
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Computational and Applied Mathematics 235 (2011) 1245–1260

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

The exponential integrator scheme for stochastic partial differential
equations: Pathwise error bounds✩

P.E. Kloeden a, G.J. Lord b, A. Neuenkirch c,∗, T. Shardlow d

a Institut für Mathematik, Goethe-Universität Frankfurt, D-60325 Frankfurt a.M., Germany
b Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK
c Fakultät für Mathematik, TU Dortmund, D-44227 Dortmund, Germany
d School of Mathematics, University of Manchester, Manchester M13 9PL, UK

a r t i c l e i n f o

Article history:
Received 6 March 2009
Received in revised form 18 May 2010

MSC:
60H15
65M12
65M15
65M60

Keywords:
Numerical solution of stochastic PDEs
Galerkin method
Stochastic exponential integrator
Pathwise convergence

a b s t r a c t

We present an error analysis for the pathwise approximation of a general semilinear
stochastic evolution equation in d dimensions.We discretise in space by a Galerkinmethod
and in time by using a stochastic exponential integrator. We show that for spatially regular
(smooth) noise the number of nodes needed for the noise can be reduced and that the rate
of convergence degrades as the regularity of the noise reduces (and the noise becomes
rougher).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider the pathwise numerical approximation of the stochastic evolution equation
du(t) = [−Au(t) + F(u(t))]dt + dW (t), t ≥ 0, (1)
u(0) = u0,

on the Hilbert space H = L2([a, b]d). Here, −A is the generator of an analytic semigroup (e−At , t ≥ 0) on H, u(0) ∈ D(A),
W = (W (t), t ≥ 0) is a Q -Wiener process on (Ω, A, P) with values in H and the mapping F : H → H is nonlinear; precise
assumptions are given in Section 2.1. Finally, we assume that A and the covariance operator Q of the Wiener process have
the same eigenfunctions φn, i.e.

Aφn = αnφn, Qφn = λnφn, n ∈ Nd,

where αn, λn ≥ 0 and φn, n ∈ Nd, is an orthonormal basis of H . In particular, we have the representation

W (t) =

−
n∈Nd

λ1/2
n βn(t) · φn, t ≥ 0,

with independent scalar Brownian motions βn, n ∈ Nd.
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Typical examples for equations of the above type are the stochastic cable equation

du(t) = [1u(t) − u(t)]dt + dW (t)

and the stochastic Allen–Cahn equation

du(t) = [ν1u(t) + u(t) − u(t)3]dt + dW (t)

with periodic boundary conditions, where ∆ denotes the Laplace operator and ν > 0 is a parameter. However, our
assumptions cover also the case where A is a fractional power of the Laplacian. This paper builds on the error analysis
for the exponential integrator method, introduced in [1,2] for Eq. (1) with A being the one-dimensional Laplacian. In [1] an
H1 error bound for smooth Gevrey noise, i.e. with exponential spatial correlation, was derived, and an L2 and Hm error
analysis for a post-processing variant of the exponential integrator scheme is given in [2], in the case of an arbitrary
driving infinite dimensional Wiener process W . Here, we extend these results in the following way. We consider a general
differential operator A in d dimensions instead of the one-dimensional Laplacian and we derive pathwise error bounds
for this exponential integrator scheme. To do this we first derive error bounds in the p-th mean for all p ≥ 1. Then by a
Borel–Cantelli type of argument, which has been used in a similar way e.g. in [3–5], we obtain the pathwise convergence
rates.

Up to the preparation of this article pathwise approximation of SPDEs with an infinite dimensional Wiener process has been
considered so far mainly for stochastic parabolic PDEs withmultiplicative space–timewhite noise, i.e. for equations with one space
dimension; see e.g. [6–8]. In this article the pathwise convergence rates of several finite difference schemes are determined.

However, very recently, research on the pathwise approximation of SPDEs has intensified. Simultaneously with the preparation
of this article, pathwise convergence rates for an approximation scheme for Eq. (1), which uses linear functionals of the driving
noise, were derived in [9,10] under weaker assumptions on the nonlinearity F .Moreover, pathwise approximation of SPDEs with
coloured additive and multiplicative noise has also been considered in e.g. [11,12].

2. The numerical scheme

We now describe our numerical scheme for the approximation of (1). For this, recall that φn are the eigenvectors of A, so
Aφn = αnφn, n ∈ Nd, and moreover that the driving Wiener process is given by

W (t) =

−
n∈Nd

λ1/2
n βn(t) · φn. (2)

So, consider the mild solution of Eq. (1), i.e.

u(t) = e−Atu(0) +

∫ t

0
e−A(t−s)F(u(s))ds +

∫ t

0
e−A(t−s)dW (s). (3)

(Existence, uniqueness and further properties of the mild solution are established in Theorem 4.) Expanding the solution with
respect to the orthonormal basis φn, n ∈ Nd, i.e. writing u(t) =

∑
n∈Nd un(t) · φn, we obtain the infinite system of coupled

equations

un(t) = e−tαnun(0) +

∫ t

0
e−(t−s)αnFn(u(s))ds +

∫ t

0
e−(t−s)αnλ1/2

n dβn(s). (4)

Here Fn(u) denotes the n-th coefficient of F(u), that is we have F(u) =
∑

n∈Nd Fn(u) · φn.
Now let 1t > 0 denote the time step and N the size of the Galerkin truncation. Consider the discretisation of (1) at times

tk = k1t given by

un(tk+1) = e−1tαn
un(tk) + 1tFn(u(tk)) + λ1/2

n 1Bk,n

, (5)un(0) = un(0),

where |n| ≤ N and 1Bk,n = βn(tk+1) − βn(tk). The time continuous version of this scheme is given by

un(t) = e−tαnun(0) +

∫ t

0
e−(t−⌊s⌋1t )αnFn(u(⌊s⌋1t))ds +

∫ t

0
e−(t−⌊s⌋1t )αnλ1/2

n dβn(s). (6)

Here we use the notation ⌊s⌋1t = maxk∈N{tk : tk ≤ s}. We study a version of the post-processing method introduced in [2]:

un(tk+1) = e−1tαn
un(tk) + 1tFn(u(tk)) + 1{|n|≤Nw}λ

1/2
n 1Bk,n


, (7)un(0) = un(0),

where |n| ≤ N . The constant Nw describes the number of modes used to approximate the Wiener process W . If the noise is
smooth, then fewer modes for the approximation of the noise than for the approximation of the nonlinearity can be used;
see Corollary 3.4 in [2].



