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Abstract

This paper extends the numerical results of Hunter and Vanden-Broek (1983) and Vanden-
Broek (1991) which were concerned with studies of solitary waves on the surface of fluids of
finite depth under the action of gravity and surface tension. The aim of this paper is to answer
the question of whether small-amplitude elevation solitary waves exist. Several analytical results
have proved that bifurcating from Froude number F = 1, for Bond number τ between 0 and 1/3,
there are families ‘generalised’ solitary waves with periodic tails whose minimum amplitude is an
exponentially small function of F − 1. An open problem (which, for τ sufficiently close to 1/3,
was recently proved by S.-M. Sun to be false) is whether this amplitude can ever be zero, which
would give a truly localised solitary wave.

The problem is first addressed in terms of model equations taking the form of generalised
5th-order KdV equations, where it is demonstrated that if such a zero-tail amplitude solution
occurs, it does so along codimension-one lines in the parameter plane. Moreover, along solution
paths of generalised solitary waves a topological distinction is found between cases where the tail
does vanish and those where it does not. This motivates a new set of numerical results for the
full problem, formulated using a boundary integral method, namely to probe the size of the tail
amplitude as τ varies for fixed F > 1. The strong conclusion from the numerical results is that
true solitary waves of elevation do not exist for the steady gravity-capillary waver wave problem
at least for 9/50 < τ < 1/3.

1 Introduction

The description of wave propagation under the combined effects of gravity and surface tension on the
surface of a liquid above a horizontal bottom is a classical problem in applied mathematics with a
long history (Korteweg & de Vries 1895, Wilton 1915). In the last twenty years or so there have been
a number of advances to the understanding of this problem, using a variety of numerical, asymptotic
and rigorous analytical methods (see the review Dias & Kharif (1999)). We focus exclusively on
two–dimensional steady waves. For solitary waves, the problem can be characterised by the Froude
number F and the Bond number τ defined by

τ = T/ρgH2, F = c/
√

gH, (1.1)

Here, g is the acceleration due to gravity, T is the coefficient of surface tension, ρ is the density of the
fluid, H is its depth and c is the propagation speed of the wave.
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When τ > 1/3, given values of F < 1 in an appropriate range, it is known that there are iso-
lated solitary waves of depression (with a negative central crest) both via existence theory (Amick &
Kirchgassner 1989, Iooss & Kirchgassner 1992, Buffoni, Groves & Toland 1996) and numerical compu-
tation (Hunter & Vanden-Broek 1983, Dias, Menasce & J.M. 1996). On the other hand for τ < 1/3,
for fixed values of F > 1, the solutions become waves of elevation and are no-longer isolated, but
form one-parameter families. Moreover, these solutions are not in general true solitary waves, but
are characterised by a train of ripples of constant amplitude in the far field (Beale 1991). They are
called generalised solitary waves, to distinguish them from true solitary waves which are characterised
by a flat free surface in the far field. The ripples in the tail are of questionable physical validity
because they occur on both sides and therefore do not satisfy radiation conditions without the supply
of energy from infinity. Therefore an important question is whether the free parameter can be chosen
so that the amplitude of the ripples vanishes. One of the key known features of these ripples, is that
the amplitude is an exponentially small function of F − 1, as has been shown both by exponential
asymptotics (Sun & Shen 1993) and by rigorous application of center manifold and normal form theory
(Lombardi 2000). Lombardi’s analysis (see also the discussion in §3 below) also suggests that for fixed
τ < 1/3, it is non-generic that zero-tail-amplitude solutions bifurcate from F = 1. What is not known
is whether there are isolated τ values less than 1/3 at which such true solitary waves bifurcate. This
question has been rigorously answered in the negative for τ sufficiently close to 1/3 by Sun (1999).
The aim of this paper is to numerically probe the question of whether true solitary waves bifurcate,
for general τ < 1/3.

The numerical method we use is to approximate solitary waves by long periodic waves and solving
the full nonlinear equations for water waves by a boundary integral method. Hunter & Vanden-Broek
(1983) were the first to compute generalised solitary waves in this way. Later, in Vanden-Broek (1991),
it was shown for a fixed τ -value, that the amplitude of the ripples computed can be minimised so
that they are are invisible on the scale of the waves. Here we present extended calculations to explore
whether or not this minimum amplitude is really zero. In order to do this we shall appeal to intuition
gained from first studying an extended 5th-order Korteweg–de Vries model (5thKdV) equation.

