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Abstract. We show that it is possible to produce a 
convex effective potential using the tadpole method of 
calculation, both at zero temperature and in real time 
finite-temperature quantum field theory. We point out, 
however, that this does not evade the failure of the loop 
expansion in a theory with a non-convex classical 
potential at a temperature where the minima of the 
effective potential have moved in to the classical points 
of inflection. 

Introduction 

The formal convexity property of the effective potential 
[1] is in conflict with the result of explicit loop 
calculations for theories with a spontaneously broken 
(i.e. non-convex) classical potential. However, Fuji- 
moto et al. [2] suggested that, for certain critical values 
of the external current J, more than one saddle point 
could contribute to the calculation of the path integral. 
This has the effect of linearly interpolating across non- 
convex portions of the incorrectly calculated effective 
potential produced in a standard loop expansion. The 
"flat-bottomed bucket" shape that results is in agree- 
ment with lattice calculations [3] and the application 
of Wilson recursion relations [4]. 

In this paper we are interested in a convex effective 
potential at finite temperature and, to this end, we 
consider the tadpole method of calculation [5], which 
is especially convenient in the framework of real time 
finite-temperature quantum field theory (Thermo- 
Field Dynamics or T.F.D). This formalism has recently 
aroused much interest because of its calculational 
convenience compared with the older imaginary time 
formalism [6], [7]. A two-loop calculation of the finite 
temperature effective potential for a pure scalar theory 
has been carried out, for an unbroken potential by 
Matsumoto et al. [8], who remarked that the interpol- 
ation formula of Fujimoto et al. would suffice to cure 
the ills of the non-convex case. We shall see that this is 
only partially true, as was indeed pointed out by Rivers 

[9], in the context of an imaginary time formalism 
calculation. 

Tadpoles at Zero Temperature 

We follow the suggestion of Fujimoto et al. that the 
effects of subsidiary saddle points in the path integral 
should be taken into account, but instead of consider- 
ing a vacuum graph expansion to calculate the effective 
potential V, we use tadpoles. To find the critical values 
of J for which more than one saddle point may be 
important we note that, in graphical terms and with 
constant fields, J is just the slope of the tangent line to 
the curve V. Its intersection with the vertical axis, 
V-J~b,  gives the vacuum energy density of the 
system [10]. If we consider a spontaneously broken 
2 ~b 4 theory we can see from Fig. 1 that for J r 0 only 
one point on the curve gives a minimum energy 
density. However, for J = 0 both ( ~b ) and - ( ~ ) give 
a minimum, and we should find some way of in- 
corporating this into our calculational scheme. 

When just one minimum in the energy (i.e. saddle 
point in the path integral) contributes we can consider 
the usual expansion for V 

V(qS) = ~ 1  F"(p, = 0)(~b -- ( q~ ))" (1) 

where q~ is the (constant) classical field, (q~) its vacuum 
expectation value and F"(p~ = 0) is the n-point 1PI 
vertex at zero momentum. The differential of V 
evaluated at its minimum is given by the tadpole F t . 
Thus to obtain V we can calculate the tadpole and 
integrate it with respect to (q~) (see 2(b)). 

(a) t?~_ = F~o> therefore (b) V=Sd(c~)F~,>. 
(2) 

At J = 0  we ought to take into account the equal 
contributions of both minima by including both the 
tadpole at (~b) and that at - ( q ~ )  (the quantum 
corrections preserve the Z2 symmetry of the classical 
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potential  U in that  of V). We therefore write 

Flora, = r~,~> + r[<,~>. (3) 

In general, if the Lagrangian  has some symmetry  group 
G the various minima,  say (~b,) ,  can all the writ ten as 

J=0 

J#@ 

Fig. 1. The Spontaneously broken effective potential for a 24~ 4 
theory showing both J = 0 and J = 0 tangent lines. The non-convex 
portion that appears, incorrectly, in a standard loop expansion is 
shown dotted 

+ 
Fig. 2. The one-loop tadpole for 2q5 4 

(a) (b) 

Fig. 3a, b. Multiloop tadpoles must be one of these two general 
forms 

+ + 
(a) (b) 

F i g .  4 .  a S h o w s  a two-loop tadpole which contains a factor f.f2 
whereas b, which is proportional to f.fq, has 2 external legs 
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the group  t ransform of one part icular  min imum,  say 
( a ) ,  so F~otal can be thought  of as a function of ( a )  for 
the purpose  of integrating the tadpole to obta in  V. 

To  see the implications of (3) for the form of the 
effective potential  consider again a spontaneously  
broken 2~b 4 theory. Fo r  convenience in calculation we 
use dimensional  regularization and follow the methods  
of Lee and Sciaccaluga [11]. To  calculate the tadpole 
we must  work order  by order  in h, to any desired degree 
of accuracy. The "zero- loop tadpole"  is just  the 
differential of the classical potential  U. If we choose 

u = - ~m~q~ ~ + + , ~ .  (4) 

then the tadpole is 

U' = - m24, + ~,~q~4. (5) 

For  J ~- 0 only one of the min ima contr ibutes  and, 
upon integration, we recover U. However ,  at J -= 0, (3) 
applies and we have 

F,~o,,l = U'<~> + U'_<~>=0 (6) 

Thus our zero- loop effective potential  at J = 0, f rom 
the integrat ion of (6), is just a constant,  giving the 
desired linear interpolation. 

