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Following Antoniadis and Tomboulis [1] we consider the gauge behaviour of the massive 
spin-2 ghost pole that appears in the propagator of higher derivative gravity theories. In 
contradistinction to [1] we observe that the pair of complex conjugate poles that appear in the 
resummed propagator are gauge independent. They are sedentary, that is, under a change in the 
gauge parameter they do not move. We derive this result using the ubiquitous Nielsen identities 
[111. 

1. Introduction 

In this paper we examine the gauge behaviour of the massive spin-two ghost pole 
that appears in higher derivative theories of gravity, observing that it is gauge 
parameter independent, contrary to the conclusions of [1]. We point out the analogy 
between the present case and two examples, that of the Higgs boson mass pole in a 
spontaneously broken abelian Higgs model and that of the scalar mass pole in 
a theory with a scalar field coupled to gravity. The latter of these provides a 
particularly close parallel with the behaviour of the ghost pole (or rather complex 
poles in the resummed propagator). Finally, we observe that the gauge-parameter 
independence, which we shall hereafter shorten to gauge independence of the poles 
means that Antoniadis and Tomboulis' formal unitarity proof will not work. 

The plan of the paper is as follows: in sect. 2 we outline the motivation for higher 
derivative lagrangians and discuss the nature of the massive ghost pole, using a 1/N 
approximation with resummed propagators. We find that the O(1) approximation is 
gauge independent, (we shall see in sect. 3 why this must be so). The presentation 
follows that of ref. [1] closely, which the reader is encouraged to consult; in sect. 3 
we discuss the Nielsen identities, which govern the gauge parameter dependence for 
the higher derivative theory and compare these with those for the abelian Higgs 
model and a gravity/scalar theory, concluding that the massive ghost poles are 
gauge parameter independent in higher orders too; in sect. 4 we summarize our 
results and discuss the consequences for the unitarity of the theory. 
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2. The massive ghost pole and the 1 / N  expansion 

The standard Einstein-Hilbert action for general relativity is given by 

where 1 / K  is a mass scale, 7 a numerical constant inserted for later convenience 
and X the cosmological constant. This is perturbatively non-renormalizable because 
of the dimensionful coupling constant [2-4] and, when euclideanized, does not 
provide a bounded path integral. It has therefore been suggested that one should use 
the most general fourth-order action that is compatible with general covariance 

S=fd4xx/- -~  - (R..R""-~3R2)+/3R2+K2 + - ~  , (2.2) 

where a and fl are further numerical constants. Not only is (2.2) renormalizable [5] 
but it leads to a bounded euclidean path integral when/3 < 0 and is asymptotically 
free [6,7]. Despite these promising attributes (2.2) apparently suffers from the 
malaise of non-unitarity, because the bare propagator of the graviton field h ~, 
which we define by 

1 / ~ g  ~ = ~1 ~'~ + a K h  ~ (2.3) 

contains a negative residue spin-2 pole (i.e. a ghost). Unlike the more familiar 
Faddeev-Popov [8] ghosts which cancel with unphysical components of the original 
fields, and hence preserve unitarity, the massive spin-2 ghost appears on its own. 

For the action in (2.2) the spin-2 part of the graviton propagator is given by [1], 

~ x  = 2 q2 _ ~ y / K  2 p(2), (2.4) 

where the spin-2 projector is (in n dimensions) 

with 

(2.5) 

q~q~ (2.6) Ou,~, = "q~, q2 

The first term in the brackets in (2.4) is the customary graviton pole at k2 = 0 and 
the second, with negative residue, at q2 = a 2 7 / K 2  is the massive ghost. The massive 
ghost is, however, unstable because the theory contains couplings of the form 
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Fig. 1. A massive ghost/graviton vertex. The straight line represents a massive ghost and the wavy line a 
graviton. 

(fig. 1) [1] through which it can decay into gravitons. We should therefore not 
attempt to use the massive part of (2.4) as our ghost propagator but follow the 
remedy detailed in [1] (and illustrated by an illuminating example taken from 
Veltman). 

The recipe is to use a modified perturbation theory without self-energy parts for 
the unstable particle, in which the bare propagator for this particle D0(q2), is 
replaced by the complete propagator 

D(q  2) = (Do(q2) -1 - ~(q2))  -1 , (2.7) 

where ~r(q 2) is the sum of all the 1PI self-energy parts. We must, of course, 
calculate D(q  2) in some approximation scheme to find the nature of our resummed 
pole and discuss its gauge properties. The method chosen by Antoniadis and 
Tomboulis, following the earlier work by Tomboulis [6,10] on the renormalizability 
of gravity, was to couple N fermionic fields to the gravitational action (2.2) and 
carry out a 1/N expansion. The fermionic action was given by 

f __ S F = d4xqJ~e~y ".I"UV'~a, (2.8) 

where ~t is a world index, m a tangent space index, a = 1. . .  N, e~ is the vierbein 
field and 

V'~,= V'~,- V~,, (2.9a) 

(2.9b) 

We can then expand quantities in our theory in powers of 1/N keeping ct2N, fl/N 
and y/N fixed. The lowest order (in 1/N) approximation to the complete propa- 
gator will be given by (fig. 2). As we can see, at this order only the fermionic loops 
contribution to the graviton self-energy is required. 

