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Abstract

We derive a separation of variables solution for time-domain electromagnetic scat-

tering from a perfectly conducting in®nite ¯at plate. The time dependent part of the

equations are then used as a model problem in order to study the e�ects of various time

discretisations on the full scattering problem. We examine and explain how exponential

and polynomial instabilities arise in the approximation schemes, and show that the time

averaging which is often used in an attempt to stabilise solutions of the full problem acts

to destabilise some of the schemes. Our results show that two of the time discretisations

can produce good results when coupled with a space-exact approximation, and indicate

that they will be useful when coupled with an accurate enough spatial approxima-

tion. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Finding the scattered ®eld that results when a transient (non-harmonic)
electric ®eld is incident on a perfect conductor is an important problem in
computational electromagnetics. One popular approach is to use a boundary
integral formulation to compute the current and charge that are induced on the
conductor's surface, since this is then su�cient to determine the scattered ®eld

www.elsevier.nl/locate/amc
Applied Mathematics and Computation 107 (2000) 1±26

* Corresponding author. E-mail: d.b.duncan@ma.hw.ac.uk
1 E-mail: penny.davies@strath.ac.uk

0096-3003/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S0 0 96 -3 0 03 (9 8 )1 01 4 6- 7



at any point in space (see e.g. Ref. [1]). This leads to a coupled system of
di�erential and retarded potential integral equations (RPIEs) (so called be-
cause the time argument of the integrand is delayed) which then must be solved
numerically. There seems to be agreement that it is better to approximate the
system in a form that uses only ®rst order derivatives in space and time than
one which uses second order derivatives [2±4] and we use the ®rst order for-
mulation of the problem given by Rynne in Ref. [3].

We non-dimensionalise the equations by using units in which the perme-
ability and permittivity (and hence the speed of light) are equal to 1. Suppose
that the (known) electric ®eld E�x; t� is incident on the perfectly conducting
surface P. The surface current J�x; t� and charge q�x; t� induced on P satisfy
the continuity equation

oq
ot
�Div J � 0; �1�

(Div denotes the surface divergence), and the scalar (/) and vector (A) po-
tentials are de®ned in terms of them by the RPIEs

/�x0; t� � 1

4p

Z
P

q�x; t ÿ R�
R

dS �2�

and

A�x0; t� � 1

4p

Z
P

J�x; t ÿ R�
R

dS; �3�

where R � jxÿ x0j. The potentials satisfy the electric ®eld integral equation
(EFIE)

oA

ot
� grad /

� �
tan

� E tan ; �4�

where the subscript ``tan'' denotes the tangential component of a quantity on
the surface P. As initial conditions all quantities are assumed to be zero for all
times t6 0.

This integro-di�erential system is typically solved numerically by ®rst ex-
panding in terms of spatial basis functions and then approximating the re-
sulting equations in time [2±6]. Unfortunately numerical approximations of
systems involving RPIEs are often unstable, and result in exponentially
growing oscillating errors in the solution (see e.g. Refs. [2,3,7]). Hence it is
important to investigate the stability of numerical approximations of the sys-
tem (1)±(4), so that the causes of instability can be determined and eliminated.

The full approximate system is extremely di�cult to analyse because of the
interaction between the integral and di�erential equations and the combined
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e�ects of spatial and temporal approximations, but it is possible to deduce
some useful stability results from Fourier analysis when P is a large ¯at plate
[8,9]. However, it can sometimes also be illuminating to analyse individual
parts of the system separately. For example, the stability of numerical ap-
proximations of the scalar RPIE (2) has been considered in detail in Refs.
[10,11]. In Ref. [11] a separation of variables approach (Fourier decomposition
on an in®nite ¯at plate) was used to analyse ``space exact'' time-stepping ap-
proximations of RPIEs (i.e., the spatial variation of solutions was treated ex-
actly, allowing attention to be focussed on the time-stepping method).

It is known that averaging the computed solution in time is often e�ective in
eliminating or reducing oscillating instabilities (see e.g. Refs. [2,6,10,12]). The
type of averaging used must be chosen carefully however, since as shown in
Ref. [11] the averaging strategy advocated by Vechinski and Rao in Ref. [6]
actually destabilises the time-evolution of low spatial frequencies in approxi-
mate solutions of RPIEs when an accurate spatial representation of the solu-
tion is used. In contrast Rynne's averaging procedure [2,12] eliminates high
frequency instabilities without exciting low frequency modes.

Our aim here is to analyse time discretisations of the ``space-exact'' version
of the full system (1)±(4) and we use a similar approach to that contained in
Ref. [11] for a scalar RPIE. In particular we wish to analyse the interactions
between time approximations of the di�erential and integral equations, both
for basic (unaveraged) and time-averaged approximation schemes. The main
motivation is that fully space and time discretised schemes are di�cult to an-
alyse, and we can gain useful insight into, and understanding of the full
problem by examining this space-exact case.

Approximating the solution of the full scattering problem (1)±(4) is ex-
tremely computationally intensive. It takes O�N 2� ¯oating point operations to
compute the current and charge at each time-step when there are N spatial
basis functions. Solution algorithms therefore usually employ explicit schemes
to approximate Eqs. (1) and (4), and low order methods for the RPIEs (2) and
(3) based on piecewise linear interpolation in the time variation of the solution
components [3,4,6]. For this reason we restrict our analysis to second order
accurate (in time) schemes for the di�erential equations, and linear time in-
terpolation (a second order approximation) for the integrals.

We begin by deriving the Fourier decomposed system and describing the
time-stepping algorithms that we shall analyse (in Sections 2 and 3, respec-
tively). We then carry out a stability analysis of the basic schemes in Section 4,
explaining how exponential and polynomial instabilities can arise in the ap-
proximation schemes. Temporal averaging is often used in an attempt to
stabilise solutions of the full problem, but it can act to destabilise some of the
space-exact schemes as shown in Section 5. Numerical test results are used to
indicate the accuracy of each scheme in Section 6, and we conclude with a
discussion of our results.
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2. Fourier decomposition

In this section we derive the system of ordinary di�erential equations
(ODEs) and integral equations describing the evolution of a single spatial
Fourier mode on an in®nite ¯at conducting surface P. This is analogous to the
usual separation of variables technique for PDEs. For convenience we take P
to be the plane x3 � 0.

