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1. Introduction

Let X = {Xn}n≥0, X0 = const be a (generally) time-inhomogeneous Markov chain taking values
in a measurable space (X , B). Let L : X → [0,∞) be an unbounded measurable function; i.e., the
complete preimage L−1([c,∞)) of the set [c,∞) is nonempty for every c > 0. We study conditions that
guarantee the a.s. convergence of L(Xn) in n to infinity, i.e., such conditions that the equation

P( lim
n→∞L(Xn) = ∞) = 1 (1.1)

holds for every initial X0. Equation (1.1) implies transience of the set {x : L(x) < N} for every N > 0.
As far as we know, general conditions for transience have been studied only in the case of countable

Markov chains (i.e., chains with a countable state space X ) and under the additional assumption that
the values of jumps are bounded. The most general assertion in this case is seemingly the following
theorem of [1, p. 31, Theorem 2.2.7].

Theorem 1.1. Let X be a homogeneous Markov chain with values in a countable set X which
forms a single class of communicating states. Assume that there exist a function L : X → [0,∞), an
integer-valued function v : X → {1, 2, . . . }, and numbers ε > 0, N > 0, d > 0 such that

(a) supx v(x) < ∞,
(b) for all x, y ∈ X ,

|L(x)− L(y)| > d implies px,y ≡ P(X1 = y | X0 = x) = 0 (1.2)

(c) for every x ∈ X such that L(x) ≥ N ,

E{L(Xv(x))− L(X0) | X0 = x} ≥ ε. (1.3)

Then the Markov chain X is transient, i.e., for every state x ∈ X

τ(x) ≡ min{n ≥ 1 : Xn = x | X0 = x}
is an improper random variable.

Remark 1. If we assume in addition that, for every initial state X0 = x in the set {x : L(x) < N},
min{n ≥ 1 : Xn ≥ N} < ∞ a.s., (1.4)

then (1.1) holds. For (1.4) to hold, it suffices for the set {x : L(x) < N} to be finite.
Remark 2. Among the conditions of Theorem 1.1, the most restrictive ones are (1.2) and (1.3).

We consider here a more general situation where (1.2) does not hold. On the other hand, to simplify
exposition, we assume (1.3) to hold with v(x) ≡ 1.

In order to understand what kind of additional restrictions on jump increments should be made in
the absence of (1.2), let us consider two examples of homogeneous Markov chains. For x ∈ X , denote
by ∆x a random variable with distribution P(∆x ∈ B) = P(L(X1) − L(x) ∈ B | X0 = x). We will use
the notation a+ = max(a, 0) and a− = −min(a, 0).
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Example 1. Let X = {0, 1, 2, . . . } be the set of nonnegative integers, L(x) = x, and X the homo-
geneous Markov chain with transition probabilities pi,j = P(X1 = j | X0 = i) given by

p0,0 = p0,1 = 1/2,

and for i = 1, 2, . . .
pi,i+1 = 1− pi,0 ∈ (0, 1), pi,j = 0 for j 6= 0, j 6= i + 1.

This chain is irreducible and aperiodic, and the probability of failure to return to 0 is equal to the infinite
product

∞∏
i=0

pi,i+1,

which is positive if and only if the series
∑∞

i=0 pi,0 converges. Note that the condition pi,0 = o(i−1)
(equivalent to uniform integrability of the random variables ∆−i ) is necessary but not sufficient for the
convergence of the series. If we assume that the sequence pi,0 is nonincreasing then the convergence of
the above series is equivalent to

∞∫
1

dt

h(t)
< ∞, (1.5)

for every nondecreasing function h(t) such that h(i) = 1
pi,0

for each integer i. A condition of the form
(1.5) will appear later in the statement of the main theorem. Note also that (1.5) necessarily implies the
“positive drift” condition (1.3) for a sufficiently large N .

This example shows that, generally speaking, in the presence of positive drift, the uniform integra-
bility of the negative parts of the jumps ∆−x does not guarantee transience; we need something more.

Consider now the second example which shows the necessity of restrictions (to be given below) on
the distributions of the positive parts of the jumps ∆+

x .

