological entropy. It serves to measure to
complexity of a dynamical system. Similarly to the previous definition, we consider here the
spatial density of topological entropy. See Secfidor results on the topological entropy.

Definition 3.4 For 7 > 0, we define a pseudo-metig, . onCpe,([— L, L7]|%) by

dopr(u,0) = max || (u) — B (1) -
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An (m, e)—cover of A(L) is a collection of open sets whose diameter in the melyic is at
moste and whose union containd(L). LetM,, ; (¢, A(L)) be the cardinality of such a minimal
(m, €)—cover.

The (spatial density of) topological entropy is defined as follows:

. . 1 ) 1 —~
hiop = hr?_&:’(?p llan_)sC:p L) 77101_r)1r100 P log M -(, A(L)) . (3.1)

The existence of the first limit ir3(1) can be proved by a subadditivity argument, sge[14].
A useful way of computing a lower bound on the topological entropy is by measuring the volume
expansion rate (see Sectibr?).

Definition 3.5 Let L — D(L) be a family of’—dimensional*> sub-manifolds of the absorbing
ball B. We defing’, the volume expansion rate, by

1 ]_ -~
VY = liin_}solip 2L hgljolip - log Vol, (@™ (D(L))) ,

whereVol, is the/—dimensional (Euclidean) volume.

4 Upper Bound on thes—Entropy

We now work towards proving our main result which is a bound oncthentropy. First we
discuss a preliminary result on the smoothing property of the semi-flow which is proved in Ap-
pendixA.

4.1 Smoothing Property of the Semi-Flow

We consider here differences = v — v of two orbitsu andv of the semi-flowd! of Assump-
tion 3.1 We define functions/; and(G, in such a way that satisfies
dw = (v+vA)w+PY(Gi(u,v)w + Ga(u, v)w) (4.2)
for continuous time and
w((n+1)h) = K(h)* (w(nh) + hPY(Gi(nh)w(nh) + Ga(nh)w(nh)) (4.2)

for discrete time. From now on we vie®; and(, as functions ofc andt (rather than ot and
v) and we use the following consequence of Assumpsidn
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Lemma 4.1 There existsx > 0 and R > 0, both independent a¥, L, andt, such thatw(t),
G4 (t) andGy(t) all belong to[G,,(R)])* for all t > 0 (andt/h € N for (4.2)).

Remark. We may assume without loss of generality that thand thea of Assumption3.1
and Lemmal.1are equal, and that they are also equal for the fully continuous, semi-discrete and
fully discrete equations.

We compute bounds on the weightet-norm ofw shifted in the complex plane over a finite time
interval. Instead of taking the usual (flat§ norm over[—Lx, L], which would not behave
well in the limit L — oo, we take a norm over the whole & weighted with the function

¢ from Definition 1.1. Therefore,L disappears completely from our estimates. However, in
Definition 3.3, we chose to work with thé> topology. We therefore use the following bootstrap
argument. From a bound ib> at timet = 0, we get a bound in weightefl? at timet = 0.
Using the next lemma we deduce a bound at 1 in a weightedZ? space on a strip of the
complex plane. This is in turn combined with Lem@al and provides ai.> bound att = 1.

Lemma 4.2 There is a constarit > 0 such that for any; € (—a, ), any N and L, the following
bound holds onv a solution of ¢.1) (or (4.2)) as long as < 1 (andt/h € N in the case of a
fully discrete scheme):

sup /(p(x—y)|w(m+iﬁt,t)|2dm < ® sup /go(x—y)|w(x, 0)|? dz . (4.3)

ly|<Lm ly|<Lm

The proof of Lemmat.2is given in AppendiXA.

TheseL? norms shifted in the complex plane can be understood in terms of the classical Gevrey
norms. Consider firsp = 1. Then, using Fourier series and takifig- 0, we see that

2
1/2
f

‘ 2

/(If(x+2z‘ﬁ)\2 +|f(zx = 2iB)]?) do = Hpem—m

, (4.4)

wherel is the bounded invertible operator defined by
(T(T))), = A+ 2MVENT), .