The Fourier transform û of a function u�x� on P is given by

û�x� �
Z
R2

u�x�eÿix�xdx: �5�

Taking the transform of the full scattering problem (1)±(4) yields the system of
ODEs and Volterra integral equations

_r� x � F � 0; �6�

w�t� �
Zt

0

J0�xR�r�t ÿ R�dR; �7�

_aÿ xw � e; �8�

a�t� �
Zt

0

J0�xR�F�t ÿ R�dR; �9�

in terms of the Fourier frequency x (regarded as a parameter), where x � jxj
and J0 is the ®rst kind Bessel function of order zero, and we have made the
change of variables

q̂ � ir; /̂ � iw=2;

Ĵ � F; Â � a=2; and Ê � e=2: �10�
These are the equations we study in the rest of the paper.

Note that r and F can be eliminated by di�erentiating Eq. (7) with respect to
time (using the initial condition that r�0� � 0), substituting for _r from Eq. (6)
and using Eq. (9) to replace the integral term, to yield another ODE

_w � ÿx � a: �11�
This equation in combination with Eq. (8) forms a self-contained system for w
and a. Similarly, di�erentiating Eq. (9) with respect to t using the initial con-
dition that F�0� � 0, we obtain

_a�t� �
Zt

0

J0�xR� _F�t ÿ R�dR;
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and hence it follows from Eq. (8) that,Zt

0

J0�xR� _F�t ÿ R� ÿ xr�t ÿ R� ÿ e�t ÿ R�
n o

dR � 0;

where we have de®ned e�t� by

e�t� �
Zt

0

J0�xR�e�t ÿ R�dR �12�

(assuming that e�0� � 0). Thus we also obtain the ODE

_F � xr� e �13�
which forms a self-contained system for r and F when combined with the
continuity Eq. (6). Any consistent approximation scheme for the system (6)±(9)
should also reduce to an approximation for Eqs. (11) and (13).

3. Time-stepping algorithms

In this section we describe four di�erent numerical approximations of the
transformed system (6)±(9). Each of these schemes can be regarded as a time
discretised but space-exact approximation of the full scattering problem (1)±(4)
on an in®nite ¯at plate, since the original problem can be recovered by taking
the inverse Fourier transform and using the change of variables Eq. (10). The
schemes all use the trapezoidal rule to approximate the integrals in Eqs. (7) and
(9), since this corresponds to the usual approximation made for the full nu-
merical system (see e.g. Refs. [3±6]), in which the integrand is linearly inter-
polated in time between successive solution components.

The ®rst scheme corresponds to the solution algorithm used by Rynne [3] to
solve the semi-discrete system of equations that results from Eqs. (1)±(4) once
the current and charge have been approximated in space by ®nite element basis
functions. It consists of a mixture of explicit and implicit approximations for the
individual equations (6)±(9). When the approximations are used in the correct
order each solution component is updated without the need to solve algebraic
equations ± in other words the scheme is semi-implicit. Scheme 2 uses a di�erent
approximation for the ODE (8), but is otherwise the same as Scheme 1.

The third scheme looks similar to the ®rst two, but in this case the ap-
proximations are based on a fully staggered grid with r and w approximated at
times o�set by Dt=2 from those used for the F and a approximations. The use
of a staggered grid is a common approach to solving systems of hyperbolic
PDEs [13], Ch. 4.8 and given that the underlying system is Maxwell's equa-
tions, this seems a sensible avenue to explore. The ®nal scheme uses the
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trapezoidal rule for the integrals and ODE approximations, and hence is fully
implicit. It is included here mainly for comparison with the others (the trap-
ezoidal ODE approximation is stable for all values of the time-step), since an
implicit numerical scheme of this type would be complicated (although not too
costly) to implement in practice.

Once the schemes have been de®ned we show that they contain approxi-
mations of the ODEs (11) and (13), since this proves useful in the stability
analysis carried out in Section 4.

3.1. Scheme de®nitions

The time-step used for the discretisation is taken to be Dt and we use the
short-hand notation that un � u�tn� � u�n Dt� for any function u�t�. We also set
m � Dt x and Jm

0 � J0�mm�. The initial value terms are explicitly included in the
scheme de®nitions, but recall that we are assuming that all quantities are zero
for time t6 0.

Scheme 1: Rynne's scheme [3] for Eqs. (1)±(4) corresponds to using the
following central di�erence approximations for Eqs. (6) and (8)

rn � rnÿ2 ÿ 2m � Fnÿ1; �14�

an � anÿ2 � m

2
�wn � 2wnÿ1 � wnÿ2� � Dt

2
�en � 2enÿ1 � enÿ2�; �15�

for n P 1. The two retarded potential integrals (7) and (9) are approximated by
the trapezoidal rule (corresponding to linear interpolation in time), giving

wn � Dt rn=2�
Xnÿ1

m�1

J m
0 rnÿm � J n

0 r0=2

( )
; �16�

an � Dt Fn=2�
Xnÿ1

m�1

J m
0 Fnÿm � J n

0 F0=2

( )
; �17�

for n P 1. Scheme 1 consists of the four equations (14)±(17) solved in the order
given above for rn; an;wn and then Fn, after rearranging Eq. (17).

Scheme 2: The second scheme we consider uses Eqs. (14), (16) and (17) from
Scheme 1, but the approximation of the EFIE equation (8) is replaced by

an � anÿ2 � 2mwnÿ1 � 2 Dt enÿ1: �18�
This has the same leap-frog (central di�erence approximation) structure as
Eq. (14).