Example 2. As in the first example, assume that L(x) = x and that a homogeneous Markov chain
is defined on the state space {0, 1, 2, . . . }. Let α > 1, β > 1 be given numbers and let k ≡ k(α, β) =
max

{
i : α

[iβ ]
≥ 1

}
. Here [x] represents the positive part of x.

Let the transition probabilities of the chain be as follows:

p0,0 = p0,1 = /2, pi,i−1 = 1− pi,i+1 = 1/3 for all i = 1, . . . , k

pi,l(i) = 1− pi,i−1 = αi−β for i = k + 1, k + 2, . . . and l(i) = i + [iβ],

pi,j = 0 for j 6= i− 1, j 6= l(i).

The Markov chain is irreducible and aperiodic and all states communicate with each other. It is easy to
see that E∆i ≥ min(1/3, α − 1) ≡ ε > 0 for all i ≥ 1. Negative jumps are bounded and, consequently,
any condition like (1.5) holds. On the other hand, since β > 1, the Markov chain is recurrent. Indeed,
fix any integer N ≥ k. Assume that the chain starts from the state X0 = i > N . We will show that, with
probability one, it visits the state N in a finite time. Starting from any state i > N , there is a probability

i∏
j=N+1

pj,j−1 ≥
∞∏

j=N+1

pj,j−1 ≡ γ > 0,

that the chain hits N by a sequence of (unit) jumps to the left only; in the event of any jump to the
right, say, to i1, there is again a probability at least γ that the chain will hit N by a finite sequence of
jumps to the left only, etc. In other words, we consider a sequence of (dependent) trials, each of which
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has a probability of success at least γ, irrespective of past history. Hence, the probability of an eventual
success is equal to one.

On the other hand, if the Markov chain starts from a state X0 = x ≤ N , then, with probability
one, it eventually hits the interval [N,∞). It follows that the state N (and, therefore, the chain itself) is
recurrent. Indeed a more precise analysis shows that the Markov chain is recurrent for β = 1, too.

In the second example, the positive drift E∆i ≥ ε > 0 is provided by the jumps of the random
variables {∆+

x } which are not uniformly integrable. Therefore, in the formulation of the transience
criterion, it seems natural to require some condition such as uniform integrability on the positive parts of
jumps or, more generally, a condition which guarantees a positive drift due to bounded positive jumps.

2. The Main Statement and Its Proof

Let (X , B) be a measurable space, {Xn ≡ X
(x)
n }n≥0 a X -valued time-inhomogeneous Markov chain

with an initial value X0 = x = const and with transition probabilities

P (y, n, B) = P(Xn+1 ∈ B | Xn = y), B ∈ B, y ∈ X .

To simplify exposition, we further assume that the Markov chain can be represented as a stochastic
recursive sequence

Xn+1 = fn(Xn, ξn), n ≥ 0,

where {ξn} is a sequence of independent identically distributed (i.i.d.) random variables (r.v.’s) which
are distributed uniformly on [0, 1] and each fn : X × [0, 1] → X is a measurable function. This
assumption is not too restrictive; for example, it holds if the sigma-algebra B is countably generated
(see, for instance, [2]).

For m = 0, 1, 2, . . . , denote by
{
X

(x,m)
m+n

}
n≥0

the Markov chain that starts at the time instant m from

the state X
(x,m)
m = x and is defined by the recursive equations

X
(x,m)
m+n+1 = fm+n

(
X

(x,m)
m+n , ξm+n

)
for n = 0, 1, . . . .

Note that, for every n ≥ 0,

P
(
X

(x,m)
m+n+1 ∈ B | X(x,m)

m+n = y
)

= P (y, m + n, B).

In particular, X
(x)
n = X

(x,0)
n and P (x, m, B) = P

(
X

(x,m)
m+1 ∈ B

)
.

Next, let L : X → [0,∞) be a measurable function, ∆x,m = L
(
X

(x,m)
m+1

)− L(x) and, for N > 0,

τx,m(N) = min
{
n ≥ 1 : L

(
X

(x,m)
m+n

) ≥ N
}
.