The results are presented as follows. In §2 we recall briefly a formulation of the classical water wave
problem we study and how it has been approximated by various KdV-type model equations. Section
3 then presents a series of numerical experiments on two different forms of an extended 5thKdV
equations. The parameter dependence of generalized solitary waves is uncovered both in a case where
the tails do vanish and when they do not. Section 4 then introduces the numerical method to be used
for the full problem and, taking insight from the results in §3, presents a set numerical experiments
specifically designed to probe the minimum size of the tail amplitude of the generalized solitary waves.
Finally, §5 draws conclusions.

2 Formulation

We consider a train of periodic waves of wavelength L travelling at a constant velocity C at the surface
of a two-dimensional fluid of finite depth H. The fluid is assumed to be inviscid and incompressible,
and the flow to be irrotational. In particular we define a velocity potential φ and stream function
ψ and choose φ = 0 at a crest and ψ = 0 on the free surface. Gravity g and surface tension T are
both taken into account. The velocity C is defined as the average horizontal fluid velocity at any
horizontal level completely within the fluid. The depth H is defined by H = Q/C where Q is the
value of |ψ| on the bottom. Solitary waves are defined by taking the limit L/H → ∞. Numerically
they will be approximated by periodic waves with large L/H (typically ∼ 100). We shall henceforth
non-dimensionalise by setting H = C = 1 and introducing the dimensionless Froude number F and
Bond number τ defined in (1.1). We shall also introduce co-ordinates so that x is horizontal and y is
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measured vertically upwards from the horizontal bottom.
This problem can be formulated in terms of potential flow with nonlinear dynamic and kinematic

boundary conditions on the free surface (e.g. Stoker (1957)). It can also be reformulated as a system
of integro–differential equations for the x and y co-ordinates of a material point on the fluid surface
as a function of the complex potential function f = φ + iψ where ψ = 0 defines the free surface. We
restrict out attention to waves which are symmetric with respect to φ = 0. Using a Cauchy integral
formula we obatain (Vanden-Broek & Schwartz 1979, Hunter & Vanden-Broek 1983, Vanden-Broek
1991)

x′(φ) − 1 = − 1

L

∫ L/2

0

y′(s)
(

cot
π(s − φ)

L
+ cot

π(s + φ)

L

)
ds

+
2r0

L

∫ L/2

0

[x′(s) − 1]{r2
0 − cos[(2π/L)(s − φ)] − y′(s) sin[(2π/L)(s − φ)]

1 + r4
0 − 2r2

0 cos[(2π/L)(s − φ)]
ds

+
2r0

L

∫ L/2

0

[x′(s) − 1]{r2
0 − cos[(2π/L)(s + φ)] − y′(s) sin[(2π/L)(s + φ)]

1 + r4
0 − 2r2

0 cos[(2π/L)(s + φ)]
ds, (2.1)

F 2

2

(
1

x′(φ)2 + y′(φ)2
− 1

)
+ y + τ

x′(φ)y′′(φ) − x′′(φ)y′(φ)

[x′(φ)2 + y′(φ)2]3/2
= 0, (2.2)

where F is the Froude number and
r0 = e

−2π
L .

This latter formulation will be adopted below since it is more convenient for numerics as mesh points
are only required to be stationed on the free surface rather than throughout the fluid domain.

In the limit F → 1, the waves are of small amplitude. Therefore solutions may be described by
weakly nonlinear theories. To derive them, we move to a steady frame and denote the equation for
the free surface as y = H + Aη. Here A is a parameter measuring the amplitude of the wave. For
small A, η(x) satisfies the KdV equation

2(F − 1)η′ − 3ηη′ + (τ − 1

3
)η′′′ = 0, (2.3)

(see Korteweg & de Vries (1895) for a derivation). This equation has This equation has periodic
travelling solutions (cnoidal waves) which tend in the limit of long wave length to the famous solitary
wave solution described by the function sech2. This describes a depression wave for τ > 1/3, F < 1
and an elevation wave for τ < 1/3, F > 1.