Author's personal copy

P.E. Kloeden et al. / Journal of Computational and Applied Mathematics 235 (2011) 1245–1260 1247

For the numerical analysis we use the following interpolant ofun(tk) in time:

un(t) = e−tαnun(0) +

∫ t

0
e−(t−⌊s⌋1t )αnFn(u(⌊s⌋1t))ds + 1{|n|≤Nw}

∫ t

0
e−(t−⌊s⌋1t )αnλ1/2

n dβn(s). (8)

So, finally our approximation of u(t) is given byu(t) =
∑

|n|≤Nun(t) · φn for t ≥ 0. Note thatu(t) depends on N , the size of
the Galerkin truncation, on Nw , the number of the modes for the approximation of the noiseW , and on the step size 1t .

2.1. Error bounds in the p-th mean

Wemake the following assumptions on the nonlinearity F and on the operators A and Q :

Assumption 1. Let F ∈ C2(H;H), i.e. the mapping F : H → H is twice continuously Fréchet differentiable, and there exist
constants K0, K1, K2 > 0 such that

‖F(u)‖H ≤ K0(1 + ‖u‖H) (9)

and

‖dF(u)‖L(H;H) ≤ K1, (10)

‖d2F(u)‖L(H×H;H) ≤ K2. (11)

for all u ∈ H .

Note that the above assumption implies that F satisfies a global Lipschitz condition. Moreover, we have the following
assumption on the eigenvalues of the covariance operator Q , which is by definition self-adjoint and positive.

Assumption 2. There exist γ ≥ 0 and constants C1, C2 > 0 such that

C1 · |n|−γ
≤ λn ≤ C2 · |n|−γ

for n ∈ Nd.

Note that for γ > dwe have the so called trace class noise and Q = id is included in the case γ = 0. For the eigenvalues
of the operator Awe assume that they are strictly positive and have a polynomial growth.

Assumption 3. The operator A : H → H is self-adjoint and positive. Moreover, αn > 0 for n ∈ Nd, αm ≤ αn for |m| ≤ |n|
and there exist κ > 0 and constants C3, C4 > 0 such that

C3 · |n|κ ≤ αn ≤ C4 · |n|κ

for n ∈ Nd.

Thus −A generates in particular an analytical semigroup (e−At , t ≥ 0) on H; see [13].
Under the above assumptions, we have the following theorem, which in particular describes the smoothness of the

solution in terms of the parameters γ and κ . Its proof is given in the Appendix.

Theorem 4. Let Assumptions 1–3 hold, u(0) ∈ D(A) and let γ + κ > d and T > 0. Then Eq. (1) has a unique mild solution
(u(t), t ∈ [0, T ]), which satisfies

sup
t∈[0,T ]

E‖u(t)‖p
H < ∞ (12)

for all p ≥ 1.
Moreover, let θ∗

:=
γ+κ−d

2κ . Then we have u(t, ω) ∈ D(Aθ ), t ∈ [0, T ], for all θ < min{1, θ∗
} and almost all ω ∈ Ω . Finally,

for all p ≥ 1 and all θ < min{1, θ∗
} we have

sup
t∈[0,T ]

E‖Aθu(t)‖p
H < ∞ (13)

and there exist constants Kp,T ,θ > 0 such that
E‖u(t) − u(s)‖p

H

1/p
≤ Kp,T ,θ · |t − s|θ (14)

for all s, t ∈ [0, T ] and all θ < min{1/2, θ∗
}.

Our main result for the convergence rates in the p-th mean is as follows:
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Theorem 5. Let Assumptions 1–3 hold and let γ + κ > d and u0 ∈ D(A). Then for all ε > 0, T > 0 and p ≥ 1 there exists a
constant Kε,T ,p > 0 such that

sup
t∈[0,T ]


E‖u(t) −u(t)‖p

H

1/p
≤ Kε,T ,p ·


1tmin{1,θ∗

}−ε
+ N−κ

+ N−κθ∗

w


.

Proof. This is given in Section 4. �

To balance the error contributions of the different parts, we have to consider two cases: (i) θ∗
≥ 1. Here it is optimal to

choose

Nw = ⌈cw · N1/θ∗

⌉

with cw > 0, so we can use fewer modes to approximate the noise. Furthermore, balancing the 1t-terms gives

1t = c1t · N−κ

with c1t > 0. So, foruwith such a choice of 1t,N,Nw we have

sup
t∈[0,T ]


E‖u(t) −u(t)‖p

H

1/p
≤ Kε,T ,p · N−κ+ε.

(ii) θ∗ < 1. Here we cannot save modes for the noise and have to choose

Nw = ⌈cw · N⌉

with cw > 0. Balancing the 1t-terms gives again

1t = c1t · N−κ

with c1t > 0. So, here we obtain

sup
t∈[0,T ]


E‖u(t) −u(t)‖p

H

1/p
≤ Kε,T ,p · N−κθ∗

+ε.

Summarising, we have

sup
t∈[0,T ]


E‖u(t) −u(t)‖p

H

1/p
≤ Kε,T ,p · N−κ min{1,θ∗

}+ε (15)

with

Nw = ⌈cw · Nmin{1,1/θ∗
}
⌉, 1t = c1t · N−κ . (16)

In the case where −A is the one-dimensional Laplacian these error bounds coincide (up to the arbitrarily small ε > 0)
with the results of Corollary 3.4 in [2].