This means that the left-hand side df4) is equivalent to a Gevrey norm (similar norms have
been used in11, 17]). We apply a non-constant weight functignto this norm in order to get
estimates which are independentofind take the sup ovés| < « to be able to use Lemnia 1
Similar issues have been raised in the pagé} put our approach is different in that we never
explicitly work in Fourier space. We note also that the norms use#dlijgrow with the domain
size (due to the embedding constant), a problem we avoid here by using thecutoff
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4.2 Proof of the Upper Bound
We next show that the-entropyH., (Definition 3.3) is of orderlog s~! at most.

Theorem 4.3 There exists a constant < oo, independent of such that

H. < Clog (5) |
£

whereR is the radius of the absorbing balt(L) in Assumptiors. .

The proof is based the following Lemma:

Lemma 4.4 There is a constan®’ > 0 such that for alle > 0, the following holds:

]yé < ]¥és*_(j-

Proof. The proof is a consequence of the smoothness result of the previous section. We give the
proof for the time continuous casek 1), (2.3). The time discrete case.f) is similar, it only
requires restricting to multiples ofh.

Suppose we are givern2a—cover{Uy, ..., Uy} of ﬁ(L). Then by invariance ofl the set
{B(U7), ..., ®'(Uy)}

is a cover ofﬁ(L) for all t > 0. Moreover, ifu,v € U;, by LemmaC.1 combined with
Lemma4.2, we have

sup ](Eﬁl(u) - &\Dl(v))(x +iy)| < Ce.
|z|<Lm, 2ly|<a

That is, if we letw = &' (u) — &' (v), thenw € [G,/2(Ce)]? with C independent of, ande.

We now use an argument due to TikhomircyZ], discussed in15], §8, Theorem XXIl. By
PropositionD.2 w can be written as

w(z) = Z e~olml2einzy (2) (4.5)

nezd

with w, in the Bernstein clasfB,(C’¢)]? (see AppendixD for the definition of3,). Thus,
splitting the sum in4.5) in two, we can find & independent of and L, and aw € [Bx(C’¢))?,
such that

™

lw —wllee < 5

\)
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If w € [Bx(Ce)]?, then by Propositiol.3,

w(z) = Z W(xx(n)) Fi(x — xx(n)) ,

nezd

hence there is & > 0 depending only o' such that|w||. < ¢/2if |w(zx(n))| < de for
all n € Z4 for whichzx(n) = (n7)/(3K) € [—Lm, Lx]%. There are:(K)(2L)¢ such points,

hence at most (K) @I
c 2Lm
Ce _. e
de S
balls of radiuss /2 will be needed to covel3x(Ce)]*. This covers all the functiong obtained

from the seﬁ)l(Ul) by the above construction. Consequenaﬁl(Ul) can be covered with the
same number of balls of diameter

Repeating the operation with each one of IbféQs,ﬁ(L)) sets of diamete2e of the original
cover{Uy,...,Ux}, we obtain a cover with at most

N (e, A(L)) < N (2e, A(L) 2"

elements. Taking the logarithm, dividing b9L=)¢ and passing to the limik — oo, we obtain
Lemma4.4.

Proof of Theorem 4.3. It trivially holds that H; = 0, becauseV' (R, A(L)) = 1 by Assump-
tion 3.1 Letk be the smallest integer larger thiag(R/<)/ log 2, then by Lemmat.4we have

H. < Hy,+C < -+ < Hu, + Ck < C"logR/s.

This proves Theorem.3.

5 The Topological Entropy

5.1 Upper Bound by the Dimension

In this section, we prove that the topological entropy of the attractois bounded by a mul-
tiple of the upper density of dimension, a quantity related to=thentropy. The corresponding
inequality for finite dimensional dynamical systems is well-known, $é&g [

Theorem 5.1 There is a < oo such that

hiop < bilyy < 00 (5.1)
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Proof. The right-hand inequality is a direct consequence of Theotein The left-hand in-
equality follows from the arguments ir,[14] that we summarise here. Let> 0 be such that
H. < (dy, + p) log1/e forall e < ¢ and then letly = Lo(e, p) be such that for alL > Ly,

log MV (g, A\(L))
(2Lm)d

By iterating LemmeC.1and Lemmal.2, there is & > 0 such that for allL and all (sufficiently
small)e > 0, if ||u — v||, < ethenfort >0,

1

19" (u) = &' (0)]loe < e .