If we now consider the one- loop tadpole in Fig. 2 we 
find it is given by 

F l = _  if4~d4kT. 2 1 
32~z k - M2 (7) 

where f =  U" and M 2 = U'. After dimensional  regu- 
larization and minimal  subtract ion this becomes 

F ' -  f~51n MTg 2 (8) 
32rc # 

where #2 is the arbi t rary  mass-squared  introduced in 
the renormalizat ion.  Because f ( - q S ) = - f ( q ~ )  and 
M 2 ( - ~ )  = M2(qS) the contr ibut ions from (q~) and 
- ( ~ )  when J = 0 to the total  tadpole will cancel out, 
giving a constant  contr ibut ion to V and preserving 
the f la t -bot tomed bucket  shape. When J ~ 0 we re- 
cover the s tandard one- loop effective potential  upon 
integration of (8) 

1 Ma( lnM: 1"] (9) 
V = 64~2 \ # ~ - - 2  ]" 

We can see on general grounds that  this behaviour  will 
be mainta ined to all orders. The tadpoles must  be of the 
form shown in Fig. 3. The tadpole in Fig. 3a is p ropor -  
tional to f and that  in Fig. 3b to f2.  Inside the blobs the 
f ' s  must  always occur in pairs; otherwise we would 
have more  than one external leg, as we can see in 
Fig. 4b. All the other elements occurring in the tadpole, 
such a s  M 2, are symmetr ic  under  ( q5 ) ~ - ( q5 ) inter- 
change so, with a tadpole propor t iona l  to f ,  a sum over 
the two minima will give zero whatever  the order  in the 
loop expansion. 
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Tadpoles at Finite Temperature 

If we consider the calculation of a finite temperature 
effective potential using T.F.D. we obtain a similar 
convexification. The only mixing between the physical 
"1" fields and the thermal doublet "2" fields in T.F.D. 
occurs in the propagators and the vertices differ only in 
sign (not in structure). To obtain the required graphs 
for a finite temperature loop calculation of the tadpole 
one takes the zero temperature graph, fixes the external 
leg to be a "1" field and then distributes "1" and "2" 
labels over the ends of the propagators in as many ways 
as possible. For example, some of the two-loop tad- 
poles in the 2~b ~ theory are shown in Fig. 5. Although 
the form of the propagators is different at finite 
temperature 

1 ~ .~(k 2 - M z) 
d ~  - k 2 _  M2 + ie ZrCt ~ k ~ - -  i (10) 

2 2 eflllk~ 
d~2 = A2~ = - 2n i6(k  - M ) e ~ l  (11) 

1 2~zib(k 2 -- M 2) 
"122 ----- k 2 - M 2 - i e  e ~!1~oll - 1 (12) 

they are still (q~)~-~- (~b) symmetric. We can there- 
fore apply the diagrammatic arguments of the previous 
section to each tadpole of Fig. 5 in turn and observe 
that the J = 0 contributions from both minima cancel. 

Tadpoles for the Abelian Higgs Model  

As a simple example of a spontaneously broken gauge 
theory we consider an Abelian Higgs model. In order to 
use the same cancellation mechanism as in the 2 ~4 case 
we work in an R~ gauge. Despite the initial claim by 
Weinberg [5] that effective potential calculations are 
not possible in such gauges and the reservations by 
Jackiw about the possible gauge dependence of such 
calculations [12], this is perfectly feasible, as was 
shown by Fukuda and Kugo [13], providing the 
appropriate Nielsen identities [14] are satisfied. The 
full gauge-fixed Lagrangian is 

1 
L = - � 8 8  uv - ~ ( c 2 A  + ~ , j ( , ~ ) , ~ i )  2 

+ �89 e~ij(c~.$i)(9~A" 
;t 4 

+ �89 A: r ~ + �89 r ~ -4 !  ~ 

+ Oucc~'c-ee~cceij((o)iq~j (13) 

where E12 = - e21 = 1, el 1 = ~22 = 0 and ~2 = ~bl 2 + ~b22. 
With the given gauge fixing the allowed directions of 
symmetry breaking are constrained by the Nielsen 
identities to be parallel or antiparallel to (~b) [15], 
picking out two points on the ring of minima of the 
potential (see Fig. 6). As in the 2~b ~ theory only one of 
the minima will contribute to an evaluation of the 
effective potential when J 4 0, whereas for J = 0 both 
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2 1 2 2 1 

Fig. 5. Some two loop finite-temperature tadpoles for )~b* 

v 

Fig~ 6. The potential for an Abelian Higgs model. The direction of 
the symmetry breaking (~b) introduced in the gauge-fixing is 
marked, along with its intersection with the ring of minima 

/ \ 

/ \ 

\ / 
\ 

Fig. 7a-c. The one-loop tadpoles for the Abelian Higgs model 

points a and b contribute, giving a constant effective 
potential. 