If we use dimensional regularization and an n-dimensional counterterm we find 
that the spin-2 part of the graviton propagator becomes, in this lowest-order 1/N 
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Fig. 2. The leading order in 1/N contribution to the complete propagator. The thick wavy line 
represents the complete propagator, the thin wavy line the bare propagator, the straight arrowed line a 

fermionic propagator and the cross a counterterm. 

approximation 

2 iP (2) 
D (2) 

,,,,x = qZ(a2y - q2K2 - ( Na2 /20 (41r )2 )q2K21n(_q2 / t , 2 ) )  , 
(2.10) 

where (2.10) is written in Minkowski space. If we define 

this may be written as 

20(4~.)2 ) 
A = bt exp o~2N , (2.11) 

2iP~2x 
D(2) = 

~,~kx q2(a2y l ( N a 2 / ( 4 ~ . ) 2 ) q 2 K 2 1 n ( _ q 2 / A 2 ) ) "  
(2.12) 

We observe, in addition to the graviton pole at q2 = 0, a pair of complex conjugate 
poles at q z =  r e +- io, where r -  y / N K  2. The "pole" for the unstable massive ghost 
has thus split into a pair of complex conjugate poles in the physical riemannian 
energy sheet. At this order unitarity is satisfied [1] and, as we can see by (2.12), the 
poles are gauge independent. 

In higher orders one will have to consider graviton loops containing the complex 
ghost poles so there is the possibility of gauge dependence for the pole values and a 
loss of unitarity. We shall discuss the former at some length in the following section 
and outline its relation with the latter. As explicit calculations would be very 
onerous we resort to the Ward identities. 

3. Gauge-dependence and Nielsen identities 

will be gauge-independent if In a gauge theory a pole mass m pole 

d 2 m pole 
= 0 ,  

dt 
(3.1) 
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where ~ is any gauge parameter and we have assumed that we are calculating m 2 
from F, the effective action, so the vertical bar represents setting all the semiclassi- 
cal fields, denoted generically here by 

aw[J] 
- (3.2) 

to their vacuum expectation values. Now, ~ is calculated using the gauge fixed 
action 

exp( ~ W[J]) = S[D +]exp[~ (S + Sgauge_fmng + SJd, b) J (3.3) 

and rn 2 will in general depend on the vacuum expectation values of if, so m 2 may 
contain an implicit ~ dependence through ~. We can thus write (3.1) as 

2 "~ 2 d__~d~ 0 m pole 0 m pole 

- - 0 7 -  = 0,  (3.4) 

where a is an explicit derivative. The criterion for gauge independence when the 
second term in (4.4) is non-zero is thus not simply 

0m~°le =0. (3.5) 

Nielsen [11], using the BRS [12] invariance of the theory was able to derive identities 
of the form (3.4) for physical quantities (such as pole masses) in a spontaneously 
broken abelian Higgs model. In his notation he found 

a m 2ol e ~ 0m2p°le + C(d?, ~) =0,  
(3.6) 

where C(~, ~) is now explicitly calculable as a field theoretic expression. 
The simplest method of deriving the Nielsen identities is to extend the BRS 

invariance of the theory to include a transformation acting on the gauge parameter 
we are interested in [13,14], i.e. 

6BRS~ = eX, (3.7) 

where e is the anticommuting BRS parameter and X is also anticommuting. We 
must also include appropriate compensating terms in the action to maintain the 
BRS invariance. 

x X = f x t ' ,  (3.8) 
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where P is some dimension 3, ghost number-1 expression local in the fields. The 
Ward identities for the theory are now [13] 

where 

OF 
S(F)  + X~-;~ = 0, (3.9) 

o ~  

s(r)= g + - - - -  3F 3F _ 3F  \ 
- + B3-- ~ ) .  (3.10) 

3po 3C 

is a physical field, 0 a source which couples to 3BRSq~, C- a ghost, pc a source 
which couples to 6BRsC, C* an antighost and B an auxiliary field used to fix the 
gauge. Schematically 

Sgauge.fixing = f (½~B 2 + B F  + ghosts), (3.11) 

where F is the gauge-fixing function. The Nielsen identity is obtained by differenti- 
ating (3.9) with respect to X and setting X = 0 

OF) 0F  
S - - ~ - X  + ~ - = 0 .  (3.12) 

To obtain the equivalent for 2 mpole we differentiate (3.12) twice with respect to 
and set all the fields equal to their vacuum expectation values. 