Scheme 3: This scheme uses ``staggered'' time levels for di�erent compo-
nents: F and a are needed at integer multiples of Dt, and r and w at integer plus
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one half multiples of Dt. The two di�erential equations (6) and (8) are ap-
proximated by a leap-frog formula with step Dt, giving

rnÿ1=2 � rnÿ3=2 ÿ m � Fnÿ1; �19�

an � anÿ1 � mwnÿ1=2 � Dt enÿ1=2; �20�
for n P 1. The scalar potential integral (2) is approximated by linear inter-
polation between integer plus one half multiples of Dt

wnÿ1=2 � Dt rnÿ1=2=2�
Xnÿ1

m�1

J m
0 rnÿ1=2ÿm � J n

0 rÿ1=2=2

( )
; �21�

and the trapezoidal rule approximation (17) is again used for the integral
equation (3).

Scheme 4: This scheme uses the trapezoidal rule for both the ODEs and
integral equations, and hence is fully implicit. The di�erential equations (6) and
(8) are approximated by

rn � rnÿ1 ÿ m

2
� �Fn � Fnÿ1� �22a�

and

an � anÿ1 � m

2
�wn � wnÿ1� � Dt

2
�en � enÿ1� �22b�

for n P 1. The trapezoidal rule approximations (16) and (17) are used for the
retarded potential integral equations (2) and (3).

3.2. Approximation of the ODEs for w and a

Here we investigate how the four schemes described above approximate the
property that Eqs. (6), (7) and (9) can be reduced to the ODE (11) when the
zero initial conditions are used. We shall derive the ODE approximation for
Eq. (11) that results from Scheme 1, and just state the approximations ob-
tained from the other three schemes.

Recall that Eq. (11) was obtained by di�erentiating Eq. (7) in time, substi-
tuting for _r and then using Eq. (9) to replace the integral term. The corre-
sponding operations for the Scheme 1 approximations are to di�erence (16) in
time, substitute for the di�erenced r terms from Eq. (14), and then use Eq. (17)
to replace the integral summation.

Central di�erencing Eq. (16) with step 2 Dt about tnÿ1 gives

wn ÿ wnÿ2 � Dt �rn ÿ rnÿ2�=2�
Xnÿ2

m�1

J m
0 �rnÿm ÿ rnÿ2ÿm� � J nÿ1

0 r1

( )
;
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where we have used r0 � 0. Substituting for the r central di�erences from
Eq. (14) yields

wn ÿ wnÿ2 � ÿ2 Dt m � Fnÿ1=2�
Xnÿ2

m�1

J m
0 Fnÿ1ÿm

( )
� Dt J nÿ1

0 r1;

then using Eq. (17) and the fact that r1 � 0 by Eq. (14) and the assumption
that all quantities are zero for t6 0 we get the standard leap-frog approxi-
mation of Eq. (17), i.e.

Scheme 1: wn � wnÿ2 ÿ 2m � anÿ1 �23�
Using a similar argument it can be shown that the other three schemes re-

duce to the following approximations for Eq. (11):

Scheme 2: wn � wnÿ2 ÿ 2m � anÿ1; �24�
Scheme 3: wnÿ1=2 � wnÿ3=2 ÿ m � anÿ1; �25�
Scheme 4: wn � wnÿ1 ÿ m

2
� �an � anÿ1�: �26�

The Scheme 2 approximation of the two ODEs (8) and (11) is a pair of leap-
frog formulae. The approximate solution splits into two disjoint solution sets
generated with n � 0; 2; 4; . . . and n � 1; 3; 5; . . .. These are fwev; aodg and
fwod; aevg where ``ev'' stands for even integers and ``od'' for odd. Scheme 3
gives the same leap-frog scheme as Scheme 2 (with n odd there), but the time-
step size is halved here. This scheme is designed to explicitly select only one of
the disjoint solution sets which appears in Scheme 2. The ODE pair (8) and (11)
is approximated by the trapezoidal rule for Scheme 4.

3.3. Approximation of the ODEs for r and F

We now investigate how the ODE (13) derived from Eqs. (7)±(9) is ap-
proximated by the schemes. Again we only derive the Scheme 1 approximation
for Eq. (13) and state the others.

Starting with Eq. (15) from Scheme 1, we substitute for an and anÿ2 from
Eq. (17) and wnÿ2;wnÿ1;wn from Eq. (16) to obtain (after rearrangement and
division by Dt)

En=2�
Xnÿ1

m�1

J m
0 Enÿm � 0

for n P 1, where

Ek � Fk ÿ Fkÿ2 ÿ m

2
�rk � 2rkÿ1 � rkÿ2� ÿ 1

2
�ek � 2ekÿ1 � ekÿ2�
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for all k P 1 and all quantities are zero for k6 0. The vector sequence fen: n �
0; 1; . . .g is de®ned by the following trapezoidal rule approximation of the
RPIE (12):

e0 � 0; Dt en=2�
Xnÿ1

m�1

J m
0 enÿm

( )
� en �27�

for n P 1. It is easy to show that Ek � 0 for all k P 0, and so Scheme 1 reduces
to the following approximation of Eq. (13):

Scheme 1: Fn � Fnÿ2 � m

2
�rn � 2rnÿ1 � rnÿ2� � Dt

2
�en � 2enÿ1 � enÿ2�

�28�
for n P 1.

Using a similar argument it can be shown that the other three schemes re-
duce to the following approximations for Eq. (13):

Scheme 2: Fn � Fnÿ2 � 2mrnÿ1 � 2 Dt enÿ1; �29�
Scheme 3: Fn � Fnÿ1 � mrnÿ1=2 � Dt enÿ1=2; �30�
Scheme 4: Fn � Fnÿ1 � m

2
�rn � rnÿ1� � Dt

2
�en � enÿ1�; �31�

with enÿ1=2 de®ned by

e1=2 � 0; Dt enÿ1=2=2�
Xnÿ1

m�1

J m
0 enÿ1=2ÿm

( )
� enÿ1=2: �32�

As for Eq. (11), Schemes 2 and 3 result in leap-frog approximations for
Eq. (13), and Scheme 4 gives the trapezoidal rule.

4. Stability of the basic schemes

We now examine the stability of the four schemes described in Section 3 for
the integro-di�erential system (6)±(9). We begin by writing each approximation
as a vector di�erence equation and use ampli®cation matrices to characterise its
stability. This is analogous to the stability analysis carried out for a scalar
RPIE in Refs. [10,11], and for the fully discretised (i.e. space and time ap-
proximated) scheme in Refs. [8,9]. This approach allows the stability properties
of each scheme to be investigated and compared numerically for di�erent
values of the scaled frequency m � x Dt, and the results of this are summarised
in Fig. 1.