Lets' = exp(—bT)e. Let ans’—cover of A(L) (in the sense of Definitio.3) be given. Then it
is also a(T'/ 7, )—cover (in the sense of Definitidh4), hence

Majrr(e, A(L)) < N (', A(L)) .
It follows that

log M7 (e, .,Zl\(L))

. . .1
htop = lll’iljélp hILIl_ilip m ’Ilggo T

log M7, (e, .Z(L))

. . 1
= limsup limsup 777 it 77

' , 1 logj\/(es’,/T(L))
< Imspline £

inf
T

1 1
< limsup limsup — ((dup +p)log — + p) )
e—0 L—oo T 6/

Sincelog 1/¢’ = bT" + log 1 /¢, the limitT" — oo andp — 0 leaves onlyd,,, on the r.h.s. above.

5.2 Lower Bound by the Expansion Rate

We provide here a way of computing a lower bound on the topological entropy (hence on the
upper dimension,,, by Theoremb.1), based on Yomdin’s Theorenms([], an account of which
may be found in?2].

Theorem 5.2 Let by, be as in Definitior8.4. Then for all choices oP (L) in Definition3.5,
V < hiop -
Remark. The lower bound inf] is in the same spirit. An adequate sequence of sub-manifolds

is chosen (small balls around the trivial solution). The volume expansion rate of that sequence
can be controlled, yielding a lower bound on the)éntropy.
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Proof. The proof follows from the argument by Yomdin and Groma%,[3(]. By a Lemma of
Gromov [L(], there exists &' > 0 such that ifd™ is C", then

Vol (0™ (D(L))) < Mo (e, A(L))(C||DP"[|oc)™ ",
hence

1 N
liinﬁs;}p QL) hnr?jolip p log Vol (®™7(D(L)))

< lianﬂsotip QL) 7 lim sup m— log Miy,.r (£, A(L))

: 6/ 1/7 RTL/T
—i—hanHsolip <2Lﬂ)dlog(0/ | DO7||Y7) .

Sincer can be arbitrarily large, the constaritdrops out, and sincé™ is C>, the second term is
arbitrarily small by letting- — oo. The first term tends tb,, upon lettings — 0.

6 Upper Semicontinuity of the Infinite Volume Attractors

In this section we discuss four different invariant sets and their mutual relationship. The first
two invariant sets arely ,(L) and.A(L) from Definition3.2. Then we also introduce two large
volume limits:
Ann(o0) = | Aa(L),  Ale) == | AL), (6.1)
LeN LeN
where the closure is taken in the uniformly local topology'c¢i[ We define the distance between
a point and a set and between two sets in the standard way

dlSt(U7 V) = ‘1/r€1€)||U — Vlpoo (= Lr,L7)4) 5
dist(U,V) ‘= sup dist(U, V) .
veu
We claim that
N_)lion}b_) dist (An (L), A(L)) = 0, N_)lgonr}H dist (An,;(00), A(c0)) = 0, (6.2)

and the following relations are straightforward frofni):

Lhm dlSt(ANh( )7~AN,h(OO)> = 0,
Jim dist(A(L), A(c0)) = 0.
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Hence we obtain the following diagram, in which each arrow represents a relation of upper semi-
continuity:

Ann(L) 5222 A(L)

h—0

L—»ool lL—wo

An(00) 5755 A(00) -

h—0

The relation 6.2) is a consequence of the following (seg.[13, 17, 19, 20).

Theorem 6.1 For all € > 0, there is aly, an h; and anN; such that ifh. < h; and N > Ny,
thenforallL € N
Of v, (Byn(L)) C U(A(L)) VT >Ty,

wherel/.(A(L)) is thee—neighbourhood ofA(L) in L™,

Proof. The proof is by induction using the attracting property of the attractor and a finite time
error estimate.

By the attraction property ofi(L), there exists & such that'T" > T}
®7 (B(L)U Byy(L)) C Uspa(A(L)),

for all L € N. Hence for any, € By (L) we have

dist (@cp(v), A(L)) = inf, (95 (u0) =
< b3 () = o+ [ (t0) — B o) o
< S B 0) — (o) e 6.3)

providednh > T.

We next show thaiV, i can be chosen in such a way that the second term above is smaller than
e/2forall T € (0,271].

