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It is shown, using a recent superfield formulation of Wess-Zumino gauges, that they are "good" gauges i.e. that they 
are consistent with translational invariance and hence may be used in effective potential calculations. This contrasts with 
the SUSY covariant gauge and the SUSY R~ gauge, which are "bad" gauges. 

In a recent preprint [ 1] Kreuzberger et al. showed 
that it was possible to implement the Wess-Zumino 
gauge in a superfield formulation. They used the auxi- 
liary (super)field method of  gauge fixing [2] with 
chiral and antichiral auxiliary superfields B and B to 
give the gauge fixing term. 

S g f = t r l  f d 4 x d 4 0 ( B K V + B Y ,  V + ~ B B ) ,  (1) 

V is a vector superfield and K is chosen to be FaD~ 
with 

F ~ = -O&(~u)~&fu.  (2) 

t~ = 0 imposes the homogeneous gauge conditions 

DZKV= DZKV= 0 ,  (3) 

which gives rise to  the following component field 
equations: 

f~ota =O , 

( f  " O)C = ( f  " O)(M - iN)  = ( f  . O)(M + iN) = 0 

(+ fermionic terms) . (4) 

We have chosen to expand our vector superfield as 

V= C+ iO× - ion( 

+ ½ i02(M + iN) - } i02(M - iN) - (OoU-O)v u 

I --/./ + i020(~, + ~ e i~uX ) -- i020 (k+ } oui~u~O 

+ ½ 0202(d + ½ V2C) .  (5) 

Kreuzberger et al. then note that when fu is a suit- 
able gauge condition for ou, ( f"  b) is the kinetic ker- 
nel of  the Fadeev-Popov operator, which is invertible, 
so the conditions (4) are effectively C = M  = N = 0, 
which are the Wess-Zumino gauge conditions. In this 
paper we shall call the ot 4= 0 case the Wess-Zumino 
like gauge. 

We shall use the gauge-fixing (1) and the superfield 
techniques used by Piguet and Sibold [3] to investi- 
gate the gauge dependence of  the effective action and 
effective potential. The result o f  these investigations 
is that the Wess-Zumino like gauges (and hence the 
Wess-Zumino gauge itself) are "good" gauges in the 
sense of  Fukuda and Kugo [4], in other words, 
gauges for which it is possible to fmd translationally 
invariant minima of  the effective action. Another way 
of  stating this is that it is possible to derive the Nielsen 
identities for Wess-Zumino like gauges [5,6]. It is 
therefore.possible to perform effective potential cal- 
culations in the Wess-Zumino like gauges, which con- 
trasts with the case of  SUSY covariant gauge-fLxing, 
which, as observed by Miller [7], is not a "good"  
gauge. 

We derive the Nielsen identities by introducing an 
extra BRS [8] transform on the gauge parameter t~ 

for=e3 ,  63 = 0  (6) 

(e = BRS parameter, e and 3 anticommuting). This 
gives rise to the following extra term in the action 
which is needed in order to maintain invariance under 
the extended set of  transformations: 
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• f d 4 x  d40(/3C_B +/3C B ) .  (7) 

The other BRS variations are given by 

6 V = e (C+ - C+ 

+ ~ h~ IV, IV, [V, [V,C+-(-ly'~+]]]]) 
n > l  

= cO(v ,  C+) ,  

8C+ = -eC+C+, 8C+ = -eC+C+, 

6C_ = eB, 8C_ = eB ,  (8) 

where the coefficients h n may be derived from 

8 exp(V) = e exp(V)C+ - eC+ exp(V) .  (9) 

The rest of the action, apart from (7) is given by 

l f d4x d40(BFDV + BFDV + otBg) S SyM + 

ate to the integrand (full, chiral or anti-chiral) and the 
subscrpt c~ denotes a semiclassical field. We can write 
(12) symbolically as 

s(r) + ~ ar/a~ = o. (13) 

If we differentiate eq. (13) with respect to/3 and then 
set 13 = O, we find 

s ( - ~ r / a ~ )  + a r / a a  = 0 .  (14) 

For a gauge theory coupled to scalars this equation is 
the effective action precursor of the Nielsen identity. 
Just as in the ordinary Yang-MiUs case, however, the 
Nielsen identity will only emerge if the fBc~ 6 P/SC_ 
and fBc~6P/6C'_ terms are zero. Carrying out the 
grassmanian integrations we see that this will be the 
case if 

D2Bc~ = l)2Bc~ = 0 , (15) 

which, on substituting for Bc~ and Bc~ using their 
equations of motion, becomes 

1 fd4x d40(C_FD + C FD)Q(V, C+) 
8 

- fd4x d40 p Q ( V ,  C+) --  fd4x d20 oC+C+ 

- f d4x d20 8C+C+ , (10) 

where p and o, ~ are the sources coupled to the BRS 
variations of  the fields and SyM is given by 

Sy M _ 1 . f d4x  d20 [DD exp ( -gV)D ~ exp(gV) 
32g2k a 

× 213 exp ( - g  V) D~ exp (gV)],  (11) 

with k8 bd = fabcfacd, where f is a structure constant. 
If  we perform the BRS variations on the generating 
functional and Legendre transform the result we ob- 
tain the following Slavnov identity for the effective 
action 1". 