When τ = 1/3, the dispersive term in (2.3) vanishes and hence there are no periodic or solitary
wave solutions. As τ → 1/3, the appropriate long-wave equation is the 5th-order KdV equation
(5thKdV) also known as the Kawahara equation

2(F − 1)η′ − 3ηη′ + (τ − 1

3
)η′′′ − 1

45
η(5), (2.4)

which may be derived by a regular asymptotic expansion near τ = 1/3, F = 1 (Hunter & Vanden-
Broek 1983, Sect.2). There are other derivations of this equation, with different co-efficients, in
several other physical contexts, e.g. (Kakutani & Ono 1969, Hasimoto 1970, Kawahara 1972, Zufiria
1987, Hunter & Scheurle 1988, Karpman 1994). The properties of its solutions are discussed in §3
which follows. Also, equations have been derived with extra nonlinear terms, see Kichenassamy &
Olver (1996) and references therein. It is precisely such a model that we study in the §3. The values of
the parameters we take there are not necessarily ones in which the 5thKdV is a good approximation
of the full water-wave problem. Instead, we merely treat the model as a guide of what to expect
qualitatively when studying the full model numerically.
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3 Solitary waves of 5th-order KdV equations

In Champneys & Groves (1997) the following extended 5KdV model for the free surface u(x) of the
capillary gravity water-wave problem was considered:

ut +
2

15
uxxxx − buxxx + 3uux + µ [uxuxx + uuxxx] = 0 (3.1)

It reduces to the fourth-order ODE

(2/15)u′′′′ − bu′′ + au + (3/2)u2 + µ
[
(uu′)′ − (1/2)(u′)2

]
= 0 (3.2)

upon moving to a steady frame moving at speed a and integrating once choosing the integration
constant to be zero in order to describe solitary waves. This model may be derived using Hamiltonian
perturbation theory from the full water wave problem (Craig & Groves 1994), and is a special case of
the more general form studied by Kichenassamy & Olver (1996). The parameters a and b are related
to the Froude and Bond numbers via

a

2
=

1

F
− 1, b =

τ − 1/3

F 2
.

Hence as τ → 1/3 and F → 1 the parameters a and b play the rôles of the difference of Froude and
Bond numbers respectively from the critical codimension-two point. Specifically we have the following
scalings

a ∼ −2(F − 1), b ∼ τ − 1

3
for F ∼ 1, τ ∼ 1

3
.

Finally, µ is an artificial parameter that represents the relative importance of various nonlinear terms
in the long-wave expansion. Only its sign is important, since nonzero µ can be rescaled to unity; here
we study only µ = 0 or 1. The case µ = 0 gives (a scaling of) the usual 5thKdV equation (2.4). An
overview of parameter space may be found in Champneys & Groves (1997). Two parameter regions
are of interest: a > 0 and a < 0 and we discuss these below for both µ = 0 and µ = 1.

Essentially with a > 0, solitary wave solutions are all waves of depression, which tend to envelope
solitary waves in the limit of small amplitude as b is decreased to −√

8a/15. In fact there are also

infinitely many multi-troughed ‘bound state’ versions of these solutions for −√
8a/15 < b <

√
8a/15

some of which are stable as a solution of the evolutionary problem – see (Buffoni, Champneys & Toland
1996, Buffoni & Séré 1996, Yang & Akylas 1997, Buryak & Champneys 1997, Dias & Kuznetsov
1999, Calvo & Akylas 2000, Bridges & Derks 1999) for recent rigorous, asymptotic and numerical
results. In another limit, a → 0+ for b > 0 a unique solitary wave solution bifurcates at zero
amplitude, in so doing tending to the soliton solution of the usual 3rd-order KdV equation, which can
be recovered in this limit after rescaling. Many of these results for a > 0 extend to the case µ > 0
and can also be shown to have rigorous implications via spatial centre-manifold reduction, for the
existence of qualitatively similar solutions for the full water wave problem