Let v(t) = @ (uo) andw(nh + s) = &f; 1"y, (uo) Whered;, is the solution semi-flow of
(2.6). We thus have fos < h

O (v(nh+s) —w(nh+s)) = (v+vA)(v(nh+ s) — w(nh+s)) + F(v(nh + s))
= (v+vA)(v(nh+s) —w(nh+s)) +PY <F(v(nh +5)) — F(w(nh + s)))
—PYF(w(nh+ s)) + QVF(v(nh + s)) .
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Using PropositiorD.2 we see that
sup [QVF (v(nh+ s)) || < C(R)e™ N .

s<h

It is also quite easy (using Fourier transforms) to see that
h
I [ PYF (w0 + 1) = () # P (wl(n+ Db = ) dslc < CORI
0

Hence, using the same analysis as in the proof of Lesiave obtain
lo((n+Dh) —w((n + Dh)|le < e|jo(nh) — w(nh)lw + C(R)(1+e™Y) .
By iteration, we obtain
[v(nh) —w(nh)lle < e [[v(0) = w(0) oo + C(R)e™ h(L +e7*Y). (6.4)
'(I'aking]h small enough, we can make the second term6a®) (smaller tharc/2 for all T €
0,2T].

To complete the induction we note that the absorbing ball is forward invariant and so we can
repeat the argument far > 27;.

7 Discussion: The Complex Ginzburg—Landau Equation

An interesting example to which our results apply is the (cubic) complex Ginzburg—Landau
equation ind = 1 space dimension

ou(x,t) = (1 +ia)Pu(x,t) +ulz,t) — (1 +ib)|u(z, t)Pu(z, ) . (7.2)
In terms of the notations ofl(1), we have:
d=1, v=1+ia, v=1, F(u) = —(1+ib)|ul’u

Remark that the equation for the difference= u — v of two solutionsu andwv that we use in
Section4.1admits a simple expression:

ow(z,t) = (1+ia)d?w(z,t) +w(z,t)
+ [ et =) (Galy O0(w.0) + Galy (1)) dy

where
Gi(z,t) = —(1+1b) (Ju(z, t)]* + |v(z, t]?) Ga(z,t) = —(1+ib)u(z, t)v(x,t) .

The CGL equationq.1) arises as a ‘normal form’ in certain types of bifurcation with continuous
spectrum, seel| 3]. Assumption3.1for the continuous case follows from the works 1, 25].
In particular, the following results have been proved:
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Theorem 7.1 Equation7.1defines a semi-flo#’ on L>°(R) which has an absorbing bal in
G.(C) forsomeC > 0 anda > 0 (see Appendi). The attractord = N, ®!(B) exists and is
compact inL>*([—L, L]) forany L > 0.

Remark that these results hold on the whole space without boundary conditions, but they ob-
viously remain true on the set of spatially periodic solutions, which is invariant under the time
evolution.

The following rigorous upper and lower bounds on thentropy in unbounded volumes were
obtained in {]:

Theorem 7.2 Let A be the attractor of Eq4.1) for general initial conditions in.>°(R) and let
N (g, A) be the minimum the number of balls inarcover of4 in the topology of.>°([—L, L]).
There is aC > 0 for which

C 'log(l/e) < H.(A) = lim W < Clog(1/e) .

L—oo 2

In particular, the limit exists.

The discretisationd.5) in the particular case of the CGL equation is
u (n+ 1)) = e0Fm 0 (1 g1 i)y (m/ L)l (nh) ) u (nh) . (7:2)
wheren = 0,1, ... is the time index andh = —N, ..., N is the Fourier index.

A closely related time discretisation was consideredi}.[Although there is no formal proof of
existence of a semi-flow and global attractor for the modified Galerkin scheme considered here,
this can be seen to be true by considering the error béutahnd the results of Theoreml over

a finite time intervall0, 7']. This suffices to prove that the discretised evolution is well defined
and solutions stay bounded on that time interval. Iterating @vEr(q + 1)7] forall g > 0

we obtain the existence of a global semi-flow. The proof of existence of the absorbing balls of
Assumption3.1is sketched in Appendi®. This implies that the following theorem holds as a
special case of Theorem3.