2.2. Pathwise convergence rates

For the pathwise convergence rates, we need the following lemma, which is a straightforward consequence of the
Borel–Cantelli lemma; see e.g. [4].

Lemma 1. Let α > 0 and Cp ∈ [0, ∞) for p ≥ 1. In addition, let Zn, n ∈ N, be a sequence of real-valued random variables such
that

(E|Zn|p)1/p ≤ Cp · n−α

for all p ≥ 1 and all n ∈ N. Then for all ε > 0 there exists a random variable ηε such that

|Zn| ≤ ηε · n−α+ε P-a.s.

for all n ∈ N. Moreover, E|ηε|
p < ∞ for all p ≥ 1.

Applying this lemma we get the following result:

Corollary 1. Let Assumptions 1–3 hold and let γ + κ > d and u0 ∈ D(A). Moreover let N,Nw and 1t satisfy (16). Then for all
T > 0 and ε > 0, there exists a random variable ηε,T > 0 such that

‖u(T , ω) −u(T , ω)‖H ≤ ηε,T (ω) · N−κmin{1,θ∗
}+ε

for almost all ω ∈ Ω .
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Fig. 1. Plot of two sample true solutions with 256× 256 modes at time T = 2; (a) γ = 4 and (b) γ = 3. Note that the solution in (a) is smoother than the
solution in (b) as the regularity of the noise decreases.

Since ‖h‖2
H =


[a,b]d h(x)

2dx another application of the Borel–Cantelli lemma yields:

Corollary 2. Let the same assumptions as in the previous corollary hold and assume additionally that γ +κ > d+2 and κ > 1.
Then we have

u(T , x, ω)
N→∞
−→ u(T , x, ω)

for almost all ω ∈ Ω and almost all x ∈ [a, b]d.

So, in the case of the d-dimensional Laplacian, i.e. κ = 2 and trace class noise, i.e. γ > d, the exponential integrator
scheme converges for almost all ω ∈ Ω and almost all x ∈ [a, b]d.

3. A numerical illustration

Consider the Allen–Cahn equation in two dimensions

du(t) = [ν1u(t) + u(t) − u(t)3]dt + dW (t)

with periodic boundary conditions on [0, 2π ] × [0, 2π ]. Here we have the dimensional Laplacian operator, so κ = 2 in
Assumption 3. We take noise that is white in time and vary the spatial regularity through the parameter γ in Assumption 2.
With these values we see that θ∗

= γ /4 and we have a critical value of γ = 4. We integrate using (7) to a final time
T = 2 with a time step of 1t = 0.005. For our numerical calculations, we take the diffusion coefficient ν = 0.004. To
test the numerics, ‘‘true’’ solutions were computed using 256 × 256 modes and two sample ‘‘true’’ solutions at T = 2 are
plotted in Fig. 1. These solutions are computed with the same path and it is only the regularity of the noise that varies,
in (a) γ = 4 and (b) γ = 3, and visually this is reflected in the regularity of the solution. In Fig. 2 we show that our
results agree with the theoretical results and for γ = 4 we see convergence like N−2 (numerically we observe in the
figure −2.05) both for a single realisation and for the mean over 100 realisations. For γ = 3 we have convergence like
the predicted N−3/2 (numerically we observe in the figure −1.53) again for a single realisation and for the mean over 100
realisations.

4. Proof of the convergence result

We prove Theorem 5 by estimating

sup
t∈[0,τ ]


E‖u(t) −u(t)‖p

H

1/p
, τ ∈ [0, T ],

for p ≥ 2 and applying Gronwall’s lemma. (Note that the estimates for 1 ≤ p < 2 follow by Hölder’s inequality.)

4.1. Preliminaries

We first recall some basic facts of stochastic integrationwith respect to aQ -Wiener process. Let (Ω, A, F , P) be a filtered
probability space and let W = (W (t), t ∈ [0, T ]) be a Q -Wiener process on this space with respect to the filtration
F = (Ft , t ∈ [0, T ]). Denote by L02 := HS(Q 1/2(H),H) the space of Hilbert–Schmidt operators from Q 1/2(H) to H and
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Fig. 2. Convergence in space for (a) γ = 4 and (b) γ = 3. The plot is a log log plot of the error on [0, 2], i.e. of maxt∈[0,2] ‖u(t, ω) −uN (t, ω)‖H for the

single realisation and of maxt∈[0,2]


1

100

∑100
i=1 ‖u(t, ωi) −uN (t, ωi)‖

2
H

1/2
for the mean over 100 realisations, as the system size N is changed. Results are

plotted for a single realisation and for the mean over 100 realisations. In (a) we see the predicted rate of N−2 and in (b) N−3/2 .

by ‖ · ‖L02
the corresponding norm given by

‖C‖
2
L02

= Tr(C∗QC) :=

−
n∈Nd

⟨C∗QCϕn, ϕn⟩,

whereϕn, n ∈ Nd, is an arbitrary orthonormal basis ofH .Moreover denote by L2F := L2F ([0, T ]; L02) the space of all predictable
stochastic processes X = (X(t), t ∈ [0, T ]) with values in L02 such that

‖X‖L2F
:=

∫ T

0
E‖X(t)‖2

L02
dt
1/2

< ∞.

Then for X ∈ L2F the stochastic integral∫ T

0
X(t)dW (t)

is well defined as an element of H and we have the following Itô isometry:

E
∫ T

0
X(t)dW (t)

2
H

=

∫ T

0
E‖X(t)‖2

L02
dt. (17)

(A process X with values in L02 is called predictable if X : [0, T ] × Ω → L02 is a PT − B(L02) measurable mapping, where PT
is the σ -field generated by the sets (s, t] × F , with s, t ∈ [0, T ], F ∈ Fs and {0} × F with F ∈ F0.)