However more insight into the schemes' behaviour (for this unaveraged
system) can be obtained by considering their alternative formulation as
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approximations of the ODE pairs (8) and (11) for (r; a) and Eqs. (6) and (13)
for (w;F) coupled by the RPIE (12). It has been shown in Ref. [11] that the
trapezoidal rule gives stable solutions of RPIEs like Eq. (12), and in Sec-
tion 4.2 we show that the stability limit for the approximations of each of the
ODE pairs is the same as that computed by the respective ampli®cation ma-
trices in Section 4.1. The reasons for this and the causes of weak (i.e. poly-
nomial) instabilities are discussed in Section 4.3.

4.1. Stability of the integro-di�erential system

Here we investigate the stability of Schemes 1±4 for the full integro-di�er-
ential system (6)±(9). We examine how a perturbation of the approximate
solution is propagated by the schemes. This is in the spirit of the de®nition of
absolute stability given by Baker [14], Def. 6.1.

We begin by introducing the solution 6-vector

zn �

rn

Fn

wn

an

0BBB@
1CCCA for Schemes 1; 2; 3; zn �

rnÿ1=2

Fn

wnÿ1=2

an

0BBB@
1CCCA for Scheme 4

and rewrite each of the schemes in the form

Q0zn � bn � 1

2
Qnz0 �

Xnÿ1

m�1

Qmznÿm for n P 1;

Fig. 1. Graphs of the ampli®cation matrices kP nk2 against time level n for m � Dt�1; 2� with Dt
adjusted so that m is (a) 5% below and (b) 2% above the predicted stability limit for Schemes 1

(solid), 2 (dashed) and 3 (dotted). Scheme 4 (dash-dot) is unconditionally stable, and Dt is set equal

to the maximum of that used for the other schemes.
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where we use the convention
P0

m�1 � � 0. The vector bn 2 R6 contains the in-
homogeneous terms from Eq. (8) and the Qm 2 R6�6 are coe�cient matrices
determined by the particular form of the scheme. The problem has initial data
zn � 0 for n6 0.

For Scheme 1 the matrices Qm are derived from the algorithm de®ned by
Eqs. (14)±(17) and are:

Q0 �

1 � � � � �
� 1 � � 2=Dt �
� � 1 � � 2=Dt

ÿDt=2 � � 1 � �
� � � ÿm1=2 1 �
� � � ÿm2=2 � 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

Q1 �

� ÿ2m1 ÿ2m2 � � �
� ÿ2J 1

0 � � � �
� � ÿ2J 1

0 � � �
Dt J 1

0 � � � � �
� � � ÿm1 � �
� � � ÿm2 � �

0BBBBBB@

1CCCCCCA;

Q2 �

1 � � � � �
� ÿ2J 2

0 � � � �
� � ÿ2J 2

0 � � �
Dt J 2

0 � � � � �
� � � m1=2 1 �
� � � m2=2 � 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

Qm �

� � � � � �
� ÿ2J m

0 � � � �
� � ÿ2J m

0 � � �
Dt J m

0 � � � � �
� � � � � �
� � � � � �

0BBBBBBBB@

1CCCCCCCCA
for m > 2. The dots indicate a zero entry. The other schemes give rise to similar
coe�cient matrices.

The stability analysis involves investigating the evolution of a perturbation
g0 of an approximate solution sequence fzn: n � 0; 1; . . .g introduced at the pth
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step (where p P 2) and then followed through the subsequent time levels of the
approximation. The perturbed solution sequence is fz0; . . . ; zpÿ1; zp � g0;
zp�1 � g1; . . .g, and it is easy to show that the perturbations gn satisfy

Q0gn �
Xn

m�1

Qmgnÿm;

where the matrices Qm are as de®ned above. Essentially the same system is
obtained for perturbations in the approximate solution sequence at levels p � 0
and p � 1.

We say that the scheme to generate the approximate solution is stable on the
time interval �0; T � if there is a constant C independent of Dt and n such that

kgnk6Ckg0k
whenever tn6 T . This is equivalent to the standard Richtmyer and Morton
de®nition [15], Section 4.6. The scheme is said to be exponentially unstable if
there are constants k > 1 and C such that at least one perturbation sequence
satis®es

kgnkP Ckn;

and weakly unstable otherwise (i.e. kgnk can grow like a polynomial in n).
It can be shown (see e.g. Refs. [9,10] for more details) that the perturbations

gn for n P 1 introduced by perturbation g0 at time level p P 2 can be written as

gn � P ng0;

where the P n are 6� 6 ampli®cation matrices whose entries depend on the
coe�cient matrices Qm through the recursive formula

Q0P n �
Xn

m�1

QmP nÿm

for n P 1 where P 0 � I6, the 6� 6 identity matrix. Clearly the scheme is stable
if the matrix 2-norm of the P n satis®es kP nk26C for all n6 T=Dt.

The stability of the four schemes is examined by evaluating kP nk2 for the
respective ampli®cation matrices at various values of m. Schemes 1 and 3 ap-
pear to be exponentially unstable if m > 2, and Scheme 2 to be exponentially
unstable if m > 1. Scheme 4 seems to be unconditionally stable (i.e. stable for
all m). These stability limits are con®rmed by the ODE analysis in the next
section. Fig. 1 shows typical graphs of kP nk2 against n for the four schemes
with m � Dt�1; 2� where Dt is adjusted so that in the left plot m is 5% under and
in the right plot 20% over the predicted stability limit for each scheme. It is
clear that above the stability limit the ampli®cation matrices for Schemes 1±3
grow exponentially, while below the limit (after a short settling in period)
Scheme 1 has kP nk2 � O�n2�, Scheme 2 has kP nk2 � O�n� and Scheme 3 has
kP nk2 � O�1�. Scheme 4 satis®es kP nk2 � O�1� in all cases.
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4.2. Exponential instability of the ODE pair approximations

The stability analysis of the previous section can be used to predict whether
a scheme for the system (6)±(9) will be stable or not at any particular value of m.
However it does not give much insight as to what causes the stability restric-
tions on m, and this can be seen more clearly by considering the equivalent but
reformulated set of equations consisting of the ODE pairs (8) and (11) for (r; a)
and Eqs. (6) and (13) for (w;F) linked together by the RPIE (12).