Theorem 7.3 Consider the CGL equation.2. There exists a constant < oo, independent of

¢ such that .
He < ClOg <_> )
19

where R is the radius of the absorbing balb in Gevrey space for.2, and H. is defined in
Definition3.3.
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A Proof of Lemma 4.2

We first consider the time-continuous cadel). We write the analytic extension af as a vector
valued function with components, andw; (each of which is complex-valued) and its complex
argument: + iy is also written as a vector of reals. Namely

w(a +iy.t) = (wilz,y;t), wi(z, yit)) .
As a preparation for the proof, we estimate the following expression:
Rey/go(x) (@r(m, y; ) Agwy(z,y; t) + @i(:v,y;t)Axwi(x,y;t)> dx
+Re Zﬁ/gp(aj) (Er(x,y; OVyw,(z, y; t) + wi(z, y; t) Vywi(x, y; t)) dx (A1)
By using the Cauchy—Riemann equatiof¥ (u, ;| = |V, u,|), we obtain:
Rev / @(erzwr + @iAxwi> dx + Reif / @(Ervywr + Eivywi> dx
= —Rev / c,o(|Vggwr|2 + |Vzwi|2) dx — Rev / ngzJ(Eerwr + @ivxwi> dx

+Re Zﬂ/gp(@rvywr + Eivywi> dx

\V4

< —Rel//go(|vmwr|2_|_|vxwi|2) dx + |v| ?@H /go(]wr||vxwr| + |wi||wai|> dx

4181 [ o (hulI Vel + | F2ac) o

!5|2+\V\2HV<P/90H§O/ 2 >
< .
< SReos gp(\wr] + |w] )dx
=: bo/go(|wr|2 + |wi]?) dz . (A.2)

Define
py(x) = px—y), &) =&z —y),

whereyp and¢y are as in Definitiond.1-1.2. We next compute the time-derivative of the left-
hand side of4.3). The expression(.1) is the linear part of the time-derivative, hence we simply
insert the boundA.2) and compute the non-linear part:

1 1
58tsup/soy(:c)\w(x+zﬂt,t)Ide < 5supat/soy<x>lw(:c+zﬂt,t>!2d:v
Yy )

< (et t)sw [ oo+ ot 0P ds
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/ o, (2) (@ + 6t 1)

+Re sgp

« ( / () (G (= + 81, 1Tz + 868, 1) + Galz + B, Bz + ik, t))dz) ]
< Grw)sw [ ol +ist 0P do

s [ ev@lute +ist.t)

V 0z (2)

At this point, we apply the Cauchy—Schwarz inequality to each of the two integrals on the right-
hand side. Using Lemm@&a 1 we know that

sup sup sup (|G (x + 8, 1)| + |Ga(w +i6,1)]) < 2R
|8|<a t<1 zeRd

y ( O 2 (16 + it 0] + |G2(2+z’6t,t)])|w(z+iﬁt,t)\dz> da

This gives

1
s [ @)l + it 0P de < (v w)sup [ (@l + it do
Yy Y

+sup ( / goy(m)\w(x—i-iﬁt,t)\zdx) v ( / o) dz / 55(%) dz) "

1/2
X 2R (sup/gpx(zﬂw(z +if3t, t)|? dz)

1/2
< <7+b0+2R (/ %) )sup/goy(x)|w(x+iﬁt,t)|2 dx

=: bsup/goy(a:)]w(x+iﬁt,t)\2d:c,
y

where we used that by Definitiah1, [ £3/¢ < oo becausé&?, is a Schwartz function ant)/¢
a Schwartz distribution. Equatiod.@) now follows from Gronwall’s Lemma.
In the discrete case, we solve the linear differential equation gs€p (

dw(nh +1t) = (v +vA)w(nh +1)

for ¢ € [0, h) with initial conditionw(nh) + héy * (G (nh)w(nh) + Ga(nh)w(nh)), and then we
iterate forn = 0ton = [1/h]+ 1. Over one time-step, the same calculations as in the continuous
case give

sup / oz — y)lw(z +if(n+ Dh, (n -+ Dh)? da

ly|<Lm

< e sup /gp(:ﬂ —y)|w(x + iBnh,nh)|* dz

ly|<Lw
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and similarly

sup /(p(x —y)|h&n * (Gi((n + Dh)w((n + 1)h) + Ga((n + 1)h)w((n + 1)h)) |? do

ly|<Lm

< emp( [ 5—N) wp [ el =)o+ B0+ D -+ DR

P/ |yl<L=

< e“" sup /gp(x—y)|w(x+zﬂ(n+1)h, (n+1)h)|?,

ly|<Lm

hence we can iterate:

sup /gp(x—y)|w($+iﬁnh,nh)|2 de < €™ sup /gp(:z:—y)|w(x,0)|2dx.

ly|<Lm ly|<Lm

This completes the proof of Lemndia2.