Theorem 2.1. Suppose that there exist numbers N > 0, ε > 0, M > 0 and a measurable function
h : [0,∞) → [1,∞) such that

(1) τx,m(N) < ∞ a.s. for all x ∈ X and m ≥ 0;
(2) for all m = 0, 1, 2, . . . and for all x ∈ X such that L(x) ≥ N ,

E{∆x,m · I(∆x,m ≤ M)} ≥ ε;

(3) the integral
∫∞
1 (h(t))−1 dt converges and, for t ≥ 1, the function g(t) = h(t)

t is concave and
nondecreasing;

(4) the family of the random variables {h(∆−
x,m);m ≥ 0, L(x) ≥ N} is uniformly integrable.

Then, for all x ∈ X and m ≥ 0,

P
(

lim
n→∞L

(
X

(x,m)
m+n

)
= ∞)

= 1. (2.1)
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Remark 3. Condition (2) of Theorem 2.1 is fulfiled if the following hold:
(1) E∆x,m ≥ 2ε for all m ≥ 0 and x ∈ X such that L(x) ≥ N ;
(2) the family of random variables

{
∆+

x,m; m ≥ 0, L(x) ≥ N
}

is uniformly integrable.

Remark 4. In an unpublished paper by S. G. Foss (1995), the assertion of Theorem 2.1 was proved
in the particular case h(t) = max(1, t2).

Remark 5. In condition (3) of Theorem 2.1, the nondecrease and concavity assumptions on g are
imposed for simplicity of formulation. They are technical and could be naturally weakened. However, it
seems to us that the convergence of the integral in (3) alone is insufficient for Theorem 2.1 to hold.

Remark 6. Conditions (3) and (4) are fulfiled, provided that, for some β > 0, the (1+β)th moments
of the random variables ∆−x,m are uniformly bounded, i.e.,

sup
m≥0,L(x)≥N

E{∆−
x,m}1+β < ∞.

Indeed, we can take the function h(t) = t1+γ for t ≥ 1, where γ is an arbitrary number in the interval
(0, min(1, β)). Note also that we can take h(t), t ≥ 1, to be any of the following functions: t(log(1+t))1+β ,
t log(1 + t)(log(1 + log(1 + t)))1+β , etc.

Remark 7. It can also be shown that condition (4) of Theorem 2.1 may be weakened to the following:

sup
m≥0,L(x)≥N

Eh(∆−
x,m) < ∞.

Before starting the proof of Theorem 2.1, we prove the following preliminary lemma.

Lemma 2.1. Suppose that conditions (1) and (2) of Theorem 2.1 hold. Then, for every nonnegative
integer m and for every x ∈ X ,

P
(
lim sup

n→∞
L

(
X

(x,m)
m+n

)
= ∞)

= 1. (2.2)

Proof of the lemma. Take an arbitrary b > N . First, we show that, for arbitrary nonnegative
integers m and l and for every x ∈ X ,

P
(∃n ≥ l : L

(
X

(x,m)
m+n

) ≥ b
)

= 1. (2.3)

Without loss of generality, we can only consider the case m = 0. Take d = ε/2; then

P(∆y,n ≥ d) ≥ P(M ≥ ∆y,n ≥ d) ≥ E
{

∆y,n

M
I(M ≥ ∆y,n ≥ d)

}
≥ d

M
.

Put H = max
(
l, [ b−N

d ] + 1
)

and ν1 = min
{
n ≥ 1 : L(X(x)

n ) ≥ N
}
. Note that, by condition (1), the

random variable ν1 is finite a.s. Moreover,

P
(
L

(
X

(x)
ν1+H

) ≥ b
) ≥ (

d

M

)H

≡ δ > 0.

Further, for i = 1, 2, . . . , define the random variables

νi+1 = min
{
n ≥ νi + H + 1 : L

(
X(x)

n

) ≥ N
}

and note that all of them are finite a.s. For i = 1, 2, . . . , consider the sequence of the events Bi ={
L(X(x)

νi+H) ≥ b
}

and the increasing sequence of the sigma-algebras Fi = σ(νi, ξ1, . . . , ξνi). Then P(Bi |
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Fi) ≥ δ > 0 a.s. for all i. Hence, P(Bi | B1 . . . Bi−1) ≤ 1 − δ < 1 for all i = 2, 3, . . . , where Bi is the
complement of the event Bi. Therefore,

P

( ∞⋂
i=1

Bi

)
≤ P

(
n⋂

i=1

Bi

)
≤ (1− δ)n → 0

as n →∞, and at least one of the events Bi occurs a.s. Thus, (2.3) holds.
Take now bn = N + n and put

µn+1 = min
{
i ≥ µn + 1 : L

(
X

(x,m)
m+i

) ≥ bn+1

}
.