Regarding e as the (known) forcing term and z � �r; a;w;F; e�T 2 R8 as the
(unknown) solution vector, we see that the system decouples into an ODE pair
for the ®rst three solution components and a coupled ODE±RPIE system for
the last ®ve. Thus necessary and su�cient conditions for exponential instability
of a numerical approximation of the system are that either the approximation
of the ODE pair (8) and (11) is exponentially unstable, or that the approxi-
mation of the remaining ODE±RPIE system is exponentially unstable. It has
been shown in Ref. [11] that the trapezoidal rule approximations Eqs. (27) and
(32) of the RPIE (12) are stable, and so the approximate solution e will be
bounded if e is smooth. If e is bounded but not smooth, e.g. en � �ÿ1�ne, then e

can grow like n. So provided e is bounded, wn and Fn are the solutions of a pair
of discretised ODEs whose right-hand side can grow at most like O�n�, and
hence they cannot grow exponentially unless the approximation used for the
homogeneous ODEs is exponentially unstable. Thus the complete system will
be exponentially unstable if and only if either of the homogeneous ODE pair
approximations are exponentially unstable.

This means that the numerical approximation will be at most weakly un-
stable if m is within the stability limit for the ODEs, and we now carry out a
stability analysis of the ODE schemes (Sections 3.2 and 3.3) with no forcing
terms (i.e. take e; e � 0). The analysis is standard (see e.g. Ref. [16]) and we
shall give brief details for Scheme 1 and just quote the stability limit for the
other three schemes. We note that the ODE pair approximations have the
same form for the a;w and F; r equations, and so we need only consider one
of them.

Note that this is a similar situation to that occurring in the ``¯at plate'' EFIE
algorithm used in Ref. [2] to compute only the induced current (and not the
charge) when P is a ¯at plate. The space-exact version of this is the system of
equations (8), (11) and (9), and this algorithm is also at worst weakly unstable
if neither of the approximations used for the ODE pair and individual RPIE
are exponentially unstable [7].

When e � 0 the reduced version of Scheme 1 is

wn � wnÿ2 ÿ 2m � anÿ1;

an � anÿ2 � �m=2��wn � 2wnÿ1 � wnÿ2�: �33�
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The scheme is exponentially unstable if there is a solution of Eq. (33) of the
form �wn; an� � knC for some k 2 C with jkj > 1 where C is a non-zero,
complex three-vector. Substituting this ansatz into Eq. (33) and dividing by
knÿ2 gives

M�k�C � 0;

where M�k� is the matrix

k2 ÿ 1 2km1 2km2

ÿ�k� 1�2m1=2 k2 ÿ 1 0

ÿ�k� 1�2m2=2 0 k2 ÿ 1

0B@
1CA:

Hence the scheme is exponentially unstable if there is a value of k with jkj > 1
that satis®es det M�k� � 0. The determinant of M is zero if and only if k � �1
or

k2 � �m2 ÿ 2�k� 1 � 0

for m � jmj. The product of the roots of this quadratic is 1, and so necessary and
su�cient conditions to rule out exponential instability are that both roots are
equal to 1 in modulus. This can only happen if the roots are a complex con-
jugate pair, that is if m6 2. Thus Scheme 1 will be exponentially unstable when
m > 2.

The stability limit for Scheme 3 is also m6 2, and that for Scheme 2 is m6 1.
The trapezoidal rule Scheme 4 is unconditionally stable.

Note that this analysis indicates the relative stability of the four schemes
when an accurate spatial representation is used for the full spatially dependent
system. However, the stability properties of the full spatially dependent case
depends in a rather complicated way on both the time-stepping and spatial
approximations used, as well as the interaction between them. This is explored
in detail in Refs. [8,9] for one algorithm using a mixed ®nite element on an
equilateral spatial mesh.

4.3. Weak instability

As shown in Fig. 1, Schemes 1 and 2 admit weakly unstable solutions even
when m is small enough to rule out exponential instability. We see below that
these unstable solutions are oscillatory and solve the homogeneous (en � 0)
versions of the di�erence equations approximating the ODE pairs for w; a and
r;F but do not satisfy the initial conditions that all quantities are zero for
t6 0. However they can be excited by sharp changes in the incident ®eld or
possibly by rounding errors. Schemes 3 and 4 do not have oscillatory weak
instabilities.
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In Scheme 1, the ODE approximation (33) for �w; a� in the homogeneous
case en � 0 admits an oscillatory solution

an � C�ÿ1�n m

m
� D�ÿ1�n m?

m?
; wn � C�nÿ n0��ÿ1�nm; �34�

where m? is perpendicular to m, and C;D; n0 are arbitrary constants. The con-
stants C, D and n0 are determined by the exact form and time of the ``kick'' that
activates this solution, and of course linear combinations of such solutions are
possible. The net e�ect is that jwnj can grow like O�n�.

This spurious solution also appears for the homogeneous �r;F� ODE pair,
since this uses the same approximation. However the solution (34) also excites
a di�erent unstable mode in �r;F�, linked through the RPIE approximations
(16) and (17). This does not have a simple closed form expression, but the
growth of the instabilities can be investigated by examining the solution of the
RPIE problem

�Dt=2� J 0
0 un � J n

0 u0
ÿ �� Dt

Xnÿ1

m�1

J nÿm
0 um � gn �35�

with forcing term gn set equal to the spurious solution wn or an from Eq. (34),
so that un behaves like rn or Fn, respectively. This then shows that rn grows like
n2 and Fn grows like n as n increases. Fig. 2 plots results with m � 1 and forcing
term (a) gn � �ÿ1�n and (b) gn � �ÿ1�n�nÿ 10� (with gn � 0 for n6 10) and the
linear and quadratic growth of the solution with n is clear. Similar results are
obtained for 06 m6 2.