/ ' ( S P S P + S P  5P +SP 5P 

cr ]+t~r +Bc~-~] _+~c~8c_! ~ = 0 ,  (12) 

D2KVc~ = I)2/£ Vc~ = 0 .  (16) 

This is identical in form to (3). For space-time inde- 
pendent semiclassical scalar fields and with the other 
fields set equal to zero to obtain the effective poten- 
tial, (16) is obviously satisfied (see eq. (4)). The 
Wess-Zumino like gauge is therefore a "good" gauge. 
The equivalent condition for SUSY covariant gauge 
fixing 

DZD 2 Vc~ = DZD2 Vc~ = 0 , (17) 

gives rise to a component equation of the form [8] 

den + V2Cc~ = 0 , (18) 

which is not necessarily satisfied for space-time in- 
dependent semiclassical fields. 

To make these considerations a little more con- 
crete we consider the component expansion for the 
gauge fixing in (1). We first eliminate B and B using 
their equations of motion (we have set 13 = 0) to give 

Sgf = - -~afd4x d40 (FDV) (F f )V ) ,  (19) 

which may be written in component form (dropping 
the fermionic bits) as 

where the integral sign denotes the measure appropri- 
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Sgf = l-'dot f d4x [(fuvu)(j 'uv v) 

- ½ ~uv(fuM - i f u N  ) ( / v  M + i f v N  ) 

+ (fuaUC) ( ? ~ c ) ] .  (20) 

If  we now choose fu = 2i3u, we find 

S g f :  - 1  f d 4 x  [duos) 2 + ~MV2M+ ~- N V 2 N  

+ (V 2C)2 + (fermionic terms)] .  (21) 

For SUSY covariant gauge-fixing the equivalent is 

Sgf=-lfd4x[(auvu) 2 + (d'l- V2C) 2 +MV2M 

+ NV2N + (fermionic terms)] ,  (22) 

d b  * b (27) = --gc~ai c~ T i/a/c~ , 

but the equation of  motion for a constant d field is 

db  1 *~b  = --~ga i I i/a/ , (28) 

so (27) cannot be satisfied for general a and the SUSY 
R t gauge is not a good gauge. However, if one replaces 
the a in the gauge-fixing by another parameter, say 3' 

Sgf = - ~fd4x  d40 [D 2 V b + ½g3'(D2/82) (a*Tbi](p])] 

X [D2Vb + ~g3"([)2/32)(a*Tbi/dPj)*], (29) 

one does have a good gauge if 3' = ½, in which the cross 
terms in the propagators still cancel for a = 1/2. 

One may check this explicitly by evaluating (29) 
for constant fields to fmd 

where the d term gives rise to the problems with the 
effective potential. 

If  we couple our gauge theory to chiral mat ter  
super fields 

Oi = h i  + i(0 o taR) 3uA i + ~ 0202 V2Ai + V/20 ~i 

- (i/x/2)02(3 u ~i)our  + 0 2F i , (23) 

the tree-level potential U is given in the Wess-Zumino 
like gauge by 

U = ½d 2 + ~ f ' i F i ,  (24) 

whereas in the SUSY covariant gauge it is given by 
• [81 

U = ~ [(~ - 1)/a] + (25) 

It is also possible to avoid the difficulty of  the gauge 
dependent d term that appears in the SUSY covariant 
gauge-fixing if one considers the superfield equivalent 
of  an R~ gauge [9] 

= _ l f d 4 x  d40 [D 2 vb + Sgf got(D 2 /a2)(a*Tbq¢i)] 

X [ [ ) 2 v b  + ~got ([ )2 /32)(a~Tbi jdpj )*] ,  (26) 

where a i is the vacuum expectation value of  ¢i and 
T b is a generator of  the symmetry group. The equiv- 
alent of  (18) in  the constant field limit is now 

Sgf = f d4x [ - (1 /2~)a  2 - (g3"/oO (a*TaiSai)da 

-- (g272/2ot) (a*Taijaj)2], (30) 

which gives, using (28). 

Sgf = fd4x [ - (1/2ot)d  2 + (2T/o~)d 2 - ( 2 7 2 / o 0 d 2 ] .  
(31) 

1 If  this is to be equal to zero we must have 7 = ~. 
The preceding examples should be compared with 

an 't Hooft  type gauge f'txing in an ordinary Y a n g -  
Mills theory coupled to scalars [6]. There one finds 

U = (1/2o0(oic~i)2 + ½p2q~2 _ (k/4!)q)4 , (32) 

when one has a gauge fixing of  the form 

B(~ uAU + vii i  ) + 1 orB2 . (33) 

The problem of the gauge variant term appearing in 
(32) is eliminated if we demand (c.f. eq. (15))Bc~ = 0 
which gives 

OidPi c~ = 0 . 
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