By (2.3), all of the random variables µn are finite a.s. Thus,

L
(
X

(x,m)
m+µn

) →∞ a.s. as n →∞, (2.4)

The proof of the lemma is complete.

Proof of Theorem 2.1. The proof is the same for all m ≥ 0, therefore we only consider the case
m = 0.

Take an arbitrary x ∈ X and C > 0. Put

Yn =

∞∫
1+((L(X

(x)
n )−N)+)/C

dt

h(t)
.

It suffices to prove that, for a certain C,

the sequence {Yn}n≥0 forms a positive supermartingale. (2.5)

Indeed, if (2.5) holds, then (by the familiar theorem) the sequence {Yn} converges a.s. But, by Lemma 2.1,
there exists a subsequence {µn} such that Yµn converges to zero a.s. Hence, Yn → 0 a.s., and the latter
is equivalent to the convergence L

(
X

(x)
n

) →∞ a.s.
Now we prove (2.5). Since {Xn} is a Markov chain, it suffices to show that the inequality

E
{
Yn+1 − Yn | X(x)

n

} ≤ 0 (2.6)

holds a.s. for all n.
The proof of (2.6) is the same for all n. Therefore, we only consider the case n = 0.
The inequality E{Y1 − Y0} ≤ 0 is clear if x is such that L(x) ≤ N . In what follows, we assume that

z ≡ L(x)−N = const > 0. Let

A(x) = Y1 − Y0 =

1+z/C∫
1+(z+∆x)+/C

dt

h(t)
,

where ∆x ≡ ∆x,0.
We need to introduce positive constants r, R, and C that satisfy certain restrictions.
First, choose R and r. Let

D = sup
L(x)≥N

E{∆−
x } and T (α) = sup

t≥0

g(1 + αt)
g(1 + t)

, α > 1.

Condition (4) of Theorem 2.1 implies finiteness of D, while concavity of g guarantees finiteness of T (α)
for each α > 1 and the convergence T (α) → 1 as α → 1.
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Choose R ∈ (0, 1) small enough for the following inequality to hold:

h(1 + 2R)− h(1)
h(1)

D ≤ ε

2
, (2.7)

and choose r ∈ (0, 1) small enough that, for α = 1+r
1−r , the inequality holds:

(αT (α)− 1)D ≤ ε/2. (2.8)

Note that, by condition (3) of Theorem 2.1, for all α > 1 and for all t > 0,

1 ≤ h(1 + αt)
h(1 + t)

=
1 + αt

1 + t

g(1 + αt)
g(1 + t)

≤ αT (α).

Therefore, (2.8) implies the inequality

h(1 + (1 + r)u)− h(1 + (1− r)u)
h(1 + (1− r)u)

D ≤ ε

2
(2.9)

for all u > 0 (it suffices to put t = 1− r)u).
Now, choose C so large that the following relations hold:

C >
max(M, 1 + R(1 + r))

Rr
(2.10)

and
KE{h(|∆x|I(∆x < −rRC)} ≤ εrR/12, (2.11)

where K =
∫∞
1 (h(t))−1 dt.

We now start the main argument. There are two possibilities: either 0 < z ≤ RC or z > RC.
Consider the first case. Represent EA(x) as

EA(x) = E1 + E2 + E3,

where

E1 = E{A(x)I(∆x > M)}, E2 = E{A(x)I(0 ≤ ∆x ≤ M)},
E3 = E{A(x)I(∆x < 0)}.