B Analyticity for the Fully Discrete Scheme

The full discretisation discussed in Sectid@is similar to that introduced ir’[], where Gevrey
regularity is proved. We give here another simple and direct proof that the semi-group generated
by (2.5 maps inta7,, (C') (see AppendiX) for somex andC independent oV andL. Our proof
is in the spirit of Collet [] or Takéc et al.[25]. We assume that the solutiariz, nh) of (2.5) has
reached an absorbing ball ir*°, hence there is aR > 0 such that|u(nh)||. < R irrespective

of uy andn. We then use a contraction argument to show that for smdthr nh € [0, T, there
is a unique solution to(5) in the metric space of functions satisfyifig|| < R, where

Il = max sup | f(x+ivnh,nh)]

nhel0,T] |z|<Lm

Remark that ifl"” < h, there is nothing to prove (the solutions are entire functions anyway). The
purpose of this section is to provide bounds on the radius of analyticity which are independent
of h and N, hence we may assumeo be small.

We seek a solution to the equatiofmh) = Y (u, u) (nh) with Y defined by

V(. fo)(nh) = K(uh) x fo + S R (h(rn ) * PYF(F(GR)

wherelC is given by @.4).
It is easy to see that for smdll > 0, Y(-, fy) is a contraction:

V(f. fo) (x + iv/nh,nh) — Y(g, fo) ( + iv/nh,nh)|
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IN

Z/h\PNIC(y — 2z +i(Vnh — \/jh), h(n — j))|
< |F(f( + /iR, jh) = F(g(z +iy/jh, jh)|dz

[T'/h]

< Lip(E RIS = gll Y [ BPVE(e + i = V), b~ )] do

(hereLip(F, R) is the Lipschitz constant of in the ball of radiusk) hence by taking” small
enough (depending ohip(F, R) only) the solution to the fixed point problem exists and is
unique. Since: belongs to an absorbing ball @f°, the argument can be iterated indefinitely,
henceu is analytic for all times thereatfter.

C Uniform Bounds on Complex Analytic Functions

In this section we show that at¥ bound in a strip of the complex plane provides/zf bound
in a smaller strip.

Lemma C.1 Letp > 1. There is a constant’ = C(, d) such that any functiorf analytic in
[Im(z)| < 0 satisfies:

Fly+iz)P < Csup / @ — )| @ +iv)Pdz,

Iv|<é

forally € R?and|z| < /2.

Proof. We takey = 0 andd = 1 for simplicity. The general case is obtained by translation and
scaling. Since analytic functions are harmonic the following Mean Value Property holds (see
[16]). Let D be the unit ball centred &tin then—dimensional complex space, then

7(0) = Voll(p) /D F(o+in) dady

We apply Jensen’s inequality and use that theredisfar which

inf Cp(z) > 1

|z[<1
(see Definitionl.1), to obtain

1

FOF < G [ e+ deds
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1
< sup/ flx+ivy)|P dx
Vol(D) <1 |x\§1| ( )
C

< om0 / (@) f (i) d

D Gevrey and Bernstein Classes of Analytic Functions

We introduce here the metric spadgsC') (the Bernstein class) ar@, (C') (the Gevrey class)
and recall two properties of functions belonging to these spaces/{see [.5] for details).

Definition D.1 The Bernstein clas8,(C) is the set of all functiong having an analytic exten-
sion to the whole of? with exponential growth along the imaginary directions:

f(x+iy)| < Ce™M V(z,y) € RT x RY.
The Gevrey clasg, (C) is the set of all functiong admitting an analytic extension to a strip of
width 2« around the real axes and which are uniformly bounded in this strip:

[f(z+iy)| < C,V(z,y) € R! x [~a,a]’.
The first result states that any functiondp(C') can be written as a sum of entire functions:

Proposition D.2 Let f € G,(C'). Then there exists @ depending or”’ only such that
f(Z) _ Z 6fo¢|n|€in-z]z'n(z) 7
nezZd

with £, € By(C").

The second result is a classical sampling formula (sper[[ 15] where itis called the Cartwright
formula).

Proposition D.3 For all f € B,(C), the following identity holds:

f(z) = Z f(2o(n) Fo(z — z(n)) ,
where

nmw sin(3c0x) sin(ox
To(n) = — Fo(x) = ( 30)2x2( )
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