The existence of solitary wave solutions for a < 0 is much more subtle and forms the subject of
this paper. Essentially, the limit a → 0− for b < 0 also captures the usual 3rd-order KdV equation
after rescaling (as did the limit a → 0+, b > 0). The perturbation that the 5thKdV adds to the
soliton solution of the KdV equation (which is a wave of elevation in this case) is a rapid oscillatory
term. This then is a beyond-all-orders asymptotics problem and has been studied by many authors,
e.g. (Pomeau, Ramani & Grammaticos 1988, Amick & Toland 1992, Grimshaw & Joshi 1995, Sun
1998). Recent rigorous theory by Lombardi (2000) for a class of systems including (3.2) is the most
comprehensive. He shows that generically in the limit of a → 0 there do not exist true solitary
waves of elevation, but there are one-parameter families of generalized solitary waves, which represent
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Figure 1: Contrasting the results of curvature versus Bond number for the generalized solitary waves
of the 5thKdV model (3.2) with a = −0.675 and (a) µ = 0 and (b) µ = 1. Solid lines correspond
to there being a local maximum at the central crest of the wave, and dot-dashed lines to a local
minimum. Note that the zero-curvature solutions in (b) correspond to true elevation solitary waves.

homoclinic connections between periodic orbits, the minimum amplitude of which is an exponentially
small function of a as a → 0. For (3.2) with µ = 0, it is known that there are no true solitary waves
as a → 0 (Amick & McLeod 1991), that is the tail-amplitude never vanishes. Also, the family of
generalised solitary waves (for fixed a and b) traces a ’u-shaped’ locus in a plot of amplitude-of-tail
vs. phase shift between tails (Grimshaw & Joshi 1995). This diagram has a slight asymmetry as was
first spotted numerically (Champneys & Lord 1997) and confirmed analytically (Sun 1998), see also
Fig. 1(a).

The case µ = 1 is very different, since there is an explicit true solitary wave solution that exists
along the line

a =
3

5
(2b + 1)(b − 2), b ≥ −1/2, u(x) = 3

(
b +

1

2

)
sech2

(√
3(2b + 1)

4
x

)
. (3.3)

Numerically, Champneys & Groves (1997) found this to be the first among a countable number of
branches that bifurcate from a = 0− for smaller values of b < 0. In Champneys (2000) many other
fourth-order model systems are studied, and it is found that there are many other cases when such
‘persistence’ of true solitary wave solutions from the singular limit occur. Note that this is not in
contradiction with Lombardi’s proof of generic non-persistence, since the solitary waves occur only
along lines in a parameter plane. In fact, a simple dimensionality argument counting dimensions of
stable and unstable manifolds of the fourth-order ODE (3.2) shows that, if solitary waves solutions
occur, then they should be of codimension one in parameter space, provided that their profiles are
even (non-symmetric waves are of codimension two).

The purpose of the new results presented in this section is to see how the persistence or non-
persistence of true solitary waves affects the global structure of the generalised solitary wave solutions
to the 5thKdV equation. Later on, we then adapt this insight to draw conclusions based on our
numerical findings for the full water-wave problem. Some results for fixed a = −0.675 are presented
in Figs. 1 – 4. Before discussing the results, let us briefly mention the method by which they were
obtained, which, in order for a closer analogy to be drawn with results for the full water-wave problem,
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Figure 2: Details of Fig. 1; (a) for µ = 0; and (b) for µ = 1. The point numbers refer to the solutions
shown in Figs. 3 and 4. The inset on (b) shows that the left most n-shaped curve is bounded away
from zero curvature.

is rather simpler than that used in our earlier work (Champneys & Lord 1997) (nevertheless, almost
identical results have been obtained using the method used in that work). The generalised solitary
waves are approximated by a periodic orbit of a fixed long period −L/2 < x < L/2 (L = 43.2 for the
results presented), where periodicity in this time-reversible system is guaranteed by taking boundary
conditions u′(−L/2) = u′′′(−L/2) = u′(L/2) = u′′′(L/2) = 0. For each fixed a and b parameter
value, this then fixes the phase-shift between the tails. We then perform numerical continuation on
this periodic boundary-value problem (using auto Doedel et al. (1997)) for fixed a, allowing b to
vary. This is motivated by the fact that computation into the singular limit a → 0 is undesirable
and the observation from the model equations in Champneys (2000) that curves of true solitary wave
solutions bifurcate from a = 0 at a non-zero angle. Now, this one-parameter sweep is therefore just
a slice through a three-parameter surface parametrised by phase shift (effectively L) and the model
parameters a and b. Hence it would seem possible that we might miss curves in the (a, b)-plane
corresponding to true solitary waves. However, if a true solitary wave is found then by definition the
phase shift between the zero solution at x = −∞ and x = +∞ is not defined, and hence computing
with any fixed phase shift will find (a good numerical approximation to) this homoclinic solution.
Indeed, this is precisely what we found by performing calculations with different L-values. Finally, we
simplify the problem by looking only for symmetric solutions (with the first two boundary conditions
replaced by u′(0) = u′′′(0) = 0) and as a measure of the amplitude of the tail we take the curvature of
the right-hand boundary point u′′(L/2). Using curvature in this way has the advantage of that it is a
signed quantity, which will become apparent to be helpful for qualitative interpretation of the results.