Scheme 2 admits an oscillating solution in its ODE pairs which has the form
for �w; a�:

an � D�ÿ1�n m?
m?
; wn � 0:

Fig. 2. Graphs of the solution of the discreted RPIE problem (35) with m� 1 and forcing term en� 0

for n 6 10 and then (a) en� (ÿ1)n and (b) en� (ÿ1)n (n ÿ 10).
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This solution is possible because of the leap-frog form of the approximation.
The F values generated through the RPIE approximation (17) then grow lin-
early in n as indicated by the numerical experiments.

One mechanism for exciting these spurious solutions is that a local event in
the incident ®eld e kicks the �w; a� ODE pair spurious solution into life and,
because of its oscillatory nature, this is ampli®ed through the RPIE approxi-
mations to give growing values of F and r. An equivalent way of looking at it
is that the local event in the incident ®eld e translates into a long-term e�ect on
the inhomogeneous term e in the �r;F� ODE pair approximations (28) and
(29) and this in turn generates the polynomial growth in the �r;F� approxi-
mations.

Fortunately these polynomial instabilities are excited very little by rounding
error, but they may be excited by sharp changes in the incident ®eld e. To test
this and the general sensitivity of the schemes to the incident ®eld data, we
apply the schemes to a standard problem whose incident ®eld consists of a
single spike and is zero everywhere else ± an approximate delta function. The
result is shown in the ®rst plot of Fig. 3 where we have used m � �0:1; 0�, Dt �
0:1 and a spike in the incident ®eld at n � 10 given by e10 � �1; 1�. Note that this
spike contains equal contributions in the m and m? directions. We see, as pre-
dicted, that Scheme 2 has rn � O�n� and Schemes 3 and 4 show no growth.
However, the O�n2� growth of r predicted for Scheme 1 does not appear.

To understand why Scheme 1 is more stable than expected, we modify the
way the incident ®eld appears through the ODE approximation by replacing
Eq. (15) by

an � anÿ2 � m

2
�wn � 2wnÿ1 � wnÿ2� � 2 Dt enÿ1 �36�

Fig. 3. Results of the standard ``spike'' test described in Section 4.3, with m � �0:1; 0�, Dt � 0:01.

Scheme 1 (solid), 2 (dashed), 3 (dotted) and 4 (dash-dot) are indicated, as well the modi®ed version

of Scheme 1 (solid, marked ``1m'') described by Eq. (36).
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and perform the same spike test. We see in Fig. 3 that the modi®ed Scheme 1
(marked ``1m'') produces solutions that grow as expected. The reason for this is
that the �1

4
; 1

2
; 1

4
� averaging used on the incident ®eld of Eq. (15) in Scheme 1

exactly cancels the polynomial instabilities.

4.4. Summary of stability results

The trapezoidal rule ODE approximation of Scheme 4 is unconditionally
stable and the staggered grid leap-frog scheme used in 3 is stable subject to the
reasonable step size restriction m6 2. Schemes 1 and 2 are exponentially un-
stable when m > 2 and m > 1 respectively, and are weakly unstable otherwise.
This weak instability is observed in the growth of the ampli®cation matrices
described in Section 4.1 and explained in terms of a weak instability in the
ODE pair approximations described above. However, this instability, if present
in the full, space-dependent problem, would not grow quickly enough to cause
serious problems since the massive amount of computer time required prob-
ably precludes running the problem for long enough to see it.

5. Time averaging

Although the trapezoidal rule is a stable approximation for space exact
RPIEs like Eq. (9) [11], fully space and time discretised RPIE schemes are often
extremely unstable, with exponentially oscillating instabilities [10]. For this
reason a time averaging step is often added to solution algorithms for the full
integro-di�erential system (1)±(4) to improve their stability (see e.g. Refs.
[2,3,6,7,12]). A study of the scalar RPIE problem in Ref. [11] found that the
time averaging formula (37) used by Rynne [12] produces more stable results
than other methods, and we just consider this formula here.

Rynne's averaging procedure is described in Ref. [3] (see also Refs.
[2,8,9,12]) for the full system (1)±(4). One way to apply the averaging once the
approximate solution is found up to time level tnÿ1, is to take two further
steps to compute the solution components at times tn and tn�1 and then re-
place Fn by

1
4

Fn�1 � 2Fn � Fnÿ1
� 	

: �37�

All the components at time tn�1 are then deleted. On the face of it, this process
takes two temporary steps forward to advance the approximate solution by
only one step, and so is roughly twice as costly as the unaveraged scheme.
However, after some rearrangement, this averaging can be done for only
marginal extra cost to the basic algorithm (see e.g. Ref. [11]).
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Restricting our attention to the Fourier transformed equations (6)±(9) we now
describe Rynne's time averaging strategy for Scheme 1 of Section 3. Assuming
that all the solution components frm;wm; am; m6 nÿ 1g, fFm; m6 nÿ 2g as
well as the auxiliary quantity Fnÿ1;� have been computed, the next step is to
update the solution to get rn;wn; an, Fnÿ1 and Fn;�. The algorithm is:

rn;� � rnÿ2 ÿ 2m � Fnÿ1;�;

wn;� � Dt rn;�=2�
Xnÿ1

m�1

J m
0 rnÿm � J n

0 r0=2

 !
;

an;� � anÿ2 � m

2
�wn;� � 2wnÿ1 � wnÿ2� � Dt

2
�en � 2enÿ1 � enÿ2�;

Fn;�� � 2an;�

Dt
ÿ 2J 1

0 Fnÿ1;� ÿ 2
Xnÿ1

m�2

J m
0 Fnÿm ÿ J n

0 F0 �38�

followed by the averaging step

Fnÿ1 � 1

4
Fn;�� � 1

2
Fnÿ1;� � 1

4
Fnÿ2 �39�

and the correction step

rn � rn;� ÿ 2m � �Fnÿ1 ÿ Fnÿ1;��;
wn � wn;� � Dt�rn ÿ rn;��=2;

an � an;� � m

2
�wn ÿ wn;��;

Fn;� � Fn;�� � 2

Dt
�an ÿ an;�� ÿ 2J 1

0 �Fnÿ1 ÿ Fnÿ1;��: �40�
The whole process above looks quite complicated, but it has been designed

for computational e�ciency rather than ease of exposition. The main point is
that the convolution sums are by far the most expensive part of the calcula-
tions, and this arrangement of the time averaging requires that they are
computed only once per step. The other calculations add relatively little to the
overall time taken by the algorithm. These comments also apply to the fully
discretised EFIE schemes, where the dominance of the convolution sum cal-
culation is even greater.