The Itô integral satisfies the following stability property (see e.g. Proposition 4.15 in [14]): Let G : D(G) → H be a closed
operator, where D(G) is a Borel subset of H and let moreover X ∈ L2F be such that P(X(t) ∈ D(G) for all t ∈ [0, T ]) = 1 and
GX ∈ L2F . Then, we have

P
∫ T

0
X(s)dW (s) ∈ D(G)


= 1

and

G
∫ T

0
X(s)dW (s) =

∫ T

0
GX(s)dW (s) P-a.s.

Moreover, one has the following version of the Burkholder–Davis–Gundy inequality (see e.g. Lemma 7.2 in [14]): For any
r ≥ 1 and any X ∈ L2F there exist constants Cr > 0 such that

E
∫ T

0
X(s)dW (s)

2r ≤ CrE
∫ T

0
‖X(s)‖2

L02
ds
r

. (18)
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Weneed the following version of the stochastic Fubini theorem (see e.g. Theorem 4.18 in [14]): Let Y : [0, T ]×Ω×[0, T ] →

L02 be a PT × B([0, T ]) − B(L02)-measurable mapping such that∫ T

0


E
∫ T

0
‖Y (t, s)‖2

L02
dt
1/2

ds < ∞.

Then we have P-a.s.∫ T

0

∫ T

0
Y (t, s)dW (t)ds =

∫ T

0

∫ T

0
Y (t, s)dsdW (t). (19)

We also require the following properties of the operator A and the semigroup e−At ; see e.g. Theorem6.13 in Chapter 2 in [13].

Lemma 2. For arbitrary δ1 ≥ 0, 0 ≤ δ2 ≤ 1 there exist constants C5, C6 > 0 such that we have

‖Aδ1e−At
‖L(H;H) ≤ C5t−δ1 (20)

and

‖A−δ2(id − e−At)‖L(H;H) ≤ C6tδ2 (21)

for any t ∈ (0, T ].

We denote by PN : H → H the orthogonal projection of H to the subspace generated by {φn : |n| ≤ N}, i.e.

PNu =

−
|n|≤N

cn · φn

for u =
∑

n∈Nd cn · φn ∈ H . Clearly, we have

‖PNu‖2
H =

−
|n|≤N

|cn|2

and
‖(id − PN)u‖2

H =

−
|n|>N

|cn|2,

for u =
∑

n∈Nd cn · φn, which we use several times in the following. We also have

‖(id − PN)e−At
‖L(H;H) ≤ e−min{αn:|n|=N}t (22)

for t ∈ [0, T ].
Finally, we require the following estimate, which can be obtained by straightforward calculations. Let δ > d. Then, there

exist constants C7, C8 > 0, which depend only on d and δ, such that

C7 · N−δ+d
≤

−
|n|>N

|n|−δ
≤ C8 · N−δ+d. (23)

After these preparations, we can now start with the error analysis. To estimate terms, we use a generic constant C which
varies between instances but is independent of1t,N,Nw and t ∈ [0, T ]. Moreover, we write ‖ ·‖ instead of ‖ ·‖H , ‖ ·‖L(H;H)

respectively ‖ · ‖L02
, if no misunderstanding is possible.

4.2. The initial value

For the error of the approximation of the initial value we have
INITIAL = sup

t∈[0,τ ]

‖e−At(u(0) −u(0))‖.
Since

sup
t∈[0,τ ]

‖e−At(u(0) −u(0))‖2
= sup

t∈[0,τ ]

−
|n|>N

e−2αnt |un(0)|2 =

−
|n|>N

|un(0)|2

and u(0) ∈ D(A) it follows that

INITIAL =

−
|n|>N

|un(0)|2
1/2

≤
1
α∗

N

−
|n|>N

|αnun(0)|2
1/2

≤
1
α∗

N
‖Au(0)‖,

where α∗

N = min{αn : |n| = N}. So, we obtain

INITIAL ≤ C · N−κ (24)
by Assumption 3.
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4.3. The noise terms

For estimating the noise terms recall that

W (t) =

−
n∈Nd

λ1/2
n βn(t) · φn.

(i) Consider first the noise with modes |n| ≤ Nw . We have

NOISE1 = sup
t∈[0,τ ]


E

 −
|n|≤Nw

λ1/2
n

∫ t

0


e−(t−s)αn − e−(t−⌊s⌋1t )αn


dβn(s)


· φn


p1/p

.

Since −
|n|≤Nw

λ1/2
n

∫ t

0


e−(t−s)αn − e−(t−⌊s⌋1t )αn


dβn(s)


· φn =

∫ t

0
ϕ(t, s)dW (s)

with

ϕ(t, s) =

−
|n|≤Nw


e−(t−s)αn − e−(t−⌊s⌋1t )αn


· φn,

an application of the Burkholder–Davis–Gundy inequality (18) yields

NOISE1 ≤ C sup
t∈[0,τ ]

[∫ t

0
‖ϕ(t, s)‖2

L02
ds
]1/2

.

However,

‖ϕ(t, s)‖2
L02

=

−
|n|≤Nw

λn

e−(t−s)αn − e−(t−⌊s⌋1t )αn

2
and thus

NOISE1 ≤ C sup
t∈[0,τ ]

∫ t

0

−
|n|≤Nw

λn

e−(t−s)αn − e−(t−⌊s⌋1t )αn

2
ds

1/2

.