We can see this at the one-loop level (the zero-loop is 
identical to the pure scalar) by considering the dia- 
grams in Fig. 7. The propagators and vertices necessary 
to evaluate these are listed in Appendix A and the 
results are 

1_ 
Fig. 7a=~(~b) i~d4k k 2 m E + k2-~Ee2(qS)2)Dn 

(14) 
1 

Fig. 7b e 2 (~)~e,j[. d 4 k ~  (15) 

 ig. 

-t ~(k2 - mE - e/~(q~)2!~ 
(16) / 

where D . = k  4 - k 2 ( m  2 - 2 e 2 ~ ( ~ b )  2)+e2(~b)2(e2~2. 
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(r "F ~m2), m21 = (2/2)(r  > 2 -- m 2 and m 2 = 
(2/6)(~b) 2 - m  E. The proportionality to ( r  which 
ensures the cancellation of tadpoles from the two 
minima is still present and the generalization of the 
one-loop result to all orders and finite temperature 
follows the same path as the scalar case. 

Discussion 

We have seen that it is possible to produce a finite- 
temperature, convex effective potential using T.F.D. 
tadpoles. However, as the temperature increases the 
minima of the effective potential creep inwards. At 
some temperature ( r  will reach the points of inflec- 
tion of the classical potential where M 2 = U" = 0, and 
the loop expansion will break down. This is almost 
obvious from the presence of M 2 as the mass term in 
the propagators of T.F.D., and explicit calculations 
provide confirmation. For instance the two-loop effec- 
tive potential of the pure scalar theory in the T ~ ~ ,  
M 2 ~  0 limit is given by (see appendix B) 

2 4 , 2r T 2 v = --,~m~r + ~-., r + ~ -  

~ 2 r  M 2 

+ 25-~X~4 l n ~ -  T2 (17) 

which not only diverges but also emphasizes terms in 
the expansion of higher order in h. As Rivers has 
pointed out this problem will not arise for a theory with 
Coleman-Wienberg type symmetry breaking [16] 
because there M 2 > 0 for all values of r 

We conclude, therefore, that for a theory with a non- 
convex classical potential even an interpolated loop 
expansion is only valid up to the temperature at which 
( r  > reaches the classical points of inflection. Calcul- 
ations of critical temperatures can not be performed 
using the loop expansion in such cases. 
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Appendix A 

The propagators necessary to evaluate the tadpoles in 
Fig. 7 are listed below. 

Scalar 

ilhrlj i(k 2 -  e 232 ( r >2) (6ij 
qiqj) O, k 2 - m  2 

(A1) 
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Ghost i 
. . . . . . . . . . . . . .  k-y (A2) 

Vector 
- i  ( kuk~ 

~ ~ ' ~  = k  2 e2<r 9.~ k z ] 

i~(k 2-rn 2-e2 ~ ( r >2) k~,k~ 
D, k2 (A3) 

where r/=(1,0), ( r  =0 ,  ( r 1 6 2  and we have 
assumed that we are evaluating the propagators at the 
minimum of V. 

The required vertices are given by 

- i 2  
= T ( ( ~ i j  < r >k "JF (~jl(. < ~ >i -~ t~ki < r >j) 

j 

(A4) 

= 2ie2 < r >igu~ 

u 

(A5) 

= -- ie2 ~ ( r >jeji (A6) 

7 \ 
J 

\ 

Appendix B 

The two-loop zero temperature effective potential for a 
2r  4 theory is given by [11] 

I r 2 2/'1 2M2 9/'  M e _  l))} 
2M 4 /1  2M2 11 M 2 79)  

+ ~ t ~ l n ~ - + ~  n p~ ~ .  (B1) 

and the two-loop finite temperature effective potential 
by [8] 

j .M 4 F2M2 
V~ = ~ r 2 (fl M) + ~ ~ dxd y F (fl M)G(x, y) 

2M 4 /'1 M2"~ 
+ ~ t ~ + l n ~ - ) F l ( f l  M) 

f M  2 ['1 n M 2 
+ ~ t ~ + ~ + l n ~ - ) F l ( f l M )  (B2) 
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where 

1 
F~ (tiM) = Idx 4(X 2 -  l)ePM x _ 1' 

1 
F -- and (e aM:'- 1)(e p~ty- 1) 

[(1 + 2x/(x 2 -  1)(y 2 -  1)) 2 - 4 x 2 y  2] 
G(x, y) = In [(--i~ - 2 x/(x 2 - 1)(y / - 1)) 2 - 4x2yZ]" 

N o w  as  fl, M 2---* 0 FI(flM )--* (x2/6)(1/f12M2), s o  in this 
limit the leading contribution comes from (B2) and is 
given by 

2 2 f M ~2 
V ~ ' l n ~ -  6fl 2 (B3) 

which on substituting f =  24,  fl = 1/T and adding the 
one- loop result gives (17). 
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