Stability analysis of the scheme de®ned by Eqs. (38)±(40) is carried out in a
similar manner to that in Section 4.1. The algorithm is ®rst condensed by using
Eq. (38) to eliminate rn;�;wn;�; an;� and Fn;�� from Eqs. (39) and (40), leaving
equations for the ®ve variables rn;wn; an;Fn;� and Fnÿ1. The details are tedious,
but the system of equations that results has the form

Q0
Azn � bn � 1

2
Qn

Az0 �
Xnÿ1

m�1

Qm
A znÿm;
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where now zn is the vector

zn � �rn;wn; an;Fn;�;Fnÿ1�T 2 R8;

the coe�cient matrices are Q0
A;Q

1
A; . . . 2 R8�8 and the inhomogeneous terms are

contained in bn 2 R8. Following the same process as in Section 4.1, we see that
stability of this time-averaged scheme depends on the ampli®cation matrices
P n

A 2 R8�8 de®ned recursively by

Q0
AP k

A �
Xk

m�1

Qm
A P kÿm

A

with P 0
A � I8, the 8� 8 identity matrix. Ampli®cation matrices P n

A for Schemes
2±4 are derived similarly.

Results of numerical tests to evaluate kP n
Ak2 against n are shown in Fig. 4 for

Schemes 1 and 4. For Scheme 1, the tests indicate that the limit on the time-step
size to avoid exponential instability is cut signi®cantly to about m6 1:2. For the
other schemes (including the unconditionally stable trapezoidal rule Scheme 4),
the addition of averaging appears to render them exponentially unstable for all
but the smallest values of Dt. The exponential growth is quite slow for small Dt,
and in these cases it is hard to determine stability or instability with con®dence.
The behaviour of the staggered grid Scheme 3 is rather unusal since it seems to
have a window of stability for m � 0:5� 0:1 and is exponentially unstable
otherwise.

Fig. 4. Graphs of the ampli®cation matrices kP n
Ak2 against time level n for the time-averaged ver-

sions of Schemes 1 and 4. We have m � Dt�1; 2� with four di�erent values of Dt such that m � 0:2

(solid), m � 0:4 (dashed), m � 0:8 (dotted) and m � 1:6 (dash-dot). The stability limit for the un-

averaged Scheme 1 is m6 2 and unaveraged Scheme 4 is unconditionally stable.
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6. Accuracy

In order to test the performance of the four numerical schemes we need to be
able to ®nd the exact solution of the system (6)±(9). The potentials a and w are
auxiliary quantities and F and r are the variables of physical interest. Un-
fortunately there are not many choices of the forcing function e for which exact
values of r and F can be found explicitly or even just very accurately. The ®rst
test we describe below is chosen mainly because it has a straightforward exact
solution, while the second is chosen to illustrate what happens with the widely
used Gaussian pro®le incident ®eld.

To see what is required, we consider Eqs. (6), (13) and (12) linking the
incident ®eld e with r and F. The equations are repeated here for conve-
nience:

_r� x � F � 0; _F ÿ xr � e;

Zt

0

J0�wR�e�t ÿ R� dR � e�t�:

We generate the ®rst test problem below by choosing e, calculating e from the
integral and solving the inhomogeneous ODE system for r and F. The second
is found by choosing F, calculating r from the ®rst ODE and e from the sec-
ond, leaving e to be found from the integral.

In the ®rst test problem we choose e � xe0 sin xt, so that e can be computed
explicitly from the integral (12) (see e.g. Ref. [17], Section 6.674), giving

e�t� � xe0tJ1�xt�; �41�
where J1 is the ®rst kind Bessel function of order 1. The exact solution for r is

re�t� � a�xt cos xt ÿ sin xt�; �42�
where a � û � e0=2 for û � x=x, and we have used the initial conditions r�0� �
_r�0� � 0 (the second equality follows from Eq. (6) because F � 0). Finally,
integrating Eq. (13) and using the zero initial conditions gives the exact solu-
tion

Fe�t� � aû�xt sin xt � 2cos xt ÿ 2� � e0�1ÿ cos xt�: �43�
The solution components r and F oscillate with frequency x and have am-
plitude growing like O(t). This is illustrated in Fig. 5.

The second test problem has a Gaussian pro®le pulse-shaped incident ®eld,
which is a common test case for scattering problems. To build this test prob-
lem, we start with the choice

F�t� � 1

1

� �
�t ÿ t0� eÿq�tÿt0�2 �44�
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which is concentrated around t � t0, and use the ODE system (13) to obtain

r�t� � x1 � x2

2q

� �
eÿq�tÿt0�2 ;

e�t� � 1ÿ 2q�t ÿ t0�2 ÿ x1�x1 � x2�=�2q�
1ÿ 2q�t ÿ t0�2 ÿ x2�x1 � x2�=�2q�

 !
eÿq�tÿt0�2 :

The incident ®eld that generates this solution is then found by substituting the
expression for e�t� into Eq. (12), and using numerical quadrature to evaluate
the incident ®eld e�t� to high accuracy (relative error �10ÿ11 or better). Now
these functions are not strictly zero for t6 0, but because they decay so quickly
away from t � t0, they can be made insigni®cantly small when q and t0 are big
enough. We show plots of the components of this solution for the choice
q � 100, t0 � 1 in Fig. 6.