Since for every θ ∈ [0, 1] we have

|e−x
− e−y

| ≤ |x − y|θ , x, y ≥ 0,

we obtain∫ t

0


e−(t−s)αn − e−(t−⌊s⌋1t )αn

2
ds ≤

∫ t

0
e−2(t−s)αn


1 − e−(s−⌊s⌋1t )αn

2
ds

≤ 1t2θα2θ
n

∫ t

0
e−2(t−s)αnds ≤ C1t2θα2θ−1

n

for θ ∈ (0, 1). Hence we have

NOISE1 ≤ C1tθ
 −

|n|≤Nw

λnα
2θ−1
n

1/2

≤ C1tθ
 −

|n|≤Nw

|n|−γ−κ+2θκ

1/2

,

since

0 ≤ λnα
2θ−1
n ≤ C · |n|−γ−κ+2θκ

by Assumptions 2 and 3. Recall that θ∗
=

γ+κ−d
2κ . So, for θ < θ∗ we have −γ − κ + 2θκ < −d and thus−

n∈Nd

|n|−γ−κ+2θκ < ∞.

Hence we have obtained

NOISE1 ≤ C · 1tθ (25)

for θ < min{1, θ∗
}.
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(ii) Now consider the noise with modes |n| > Nw , i.e.

NOISE2 = sup
t∈[0,τ ]


E

 −
|n|>Nw

∫ t

0
λ1/2
n e−(t−s)αndβn(s) · φn


p1/p

= sup
t∈[0,τ ]

[
E
(id − PNw )

∫ t

0
e−A(t−s)dW (s)

p]1/p .

Using the stability of the Itô integral and the Burkholder–Davis–Gundy inequality (see Section 4.1), we have

NOISE2 ≤ sup
t∈[0,τ ]

C

 −
|n|>Nw

λn

∫ t

0
e−2(t−s)αnds

1/2

≤ C

 −
|n|>Nw

λn

αn

1/2

.

Assumptions 2 and 3 and the estimate (23) now give

NOISE2 ≤ C · N (−γ−κ+d)/2
w . (26)

4.4. Nonlinear terms: modes |n| > N

Consider now the nonlinear terms of F not contributing tou: Using Jensen’s inequality, estimate (22) and Assumption 1
we have

TAIL = sup
t∈[0,τ ]


E

−
|n|>N

∫ t

0
e−(t−s)αnFn(u(s))ds · φn


p1/p

= sup
t∈[0,τ ]

[
E
∫ t

0
(id − PN)e−A(t−s)F(u(s))ds

p]1/p
≤ sup

t∈[0,τ ]

∫ t

0


E
(id − PN)e−A(t−s)F(u(s))

p1/p ds
≤ C sup

t∈[0,τ ]

∫ t

0
e−(t−s)α∗

N [E(1 + ‖u(s)‖)p]1/pds,

where α∗

N = min{αn : |n| = N}. Since
sup

s∈[0,T ]

E(1 + ‖u(s)‖)p < ∞

by Theorem 4, we have

sup
t∈[0,τ ]

∫ t

0
e−(t−s)α∗

N [E(1 + ‖u(s)‖)p]1/pds ≤ C
1
α∗

N

and thus we obtain by Assumption 3 that

TAIL ≤ C · N−κ . (27)

4.5. Nonlinear terms: modes |n| ≤ N

We have

sup
t∈[0,τ ]


E

−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


e−αn(⌊s⌋1t−s)Fn(u(s)) − Fn(u(⌊s⌋1t))


ds · φn


p1/p

≤ C · (NL1 + NL2 + NL3),

where

NL1 = sup
t∈[0,τ ]


E

−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


Fn(u(s)) − Fn(u(⌊s⌋1t))


ds · φn


p1/p

,

NL2 = sup
t∈[0,τ ]


E

−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


Fn(u(⌊s⌋1t)) − Fn(u(⌊s⌋1t))


ds · φn


p1/p

,

NL3 = sup
t∈[0,τ ]


E

−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


e−αn(⌊s⌋1t−s)

− 1

Fn(u(s))ds · φn


p1/p

.
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(i) The first term. Note that−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


Fn(u(s)) − Fn(u(⌊s⌋1t))


ds · φn = PN

[∫ t

0
e−A(t−⌊s⌋1t )


F(u(s)) − F(u(⌊s⌋1t))


ds
]

.

Since F is twice Fréchet differentiable we can write

F(u(s)) − F(u(⌊s⌋1t)) = dF(u(⌊s⌋1t))(u(s) − u(⌊s⌋1t)) + rs
where

rs =
1
2
d2F


ξu(⌊s⌋1t) + (1 − ξ)u(s)


(u(s) − u(⌊s⌋1t), u(s) − u(⌊s⌋1t))

for some ξ ∈ (0, 1). Since d2F is bounded by Assumption 1, we have

‖rs‖ ≤ C‖u(s) − u(⌊s⌋1t)‖
2.

Moreover, we have

u(s) − u(⌊s⌋1t) = δi
s + δd

s + δw
s

with

δi
s = (e−A(s−⌊s⌋1t ) − id)u(⌊s⌋1t),

δd
s =

∫ s

⌊s⌋1t

e−A(s−τ)F(u(τ ))dτ ,

δw
s =

∫ s

⌊s⌋1t

e−A(s−τ)dW (τ ),

so we can write

F(u(s)) − F(u(⌊s⌋1t)) = dF(u(⌊s⌋1t))δ
i
s + dF(u(⌊s⌋1t))δ

d
s + dF(u(⌊s⌋1t))δ

w
s + rs.

Thus, we have
E

−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


Fn(u(s)) − Fn(u(⌊s⌋1t))


ds · φn


p1/p

=

[
E
PN

∫ t

0
e−A(t−⌊s⌋1t )


F(u(s)) − F(u(⌊s⌋1t))


ds
p]1/p

≤ C
[
E
∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

i
sds
p]1/p + C

[
E
∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

d
s ds
p]1/p

+ C
[
E
∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

w
s ds

p]1/p + C
[
E
∫ t

0
e−A(t−⌊s⌋1t )rsds

p]1/p .

For the first term note that P

u(⌊s⌋1t) ∈ D(Aθ ) for all s ∈ [0, T ]


= 1 by Theorem 4 and thus P-a.s.

