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1 Background

Partial differential equations of parabolic type arise frequently in modelling fluid and continuum me-
chanics as well as in mathematical biology. Their description as infinite-dimensional dynamical sys-
tem has been a very active field of research in recent years. This approach has improved the theoretical
understanding of these models and provided many useful tools for computational and experimental
purposes. The purpose of the grant was to examine the long-time behaviour of parabolic partial
differential equations (PDEs) and their numerical approximation both with and without stochastic
forcing. We considered these equations posed on large or unbounded domainsΩ. Taking a large (or
unbounded) domain is equivalent to looking at the small (or zero) viscosity limit. From a modelling
view it may be though of looking at the case where there are no boundary effects.

Recently these has been much activity in studying models that include stochastic terms. A number
of authors have considered noise which is smooth in space and white noise in time, for example
[1, 19, 16] consider the 2D Navier-Stokes equation and obtain regularity results with smooth forcing
and [2] considers Gevrey regularity of attractors for stochastic reaction-diffusion equations. There has
been less work on the numerical analysis of the approximation of these stochastic PDEs (SPDEs).

As specific examples we took a parabolic PDE with a Ginzburg–Landau type nonlinearity and the
Kuramoto–Sivashinsky (KS) equation. The complex Ginzburg–Landau (CGL) equation arises in a
number of different areas in mathematical physics: it describes phase transitions in superconductivity
and the evolution of the amplitude of perturbations to steady states at the onset of instability in a
number of areas in fluid dynamics. The KS equation arises as another amplitude modulation equation,
however this is fourth order in space.

We examined the long time behaviour of these systems and considered the global attractorA(Ω).
In particular we were interested in measuring the complexity ofA(Ω) as a set in a function space.
One possible measure of this is the (box counting) dimensiond (see [21]). However, it has been
shown thatd scales with the domain size [8] and estimation of this number requires a large number
of high-precision computations. A seemingly more accessible quantity, called theε–entropy has been
described in [5, 4, 6, 3]. Drawing on ideas from information theory [10], the (Kolmogorov)ε–entropy
is defined as

Hε = lim
`→∞

logN (ε, `)
2`

, (1.1)

whereN (ε, `) is the minimum number of balls of radiusε in the topology ofL∞([−`, `]) that are
needed to cover the attractorA = A(∞). The idea ofε–entropy is to describe the local complexity
(in space) by introducing a localised metric onA(Ω). It also only requires computing the solutions
of Eq.(2.1) to a low accuracy (the parameterε). Moreover, the resulting number is (asymptotically)
independent of the size of the domainΩ.

In [5], Collet and Eckmann consider the CGL equation posed on an infinite domain (L = ∞). They
show that the limit Eq.(1.1) exists and is bounded from above and below byO(log(1/ε)). This
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suggests that

dup = lim sup
ε→0

Hε

log(1/ε)
(1.2)

should be positive and finite. The numberdup can be interpreted as a spatial density of dimension
(see[5, 4]). To obtain these results the Gevrey regularity of the solutions is exploited.

For the deterministic case work on this grant represents the first work investigatingε–entropy for a
numerical scheme, obtaining upper and lower bounds [14]. We have also made the first attempts at
estimating this quantity numerically for PDEs [12].

For the stochastically forced case the work in [18] has the first result of existence of an invariant
measure on an unbounded domain, this is for the non-trivial dynamics of the complex Ginzburg–
Landau equation. This work also introduces and obtains bounds on the entropy and dimensions for
the stochastically forced case. In [13] strong approximations of SPDEs is considered and it is shown
that solutions of a new scheme are in a discrete Gevrey space. This is exploited to improve a strong
error estimate.

Dr J. Rougemont (now at Luminy Marseille) was employed on the grant.

Related to the stochastics area on this grant Lord, Lythe and Shardlow have obtained EPSRC funding
for a workshopSDEs and SPDEs : Numerical methods and applicationsGR/R91106/01.