Let us now compare the results presented for µ = 0 and µ = 1. Consider first µ = 0; Figs. 1(a),
2(a) and 3. Here the generalized solitary waves lie on a succession of disconnected, alternating ‘u’ and
‘n-shaped’ curves. At the local minimum or maximum of each curve is the minimum-tail amplitude
solution. Note that taking this sweep in b is similar to taking a sweep in L for fixed b and a because,
since the period of the tail depends on b, then both b and L effectively control the phase-shift between
the two tails. The structure of solutions on each u or n is qualitatively similar, with the large curvature
limit of all branches representing a large amplitude, pure periodic wave.

The situation for µ = 1 is qualitatively different, see Figs. 1(b), 2(b) and 4. Here, in addition to
u’s and n’s there are also ‘s-shaped’ curves where the tail amplitude goes through zero. Two such zero
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Figure 3: Structure of the solutions on three branches shown in Fig. 2(a) (µ = 0). Only the right-hand
portion of the wave from its point of symmetry is depicted, and the horizontal scale has been devided
by a factor L/2 = 21.6. Note that the central core is at a minimum for solutions at labels 1, 4 and 7
as indicated by the dashed portion of the curves in Fig. 2.

tail-amplitude points are detected in Fig. 1(b) — the first of these is at precisely the value b = −0.25
given by the formula (3.3); the neighbourhood of the second one is blown up in Fig. 2(b) and occurs
at a value of b ≈ −0.7307924. This then shows how true solitary wave solutions are embedded into loci
of generalised solitary waves. That is, there is a topological difference between the cases where true
solitary waves occur and those where they do not. Namely, true solitary waves lie on s-shaped curves
This is significant, since rather than have to carefully check the size of something that is exponentially
small in a, we have produced a numerical criterion for deciding whether true solitary waves exist which
relies on computing O(1) quantities.

Note that any attempt to continue the zero curvature solutions on the s–shaped curves in Fig. 1(b)
from µ = 1 to µ = 0 fails, since the b-value of the true solitary waves tends to minus infinity as µ → 0.

4 Numerical results for the exact water wave problem

Our numerical procedure for solving (2.1), (2.2) follows closely the boundary integral method used
by Hunter & Vanden-Broek (1983) and Vanden-Broek (1991), to which the reader is referred for the
details. We approximate (generalised) solitary waves by long, even, periodic waves of wavelength
L. This approximation enables us to overcome difficulties associated with the appropriate choice of
boundary conditions in the far field. As L → ∞, the periodic waves approach generalised solitary
waves (for a numerical study of this limit, see Vanden-Broek (1997)). The solutions are characterized
by four parameters. The first three parameters are L (or equivalently r0), τ and F . In Vanden-Broek
(1991), the fourth parameter was defined as the velocity of the crest. This is a measure of the wave
amplitude, in the sense that when this parameter is close to one, the wave is of small amplitude. In
this work we find it more convenient to choose this additional free parameter to be the curvature at
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Figure 4: Structure of the solutions on three branches shown in Figure 2(b) (µ = 1), plotted on the
same horizongal scale. Insets in the middle three panels show the detail of the tail of the wave at the
three points close to zero end curvature. Only point 5a is a true solitary wave.

the trough of the wave, as this is a measure of the amplitude of the ripples in the tail. Moreover, as
illustrated for the 5thKdV models in the previous section, the curvature is a signed quantity which
can be used to extract the topological information of whether solutions lie on purely u and n-shaped
curves, or whether they are interspersed with s-shaped ones. Practically this curvature is measured
using a second-difference formula at the right-hand end point of the free surface.