‖(e−A(s−⌊s⌋1t ) − id)u(⌊s⌋1t)‖ ≤ ‖A−θ (e−A(s−⌊s⌋1t ) − id)Aθu(⌊s⌋1t)‖,

since Aθ and the semigroup e−At commute. Now, Lemma 2 gives P-a.s.

‖A−θ (e−A(s−⌊s⌋1t ) − id)Aθu(⌊s⌋1t)‖ ≤ C |s − ⌊s⌋1t |
θ
‖Aθu(⌊s⌋1t)‖.

So we obtain by the assumptions on the nonlinearity F and the boundedness of the semigroup generated by −A that P-a.s.∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

i
sds
 ≤ C1tθ

∫ t

0
‖e−A(t−⌊s⌋1t )‖ ‖Aθu(⌊s⌋1t)‖ds

≤ C1tθ
∫ t

0
‖Aθu(⌊s⌋1t)‖ds

for t ∈ [0, T ]. An application of Hölder’s inequality and Theorem 4 yields that

sup
t∈[0,τ ]

[
E
∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

i
sds
p]1/p ≤ C · 1tθ (28)

for all θ < min{1, θ∗
}.
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Now to the second term. Here we have by the assumptions on the nonlinearity F and the boundedness of the semigroup
generated by −A that

‖δd
s ‖ ≤ C

∫ s

⌊s⌋1t

(1 + ‖u(τ )‖)dτ .

So we obtain∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

d
s ds
 ≤ C

∫ t

0

∫
⌊s⌋1t+1t

⌊s⌋1t

(1 + ‖u(τ )‖)dτds

and it again follows by Theorem 4 and an application of Hölder’s inequality that

sup
t∈[0,τ ]

[
E
∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

d
s ds
p]1/p ≤ C · 1t. (29)

The third term: Since

δw
s =

∫ s

⌊s⌋1t

e−A(s−τ)dW (τ )

we have∫ t

0


e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))

 ∫ s

⌊s⌋1t

e−A(s−τ)dW (τ )ds

=

∫ t

0

∫ s

⌊s⌋1t

e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)dW (τ )ds

=

∫ T

0

∫ T

0
1[⌊s⌋1t ,s](τ )1[0,t](s)e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e

−A(s−τ)dW (τ )ds

using the stability of the Itô integral; see Section 4.1. By the stochastic Fubini theorem (see again Section 4.1), it follows that
P-a.s. ∫ T

0

∫ T

0
1[⌊s⌋1t ,s](τ )1[0,t](s)e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e

−A(s−τ)dW (τ )ds

=

∫ T

0

∫ T

0
1[τ ,⌈τ⌉1t ](s)1[0,t](τ )e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e

−A(s−τ)ds dW (τ )

=

∫ t

0

[∫
⌈τ⌉1t

τ

e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)ds

]
dW (τ ),

where ⌈τ⌉1t = mink∈N{tk : tk ≥ τ }. Since

e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)φn = e−αn(t−⌊s⌋1t )(dF)n(u(⌊s⌋1t))e

−αn(s−τ)φn,

where (dF)n denotes the n-th coefficient of dF , we have

‖e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)

‖
2
L02

=

−
n∈Nd

λne−2αn(t−⌊s⌋1t+s−τ)
|(dF)n(u(⌊s⌋1t))|

2

≤

−
n∈Nd

λne−2αn(t−τ)
|(dF)n(u(⌊s⌋1t))|

2

and thus

‖e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)

‖
2
L02

≤ C
−
n∈Nd

λne−2αn(t−τ)

by the assumptions on F . Hence it follows that∫ ⌈τ⌉1t

τ

e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)ds

2
L02

≤ C1t2
−
n∈Nd

λne−2αn(t−τ).

Thus, we obtain by the Burkholder–Davis–Gundy inequality (18) that

sup
t∈[0,τ ]


E
∫ t

0

∫
⌈τ⌉1t

τ

e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))e
−A(s−τ)dsdW (τ )

p
1/p

≤ C1t

−
n∈Nd

λn

αn

1/2

.
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Since γ + κ > d we have
∑

n∈Nd
λn
αn

< ∞ and hence

sup
t∈[0,τ ]

[
E
∫ t

0
e−A(t−⌊s⌋1t )dF(u(⌊s⌋1t))δ

w
s ds

p]1/p ≤ C · 1t. (30)

Finally, for the remainder term rs we obtain by straightforward estimations and Theorem 4 that

sup
t∈[0,τ ]

[
E
∫ t

0
e−A(t−⌊s⌋1t )rsds

p]1/p ≤ C · 1tθ + C · 1t (31)

for all θ < 1. Thus combining the estimates (28)–(31) yields

NL1 ≤ C · 1tθ (32)

for all θ < min{1, θ∗
}.

(ii) The second term. Here we have

NL2 = sup
t∈[0,τ ]


E


∫ t

0

−
|n|≤N

e−αn(t−⌊s⌋1t )

Fn(u(⌊s⌋1t)) − Fn(u(⌊s⌋1t))


ds · φn


p1/p

.

Again, we can write

NL2 = sup
t∈[0,τ ]

[
E
PN

∫ t

0
e−A(t−⌊s⌋1t )


F(u(⌊s⌋1t)) − F(u(⌊s⌋1t))


ds
p]1/p .

So we obtain by Jensen’s inequality, the Lipschitz continuity of F and the boundedness of e−At that

NL2 ≤ C
∫ τ

0
sup
t∈[0,s]


E‖u(t) −u(t)‖p1/p ds. (33)

(iii) The third nonlinear term.

NL3 = sup
t∈[0,τ ]


E

−
|n|≤N

∫ t

0
e−αn(t−⌊s⌋1t )


eαn(s−⌊s⌋1t ) − 1


Fn(u(s))ds · φn


p1/p

.