2 Key Advances and Supporting Methodology

2.1 Deterministic case

In [14] we consider semi-discrete and fully discrete approximations of nonlinear parabolic equations
of the form

∂tu = ν∆u+ γu+ F (u) , x ∈ [−Lπ,Lπ]d , t ≥ 0 , (2.1)

for a complex valued functionu = u(x, t) and bounded continuous initial conditionu(x, 0) = u0(x).
We define (see (1.1),(1.2)) the spatial density ofε-entropy, topological entropy and dimension for the
attractors and show that these quantities are bounded. Since we are interested in the large volume
limit L∞ is the natural topology to work in. There are a number of technical issues to consider. In the
definitions of our norms we need to weight the norms appropriately to be able to obtain bounds that
are independent of the domain size. Our approach is different to the approach of [17] in that we never
explicitly work in Fourier space. We note also that the norms used in [17] grow with the domain size
(due to the embedding constant), a problem we avoid here by using a suitable cutoff.

Key to obtaining bounds is a classical sampling formula (see [7] or [10] where it is called the Cartwright
formula) which relies on the solutions to the PDEs being in a Gevrey class of regularity. Gevrey reg-
ularity for solutions of numerical schemes has only been considered by a few authors [15, 20]. Here
we modified the approach of [20] and examined semi-discrete and fully discrete approximations of
(2.1). In terms of the Fourier coefficients the fully discrete scheme is given by

uNm
(
(n+ 1)h

)
= ehλmuNm(nh) +

(∫ h

0
e(h−s)λm ds

)
PNT F

(
T −1uN (nh)

)
m

(2.2)
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whereλm are the eigenvalues of the linear operator,T is the Fourier transform andPN is a projection
like operator onto a finite number of modes (not a true projection to get bounds independent of the
domain in the limit). We were then able to prove novel results on the Gevrey regularity of solutions
for the scheme and upper and lower bounds for the dimension of the attractor valid in the limit as the
domain size tends to infinity.

In [12] we report on numerical experiments with theε-entropy for the complex Ginzburg–Landau
equation and the Kuramoto–Sivashinsky equation. These are non-trivial computations as a rough
order of magnitude calculation shows that using

N (ε, `) ≈ eC` log(1/ε) ,

assumingC = 1, ` = 20, andε = 1/2, gives an estimate ofN ≈ 107, that is approximately107 balls
of radius1/2. There were a number of issues to consider. Firstly we needed to compute a good sample
of the global attractor for both the CGL and KS equation, for which we found that computing many
different trajectories gave better results, then to increase the sample size we exploited the spatial
periodicity. Secondly we needed to compute a cover in an efficient manner, for this we essentially
implemented the box assisted sorting algorithm of [9]. These numerical results for the deterministic
equation illustrate the practical limitation due to memory size in the estimation of theε-entropy. The
results indicate that resolvingε–entropy is at the limit of computational power at present.

Main publications on deterministic case:
[14] G. J. LORD AND J. ROUGEMONT, Topological andε-entropy for large volume limits of discretised
parabolic equations, SIAM J. Num. Anal., (2002).

[12] , Numerical computation of theε–entropy for parabolic equations, In Preperation, Department of
Mathematics, Heriot-Watt, 2002.

2.2 Stochastic Forcing

We considered the stochastic PDEs of the following type

∂tu(t) = ∆u(t) + F
(
u(t)

)
+QẆ (t) . (2.3)

The corresponding integral equation is given by

u(t) = et∆u(0) +
∫ t

0
e(t−s)∆F

(
u(s)

)
s. +

∫ t

0
e(t−s)∆QW. (s) , (2.4)

where the stochastic integral is taken in Itô’s sense.

The paper [18] considers a randomly forced Ginzburg-Landau equation on an unbounded domain.
The forcing is smooth and homogeneous in space and white noise in time. Dr Rougemont proved ex-
istence and smoothness of solutions, existence of an invariant measure for the corresponding Markov
process and defined the spatial densities of topological entropy, of measure-theoretic entropy, and of
upper box-counting dimension and proved inequalities relating these different quantities. The proof
of existence of an invariant measure uses the compact embedding of some space of uniformly smooth
functions into the space of locally square-integrable functions and a priori bounds on the semi-flow
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in these spaces. The bounds on the entropy follow from spatially localised estimates on the rate of
divergence of nearby orbits and on the smoothing effect of the evolution.