Note that, by the monotonicity of h, A(x) admits the following estimates from above:

A(x) ≤




0, if ∆x > M,
z−(z+∆x)+

Ch(1+(z+∆x)+/C)
≤ −∆x

Ch(1+R+Rr) , if 0 ≤ ∆x ≤ M,

1+z/C∫
1+(z+∆x)+/C

du
h(u) ≤ −∆x

Ch(1) , if ∆x < 0.

Therefore,

E2 ≤ −1
Ch(1 + (1 + r)R)

E{∆xI(∆x ≤ M)−∆xI(∆x < 0)}

and
E3 ≤ −1

Ch(1)
E{∆xI(∆x < 0)}.
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Hence,

CEA(x) ≤ −ε

h(1 + (1 + r)R)
+

(
1

h(1)
− 1

h(1 + (1 + r)R)

)
E{−∆xI(∆x < 0)}

≤ 1
h(1 + (1 + r)R)

(
−ε +

h(1 + (1 + r)R)− h(1)
h(1)

D

)
.

By (2.7) and the monotonicity of h, the RHS of the latter inequality is negative. Therefore, EA(x) < 0.
Consider now the second case. Represent EA(x) as a sum of four terms

EA(x) = E1 + E2 + E3 + E4,

where

E1 = E{A(x)I(∆x > M)}, E2 = E{A(x)I(0 ≤ ∆x ≤ M)},
E3 = E{A(x)I(−rz ≤ ∆x < 0)}, E4 = E{A(x)I(∆x < −rz)}.

For ∆x ≥ −rz, the integral A(x) admits the following upper estimates:

A(x) ≤




0, if ∆x > M,
−∆x

Ch(1+(z+M)/C) ≤ −∆x
Ch(1+(z+rz)/C) , if 0 ≤ ∆x ≤ M,

−∆x
Ch(1+(z−rz)/C) , if − rz ≤ ∆x < 0.

Note that E1 ≤ 0. Furthermore,

E2 ≤ −1
Ch

(
1 + z+rz

C

)E{∆xI(0 ≤ ∆x ≤ M)},

E3 ≤ −1
Ch

(
1 + z−rz

C

)E{∆xI(∆x < 0)}.

Hence,

E1 + E2 + E3 ≤ −ε

Ch
(
1 + z+rz

C

) +
h
(
1 + z+rz

C

)− h
(
1 + z−rz

C

)
h
(
1 + z+rz

C

)
h
(
1 + z−rz

C

)
C

D. (2.12)

Using (2.9) for u = z/C, we get

E1 + E2 + E3 ≤ −ε

2Ch
(
1 + z+rz

C

) . (2.13)

It remains to estimate the summand E4:

E4 = E

( 1+z/C∫
1+(z+∆x)+/C

du

h(u)
I(∆x < −rz)

)
≤ K ·P(∆x < −rz)

≤ K ·E
{

h(|∆x|)
h(rz)

I(∆x < −rz)
}
≤ K

h(rz)
E{h(|∆x|)I(∆x < −rRC)}.

By (2.11), the RHS of the latter inequality is not greater than εrR/12h(rz).
Equation (2.10) implies that g(rz) ≥ g(1+ z(1+ r)/C). Indeed, the function g is nondecreasing and,

since z > RC,

rz − (1 + z(1 + r)/C) = z
rC − (1 + r)

C
− 1 > RrC −R(1 + r)− 1 > 0.
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Furthermore, since R < 1, r < 1, and z > RC, the following inequality holds: 3rz/rRC > 1 + (z +
rz)/C. Indeed,

3z

RC
− z(1 + r)

C
=

z(3−R(1 + r))
RC

>
z

RC
> 1.

Therefore,

E4 ≤ εrR/12
rRC(1 + (z + rz)/C)g(rz)/3

≤ ε

4Ch(1 + z(1 + r)/C)
. (2.14)

Equations (2.13) and (2.14) now imply the estimate we need:

EA(x) = E1 + E2 + E3 + E4 ≤ −ε

4Ch(1 + z(1 + r)/C)
< 0.

Thus, for all x ∈ X
EA(x) ≤ 0.

Theorem 2.1 is proved.
The authors would like to thank the referee for useful remarks, D. A. Korshunov and N. I. Chernova

for fruitful discussions, and Stan Zachary for the significant improvement of the style of the English
translation.
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