Rewriting this expression using the projection operator and applying Jensen’s inequality we have

NL3 = sup
t∈[0,τ ]

[
E
PN

∫ t

0
e−A(t−⌊s⌋1t )


eA(s−⌊s⌋1t ) − id


F(u(s))ds

p]1/p
≤ sup

t∈[0,τ ]

∫ t

0


E
e−A(t−s) id − e−A(s−⌊s⌋1t )


F(u(s))

p1/p ds
≤ sup

t∈[0,τ ]

∫ t

0


E
Aθe−A(t−s)A−θ


id − e−A(s−⌊s⌋1t )


F(u(s))

p1/p ds
≤ sup

t∈[0,τ ]

∫ t

0
‖Aθe−A(t−s)

‖
A−θ


id − e−A(s−⌊s⌋1t )

 E‖F(u(s))‖p1/p ds.
Now Theorem 4 and Lemma 2 give

NL3 ≤ C1tθ sup
t∈[0,τ ]

∫ t

0
(t − s)−θ


E‖F(u(s))‖p1/p ds

for all θ < 1. So using Assumption 1 and Theorem 4 we have

NL3 ≤ C · 1tθ (34)

for all θ < 1.
(iv) Now, combining (32)–(34), we have

NL ≤ C
∫ τ

0
sup
t∈[0,s]


E ‖u(t) −u(t)‖p1/p ds + C · 1tθ (35)

for all θ < min{1, θ∗
}.
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4.6. Conclusion

Combining the estimates (24)–(27) and (35) we have achieved the following inequality:

sup
s∈[0,τ ]


E‖u(s) −u(s)‖p1/p

≤ C
∫ τ

0
sup
t∈[0,s]


E‖u(t) −u(t)‖p1/p ds + C · N−κ

+ C · N (−γ−κ+d)/2
w + C · 1tθ

for all θ < min{1, θ∗
}. Gronwall’s lemma provides now the assertion of Theorem 5.
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Appendix. Proof of Theorem 4

We first show the following lemma:

Lemma 3. Let κ + γ > d, θ < θ∗
=

γ+κ−d
2κ and ϑ ∈ [0, 1/2] be such that ϑ + θ < θ∗. Then there exist constants

C9, C10, C11 > 0, which are independent of s, t ∈ [0, T ], such that∫ t

0
‖e−Au

‖
2
L02
du ≤ C9, (A.1)∫ t

s
‖Aθe−A(t−u)

‖
2
L02
du ≤ C10 · |t − s|2ϑ (A.2)

and ∫ s

0
‖Aθ (e−A(t−u)

− e−A(s−u))‖2
L02
du ≤ C11 · |t − s|2ϑ . (A.3)

Proof. Throughout this proof, wewill denote constants which are independent of s, t ∈ [0, T ] by C regardless of their value.
(i) Recall that here L02 denotes the space of Hilbert–Schmidt operators from Q 1/2(H) to H and ‖ · ‖L02

is the corresponding

norm given by ‖C‖
2
L02

= Tr(C∗QC). Since e−Au is self-adjoint with eigenvalues e−αju and eigenvectors φj and since moreover

Q is self-adjoint with eigenvalues λj and eigenvectors φj, and φj, j ∈ Nd, is an orthonormal basis of H , we have

Tr(e−AuQe−Au) =

−
j∈Nd

⟨e−AuQe−Auφj, φj⟩ =

−
j∈Nd

e−2αjuλj.

Thus we obtain∫ T

0
‖e−As

‖
2
L02
ds =

−
j∈Nd

∫ T

0
e−2αjsλjds ≤

−
j∈Nd

λj

αj
.

Since

0 ≤
λj

αj
≤ C · |j|−γ−κ

by Assumptions 2 and 3, we obtain∫ T

0
‖e−As

‖
2
L02
ds ≤ C

−
j∈Nd

|j|−γ−κ < ∞

for κ + γ > d.
(ii) We have similarly that

‖Aθe−A(t−u)
‖
2
L02

=

−
j∈Nd

e−2αj(t−u)λjα
2θ
j

and hence∫ t

s
‖Aθe−A(t−u)

‖
2
L02
du ≤

−
j∈Nd

λjα
2θ−1
j (1 − e−2αj(t−s)).
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Since for every θ ∈ [0, 1] we have

|e−x
− e−y

| ≤ |x − y|θ , x, y ≥ 0,

it follows that∫ t

s
‖Aθe−A(t−u)

‖
2
L02
du ≤ |t − s|2ϑ

−
j∈Nd

λjα
2(θ+ϑ)−1
j ≤ C |t − s|2ϑ

−
j∈Nd

|j|−γ−κ+2κ(θ+ϑ)

for ϑ ∈ [0, 1/2] by Assumptions 2 and 3. Moreover, ϑ + θ < θ∗ yields

2κ(θ + ϑ) < γ + κ − d

and thus−
j∈Nd

|j|−γ−κ+2κ(θ+ϑ) < ∞.

(iii) Like in (i) we obtain

‖Aθ (e−A(t−u)
− e−A(s−u))‖2

L02
= ‖Aθe−A(s−u)(e−A(t−s)

− id)‖2
L02

=

−
j∈Nd

α2θ
j λje−2αj(s−u)(e−αj(t−s)

− 1)2

and thus

‖Aθ (e−A(t−u)
− e−A(s−u))‖2

L02
≤ C |t − s|2ϑ

−
j∈Nd

α
2(θ+ϑ)
j λje−2αj(s−u),

and also∫ s

0
‖Aθ (e−A(t−u)

− e−A(s−u))‖2
L02
du ≤ C |t − s|2ϑ

−
j∈Nd

λjα
2(θ+ϑ)−1
j .