In [13] we considered strong approximations to parabolic stochastic PDEs of the form (2.3). We
proposed a scheme closely related to the scheme [20] which is more accurate and less stiff than
traditional algorithms. For that we exploited the assumption that the noise lies in a Gevrey space of
analytic functions. We show that our numerical scheme has solutions in a discrete equivalent of this
space. As far as we are aware this is the only Gevrey regularity result for the numerical approximation
of a SPDE. Finally in the paper we present numerical results for a SPDE with a Ginzburg-Landau
nonlinearity and compare to the standard implicit Euler-Maruyama scheme.

Key publications on stochastic case:
[18] J. ROUGEMONT, Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau
equations, Commun. Math. Phys., (2002).

[13] G. J. LORD AND J. ROUGEMONT,A numerical scheme for stochastic pdes with Gevrey regularity, tech.
rep., Department of Mathematics, Heriot-Watt, 2002. Submitted.

3 Project Plan Review

We only made minor changes to the original plan. On the suggestion of one of the referees of the orig-
inal grant proposal we considered general systems of PDEs rather than develop the analysis directly
for Ginzburg–Landau nonlinearity.

The numerical results we obtained in [12] indicated that theε-entropy is on the limit of being estimated
for deterministic systems. Given this we decided to examine convergence and regularity of numerical
solutions of SPDEs with smooth forcing, in particular as the Gevrey regularity was key to proving
results on the deterministic case.

Since the first part of project [14] was technically challenging there was no time to investigate aspects
of the Lyapunov spectrum or invariant measures for the numerical schemes as originally proposed.

4 Research Impact and Benefits to Society

This work has been presented to audiences from a mix of scientific backgrounds (see Dissemination
activities). There have been expressions of interest in the work from co-workers and others concerned
with the modeling of physical phenomena, in particular using spatially smooth noise. From industry
L. Wright from NPL has expressed an interest in our results and how these might be used in some
modelling.

Some of the basic stochastic differential equations material has been used in teaching at Heriot-Watt
with graduate students from BAE systems.

5 Explanation of Expenditure

A laptop and desktop machine were purchased with the equipment money. The laptop has been used
to present numerical results at meetings. We were particularly keen to obtain a machine with large
memory to perform the computations onε-entropy.
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Dr Lord attended an EPSRC sponsored workshop at the University of Bristol on “Numerical Methods
for Nonlinear Dynamics and Bifurcations” and presented as part of this software to compute solutions
of stochastic PDEs with forcing Gevrey smooth in space and white noise in time.

6 Further Research or Dissemination Activities

Further dissemination will take place at future meetings such as the EPSRC supported workshop on
SDEs and SPDEs : Numerical methods and applicationsGR/R91106/01 for which Dr Lord is PI,
with G. Lythe and T. Shardlow as co-investigators.

Further research is planned in this area, in particular in the modelling of neural behaviour and it is
proposed to investigate the effect of Gevrey noise on traveling waves and spiral waves in the Baer-
Rinzel [11] and the FitzHugh-Nagumo models respectively. Discussion is also in progress to look at
a model of cubic autocatalysis on an infinite strip.

Both Dr Rougemont and Dr Lord have been invited to speak on the work carried out under the grant
at a number of institutions.

Dr Jacques Rougemont:has spoken at the University of Geneva, University of Durham

Dr Gabriel Lord:has spoken at Edinburgh University, University of Leeds, University of Bath and
the CWI (Centrum voor Wiskunde en Informatica). He has presented work at the Dundee Numerical
analysis conference and Numerical Methods for Nonlinear Dynamics & Bifurcations at the University
of Bristol (July 02).

In addition, Dr G Lord has been invited to present at
• Nonlinear Stochastic Systems and Their Numerics : Oberwolfach (July 02)
• Workshop on Stochastic Computations: Foundations of Computational Mathematics at the IMA
Minnesota (Aug 02)
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