The system (2.1), (2.2) is discretized by following the procedure described in Hunter & Vanden-
Broek (1983) and Vanden-Broek (1991), with the resulting set of nonlinear algebraic equations solved
by Newton’s method. Error tolerances were typically set at 10−7. The accuracy of solutions was found
to be highly dependent on the number of mesh points N used. Solution loci of tail curvature versus
τ were computed using simple natural parameter continuation in either τ or the curvature.

Figure 5 presents some results for fixed F and L with N = 269. Three successive branches of
solutions are plotted as tail curvature vs. τ . The insets show the free surface profiles. Note the
striking similarity between the structure of solutions found on the u and n-shaped curves here and
those for the 5th-order KdV results in Figures 1–4. Each solution locus connects two end-points
corresponding to pure-periodic waves with opposite phases at the central point. In between these
large-amplitude extremes is a portion of the locus where the waves have small tail amplitude.

Figures 6 and 7 motivate the choice of F and L taken in these computations. Changing L (keeping
τ and F fixed) results in a periodic sequence of identical u and n-shaped curves which correspond
to longer and longer approximations to the same family of generalised solitary waves. Decreasing
the Froude number further towards the critical value F = 1 (keeping τ and L fixed) again creates
sequences of u’s and n’s but they become increasingly square, that is the tail amplitude becomes
negligible for large portions of the solution locus, separated by almost vertical walls of rapid growth
in tail amplitude at almost constant F . For F < 1.01, for the τ -value chosen, the size of the tail
amplitude was found to be commensurate with error tolerances used in Newton’s method and the

8



-0.08

0

0.06

0 10 20 30 40 50

-0.06

0

0.06

0 10 20 30 40 50

-0.08

0

0.06

0 10 20 30 40 50

-0.02

0

0.04

0 10 20 30 40 50
-0.01

0

0.04

0 10 20 30 40 50
-0.02

0

0.04

0 10 20 30 40 50

-0.06

0

0.06

0 10 20 30 40 50
-0.01

0

0.04

0 10 20 30 40 50

-0.08

0

0.06

0 10 20 30 40 50

-0.06

0

0.06

0 10 20 30 40 50

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.226 0.228 0.23 0.232 0.234 0.236 0.238τ

cu
rv

at
ur

e
y

Figure 5: Illustrating the global structure of solution branches for a consecutive sequence of three
branches for F = 1.02, L = 98.33 and 0.226 < τ < 0.238, computed with N = 269. The insets depict
for the upper branch the detailed profiles of the free surface, illustrating the transitions that take
place as the u-shaped curve is traversed. Solutions at three points on the left-hand n-shaped curve
are also presented.
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for fixed Bond and Froude numbers τ = 0.239462 and F = 1.02. (b) compares the solutions at
approximately the minimum of curvature for the two successive positive branches. Note that the two
solutions are overlaid at the scale depicted.
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Figure 7: Illustrating the dependence on the Froude number F for fixed L = 98.33, τ = 0.239462.
Only the small-curvature parts of the branches are depicted. Note that the minimum curvatures on
branches for F < 1.01 are smaller than the numerical accuracy.

vertical walls become hard to detect numerically. The rest of the computations presented use the
fixed values L = 98.33 and F = 1.02.

Figure 8 presents results on the convergence of solutions with variation of the number of mesh points
N . They compare results for three different values of τ . Panels (a) and (b) illustrate that increasing the
number of mesh points from those used for the results in Figure 5 makes little quantitative difference,
suggesting that the mesh has effectively converged. Taking a smaller mesh, even as drastically as
halving the number of mesh points, makes a difference in the third decimal for τ , but (crucially) only
in the fourth or fifth decimal place for the minimum value of the end-curvature. Note also that the
agreement becomes better as τ increases (see panels (c) and (d)). So while taking a mesh of N = 269
is desirable for accurately reproducing solutions at a given τ -value, it seems that N = 135 is sufficient
for unfolding the global topology of the solution set. This latter value is also more practical since the
typical time taken for Newton’s method to converge to one solution point is the order of 500 seconds
(on a SUN SPARC 10), compared with about 5000 seconds for N = 269.