Now we can proceed as in (ii). �

Proof of Theorem 4. We will again denote constants which are independent of s, t ∈ [0, T ] by C regardless of their value.
(i) Note first that the stochastic integrals

WA(t) =

∫ t

0
e−A(t−s)dW (s), t ∈ [0, T ],

are well defined if∫ T

0
‖e−As

‖L02
ds < ∞

(see Theorem 5.2 in [14]). The latter is true for κ + γ > d due to Lemma 3. The existence of a unique mild solution of Eq. (1)
with supt∈[0,T ] E‖u(t)‖p < ∞ for all p ≥ 1 follows now from a straightforward generalisation of Theorem 7.6 in [14].

(ii) Now recall that θ∗
=

γ+κ−d
2κ , let θ < θ∗ and consider

WA(t) − WA(s) =

∫ t

s
e−A(t−u)dW (u) +

∫ s

0


e−A(t−u)

− e−A(s−u) dW (u).

By Lemma 3 and the stability of the Itô integral (see Section 4.1), we have that Aθ (WA(t) − WA(s)) is P-a.s. well defined.
Moreover, by the Burkholder–Davis–Gundy inequality (18) and the above lemma we obtain

E‖Aθ (WA(t) − WA(s))‖p1/p
≤ C

[
E
∫ t

s
Aθe−A(t−u)dW (u)

p]1/p + C
[
E
∫ s

0
Aθ

e−A(t−u)

− e−A(s−u) dW (u)
p]1/p

≤ C
[∫ t

s

Aθe−A(t−u)
2
L02
du
]1/2

+ C
[∫ s

0

Aθ

e−A(t−u)

− e−A(s−u)2
L02
du
]1/2

≤ C |t − s|ϑ
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for all ϑ ∈ [0, 1/2] such that ϑ + θ < θ∗. The Kolmogorov–Chentsov theorem now implies that there exists a modificationWA ofWA such thatWA(·, ω) ∈


θ<θ∗

C

[0, T ];D(Aθ )


for almost all ω ∈ Ω . Moreover, we have

sup
t∈[0,T ]


E‖Aθ WA(t)‖p1/p < ∞,


E‖WA(t) − WA(s)‖p1/p

≤ C |t − s|min{1/2,θ}

for all s, t ∈ [0, T ] and θ < θ∗.
(iii) Finally consider Aθ (u(t) − u(s)), s, t ∈ [0, T ]. We have P-a.s.

Aθ (u(t) − u(s)) = Aθ (e−Atu(0) − e−Asu(0)) + Aθ

∫ t

s
e−A(t−τ)F(u(τ ))dτ

+ Aθ

∫ s

0


e−A(t−τ)

− e−A(s−τ)

F(u(τ ))dτ + Aθ (WA(t) − WA(s))

for all s, t ∈ [0, T ]. So it follows that
E‖Aθ (u(t) − u(s))‖p1/p

≤ I1 + I2 + I3 + I4

with

I1 = ‖Aθe−As(e−A(t−s)
− id)u(0)‖,

I2 =

[
E
Aθ

∫ t

s
e−A(t−τ)F(u(τ ))dτ

p]1/p ,

I3 =

[
E
Aθ

∫ s

0
e−A(s−τ)


e−A(t−s)

− id

F(u(τ ))dτ

p]1/p ,

I4 =

E‖Aθ (WA(t) − WA(s))‖p1/p .

Since u(0) ∈ D(A) we have by Lemma 2 that

I1 = ‖Aθe−As(e−A(t−s)
− id)u(0)‖

≤ ‖e−AsAθ−1(e−A(t−s)
− id)Au(0)‖

≤ ‖e−As
‖ ‖Aθ−1(e−A(t−s)

− id)‖ ‖Au(0)‖
≤ C |t − s|1−θ

for all θ < 1. Moreover, by step (ii) we have

I4 ≤ C |t − s|ϑ

for all ϑ ∈ [0, 1/2] such that ϑ + θ < θ∗. For the second term we obtain by Jensen’s inequality and the stability of the
integral that

I2 =

[
E
∫ t

s
Aθe−A(t−τ)F(u(τ ))dτ

p]1/p
≤

∫ t

s
‖Aθe−A(t−τ)

‖[E‖F(u(τ ))‖p
]
1/pdτ .

Hence Assumption 1 and Lemma 2 give

I2 ≤ C
∫ t

s
|t − τ |

−θ


1 + sup

t∈[0,T ]

[E‖u(t)‖p
]
1/p

dτ .

Since supt∈[0,T ] E‖u(t)‖p < ∞ by part (i) of the proof, it follows that

I2 ≤ C |t − s|1−θ .

Finally, consider the third term. Here we have, proceeding as above,

I3 =

[
E
∫ s

0
Aθe−A(s−τ)


e−A(t−s)

− id

F(u(τ ))dτ

p]1/p
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≤ C
∫ s

0
‖Aθ+δe−A(s−τ)

‖
A−δ


e−A(t−s)

− id
1 + sup

t∈[0,T ]

[E‖u(t)‖p
]
1/p

dτ

≤ C |t − s|δ

for δ < 1 − θ .
Combining the estimates for I1, I2, I3 and I4 we obtain

E‖Aθ (u(t) − u(s))‖p1/p
≤ C |t − s|ϑ + C |t − s|δ,

for all ϑ ∈ [0, 1/2] such that θ + ϑ < θ∗ and δ ∈ [0, 1] such that δ < 1 − θ . Hence by the Kolmogorov–Chentsov theorem
it follows that there exists a modificationu of u such thatu(·, ω) ∈


θ<min{1,θ∗}

C

[0, T ];D(Aθ )


for almost all ω ∈ Ω . Furthermore, the above estimates give

sup
t∈[0,T ]


E‖Aθu(t)‖p1/p < ∞,


E‖u(t) −u(s)‖p1/p

≤ C |t − s|min{1/2,θ}

for all s, t ∈ [0, T ] and θ < min{1, θ∗
}. �
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