We show results from both test cases run over the time interval [0,2.5]. The
error in F and r is measured over the whole time interval using the discrete 2-
norm, then normalised by dividing by the discrete 2-norm of the exact solution
over the same time levels. The schemes are all second order accurate and stable,
and so we expect to get second order convergence of the approximations. This
is observed in test results shown in Figs. 7 and 8, where all errors behave like
C Dt2 as Dt! 0. (To verify this, measure the slopes on the log±log plots.) Next
we observe that the Scheme 3 results are about four times as accurate as those
of Scheme 2 in both tests. This is due to Schemes 2 and 3 using very similar
leap-frog approximations of the ODEs, with the e�ective step size in Scheme 3
being half of the step for Scheme 2. Given the second order accuracy of the

Fig. 5. Incident ®eld and exact solution used in Test 1 given Eqs. (41) and (43) at the relatively high

frequency x � �12; 16�. r is similar to F1 but is out of phase with it.
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schemes, this translates to the Scheme 3 results being four times as accurate as
those of Scheme 2 as observed.

It is not possible to describe the observed behaviour of Schemes 1 and 4
(Rynne and trapezoidal rule) in such simple terms. An analysis of the local
truncation errors of the ODE parts of the schemes suggests that the trapezoidal
rule scheme accuracy should lie between that of the two leap-frog schemes, and
that is what is seen in test 1. However, this certainly does not hold for the test 2
results, where Scheme 4 is better than both leap-frog schemes. The reason for
this is that errors from the RPIE and ODE solutions can interact to give
bene®cial cancellations for some types of incident ®eld. The Rynne scheme also

Fig. 6. Incident ®eld and exact solution used in Test 2 determined by Eq. (44) with q� 100, t0� 1

and frequency x � �0:6; 0:8�. The solution and incident ®eld have a Gaussian pro®le.

Fig. 7. Test 1 errors in the four schemes for various step sizes Dt with frequency x� (12,16) over

time interval [0,2.5]. The results shown are typical of those obtained over a wide range of fre-

quencies.
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bene®ts from these cancellations in test 2, and this is particularly clear for the
errors in F.

The main factor behind these error cancellations is the way the incident ®eld
e is averaged in the ODE approximations (15) and (22b) for Schemes 1 and 4,
respectively. For example, experiments with di�erent combinations of incident
®eld time levels (for example replacing Eq. (15) by Eq. (36)), dramatically re-
duce the accuracy of Scheme 1 in the test 2 results. To see this, recall that in
Section 3.3 we showed that all four schemes implicitly contain approximations
of the closed ODE system (6) and (13) for F;r. The forcing term e in this ODE
system is determined from the incident ®eld e by a trapezoidal rule approxi-
mation of the RPIE (12). The averaging used on the incident ®eld e in Schemes
1 and 4 appears in the same form for e in the approximations (28) and (31) of
the ODE for F. It is bene®cial because it kills the sawtooth oscillations (see
Ref. [14], Ch. 6.10) that appear in trapezoidal rule approximations of ®rst kind
Volterra integral equations like (12).

7. Conclusions

We have examined the behaviour of approximations of the full electro-
magnetic scattering problem (1)±(4) posed on an in®nite ¯at plate, where we
treat the space variation exactly and discretise only in time. To do this we ®rst
used the classical separation of variables technique (into time and space de-
pendent terms) to obtain the system of ODEs and integral equations (6)±(9)
which govern the temporal variation of each spatial mode. (The spatial modes
are the usual Fourier modes that appear when separation of variables is

Fig. 8. Test 2 (Gaussian pulse) errors in the four schemes for various step sizes Dt with frequency

x� (0.6,0.8) over time interval [0,2.5]. The results shown are typical for frequencies x6 1, but for

x > 3 they look quite similar to the results of test 1.
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applied to PDEs.) We then examined the behaviour of four di�erent ap-
proximation schemes, paying particular attention to stability and accuracy.
The ®rst scheme is the space-exact counterpart of the scheme used by Rynne
[3] for the full scattering problem, and the others can also be related back to
approximations of that problem.

When considering stability of the schemes (without averaging) in Section 4,
we found that Scheme 2 (which uses a leap-frog approximation of the ODEs)
requires step sizes that are half that required by Schemes 1 and 3 to maintain
stability, while Scheme 4 (which uses the trapezoidal rule for the ODEs) is
unconditionally stable. Our tests of accuracy in Section 6 show that the errors
in all four schemes are O�Dt2� as Dt! 0, but it is hard to generalise about the
size of the coe�cients of the leading term in the error since these are strongly
dependent on the incident ®eld e. We do observe that Scheme 3 is usually 4
times as accurate as Scheme 2, and Schemes 1 and 4 usually perform at least as
well as the other two, with Scheme 1 winning in many cases. Also, Schemes 1
and 4 bene®t from systematic error cancellation in some problems to give
unexpectedly good results.

We have examined the stability of both the unaveraged and averaged
versions of the schemes, and the results of Section 5 indicate that the aver-
aged versions of Schemes 2±4 should be rejected because they are exponen-
tially unstable. Note also that the averaged version of Scheme 1 is less stable
than its unaveraged version. These results go against the intuition that
temporal averaging should make the schemes more stable, and indicate that
approximations of the full electromagnetic scattering problem (1)±(4) which
have good spatial accuracy are not likely to bene®t from being averaged in
time.

A summary of results is given in Table 1, and based on the evidence pre-
sented for the unaveraged schemes in the table it is clear that Scheme 3 is
signi®cantly better than (and hence should always be chosen in preference to)
Scheme 2. Scheme 1 seems to be the ``best'' approximation, since it usually

Table 1

Summary of results from Sections 4 and 6

Scheme Not averaged Averaged

Stable when Size of error Stable when

xDt < (relative to Scheme 3) xDt <

1 (Rynne) 2 0.1±1 1.2

2 (leap-frog) 1 4 Unstable

3 (Staggered leap-frog) 2 1 Unstable

4 (Trapezoidal) 1 0.5±2 Unstable

The ``Size of Error'' entry is measured with the same step size Dt and frequency x. The distinction

between ``Averaged'' and ``Not Averaged'' refers to the results of Section 5.
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gives better results than Schemes 3 and 4, and sometimes gives much better
results. However we think that Scheme 4 is worthy of further investigation for
the full scattering problem, where its in®nite stability interval might help to
counteract the instabilities that arise from the complicated interaction between
spatial and temporal approximations.
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