Finally then, Figure 9 presents the results of a global sweep of τ < 1/3. For the given Froude
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τ .
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number, computation for τ < 0.18 = 9/50 was impractical, since the size of the minimum tail
amplitude became comparable with the error tolerance in Newton’s method. In the figures, we have
only depicted the results of continuation of the low-curvature end of the depicted branches. Where
branches end ‘in mid air’ this does not represent the end-point of the branch but where computation
was stopped because the magnitude of the curvature was becoming much larger than its minimum
value along the branch. Observe from the results that for the entire range of τ -values we have tested,
there is no s-shaped curve. We simply get a regular sequence of u’s and n’s like the case of the
5th-order KdV equation with µ = 0. This then is strong numerical evidence that there is in fact no
codimension-one lines in the (F, τ)-plane bifurcating from F = 1 for 9/50 < τ < 1/3 at which true
elevation solitary waves (with zero tail amplitude) occur.

5 Conclusion

There do not exist elevation solitary waves. This is not a proof, but the evidence would appear
compelling. At first sight, this conclusion would appear to contradict the results in (Vanden-Broek
1991) which identified generalised solitary waves for which the amplitude of the ripples appear to be
zero within graphical accuracy. A closer examination shows that there is no contradiction, since a
blow-up of the far field solution in Figure 2(c) of (Vanden-Broek 1991) reveals oscillation on a scale
∼ 10−6. Note that those results were for fixed τ = 0.24 and, most significantly given the results
presented here, a very small F -value of 1.000358. The results presented here suggest that a more
reliable numerical test of whether the tail amplitude is ever zero is to vary τ for fixed F and L and
to asses the topological structure of the ensuing branches of solutions generalised solitary waves. We
have found that the answer is then negative, at least for the τ -values for which the minimum tail
amplitude is bigger than numerical precision at the fixed Froude number we chose.

It should be noted that for air-water (for which T ≈ 73 and g ≈ 9.81 in cms/gramms/seconds
units) τ = 0.24 corresponds to H ≈ 6mm. For such depths, viscosity is not irrelevant (Benjamin 1982)
and a factor of 10−6 in an inviscid model appears insignificant. For smaller values of τ (larger H)
the effect of viscosity is less significant, but as we have shown, the minimum tail amplitude decreases
for fixed F . Hence, realistically, whether the tail amplitude actually vanishes in the inviscid model
does not seem to be physically of particular relevance to everyday flows. Nevertheless, this question
has proved to be a historically important one in the theory of gravity-capillary water waves, and we
believe our results are the first categorical piece of evidence that true solitary waves of elevation do
not exist.

Acknowledgements

The authors would like to thank Mark Groves (University of Loughborough) for his key insights at
the early stages of this work. The work of ARC is supported by the UK EPSRC which whom he holds
an Advanced Fellowship.

References

Amick, C. J. & Kirchgassner, K. (1989), ‘A theory of solitary water-waves in the presence of surface tension’,
Arch. Rational Mech. Anal.

Amick, C. J. & McLeod, J. B. (1991), ‘A singular perturbation problem in water-waves’, Stability and Applied
Analysis of Continuous Media 1, 127–148.

12



-0.04

-0.02

0

0.02

0.04

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

-0.001

-0.0005

0

0.0005

0.001

0.18 0.185 0.19 0.195 0.2 0.205 0.21

τ

τ

(a)

(b)

cu
rv

at
ur

e
cu

rv
at

ur
e

Figure 9: (a) A global sweep for 0.18 < τ < 1/3 of the small curvature end of the succession of u and
n-shaped curves for F = 1.02 and L = 98.33, computed with N = 135. Note that no s-shaped curves
are found and consequently, (as illustrated by the zoom in panel (b)) the minimum tail amplitude is
bounded away from zero.

13



Amick, C. J. & Toland, J. F. (1992), ‘Global uniqueness of homoclinic orbits for a class of 4th order equations’,
Z. Angew. Math. Phys. 43, 591–597.

Beale, T. J. (1991), ‘Solitary water waves with capillary ripples at infinity’, Commun. Pure Appl. Math.
64, 211–257.

Benjamin, T. (1982), ‘The solitary wave with surface tension’, Quart. Appl. Math 40, 231–234.

Bridges, T. & Derks, G. (1999), ‘Linear stability of solitary wave solutions of the kawahara equation and its
generalizations’. Preprint, Dept. of Maths. and Stats., Univ. of Surrey, Guildford.
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