To make these considerations a little more explicit, consider the abelian Higgs 
model with an R~ type gauge-fixing, for which we take the lagrangian to be 

,LP= -- 1-F F ~ . _ . . _  + o . , , ) (  i) 

-eeo(0¢eOi)fjA~' + :e  ~ 9 + - 

- (h /4 ! )+  4 + ½~B z + B (  O,A" + eeifl(eOj)eOi) 

+ o . c * o . c  - e2~C*C%~.(q, ,>~i,  (3.13) 

where ~ now represents only the scalar fields of the theory, i = 1, 2, ~12 = - - ~ 2 1  = 1,  

e:: = c22 = 0 and B is the auxiliary field which may be eliminated via its equations 
of motion to obtain the customary gauge fixing term 

1 
2~ ( O"A" + eqJ~(q~J)Oi)2" (3.14) 



D.A. Johnston / Higher derivative gravity 727 

If we introduce the extra BRS transform 3~ = cX, we need to add 

1 , (3.15) G=x(~C B+ c*,,<~j>~,) =xP, 

to the lagrangian. The equivalent of (3.12) is then 

f (  3F 3F(P) 3F 3F(P) 3F(P) 8B 3F ) OF 
- - +  - -  + B  - + - -  0 ,  ( 3 . 1 6 )  3Y~ 3p. 37i 3L, 3 o  0x38" 0~ 

where L i is a source that couples to 3BRS4~ i and (after eliminating B), 

C* 
P = - 2---~- ( 8~,A ~' - egs'ij<'~j)q'i). (3.17) 

If we take the 1 direction as the physical Higgs scalar, differentiating (3.16) twice 
with respect to ~l gives the Nielsen identity for the inverse propagator, which at the 
pole reads 

( 8 _ f3F(P)  3 ) 32F 
- ~  ] ~ 3~, ~-~1 = 0 '  (3.18) 

which implies 

( O _[3F(P)  3 ) 2 
0-~ '1 ~ 1  3;1 mp°le = 0" (3.19) 

This is just Nielsen's result with 

c(?, ~) = _~f 3r(e) (3.20) 
3L~ 

One can verify (3.19) order by order in a loop expansion, for example [14,15]. 
C(~, ~) receives its first contribution at one-loop order because it has two bilinear 
field insertions 

C(~, ~) = -ihf(O I r(ilh) 2 

X [- ½C*( x )( O.A~'( x ) - e~,ij( ¢pj )epi( x )) eC (0) q~2 (0) ] 

× e x p ( ~ S ) 1 0  ) (3.21) 
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and one can see that both the first and second terms in 

o, - - - ~  = 0  (3.6) 

contribute. (3.6) means that under a change ~ ~ ~ + 8~, (~5) changes to ( ~ ) +  
(C((q~), ~ ) / ~ ) ~  to maintain the gauge independence. Although the results are for 
bare quantities they translate directly to the renormalized case for a gauge invariant 
regularization scheme, such as dimensional regularization. 

As we can write 

(q~) + 8( = ~2(~), (3.22) 

we see that the change in (q~) induced by the change in ~ is a global rescaling and 
corresponds to a change in our energy scale ([(4')] = mass) which does not affect 
observable physics*. If we had considered an unphysical pole, such as the longitudi- 
nal part of the gauge-boson propagator we would have found 

~ Om~°t~ f d4xd4z,a(x,z), (3.23) 
Om2p°l~ +C(~,~)__~a = 

where A(x, z) is some non-zero field theoretic expression. (3.23) means 

2 
d mpole 4 = 0 (3.24) 

d~ 

and, as we know that we can define a gauge invariant S-matrix, such gauge-depen- 
dent poles disappear from the spectrum. 

Another example of a gauge-independent mass pole is given by a scalar field 
coupled to Einstein gravity [16] 

] 
1 ~ ,  / + + B F" + CYM;C J (3.25) 

* In this context it is important to note that the Nielsen identity reads 

0 _ O 

where A is any physical quantity and C is the same for all of them. One does not, therefore, find 
inconsistently different scalings for different quantities. 
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where C ~ is the ghost, C.* the antighost, B, the auxiliary field, F "  the gauge-fixing 
function and M the Faddeev-Popov matrix. By following the same steps that led to 
(3.19) we find 

o 8  r(s) a ) 
(3.26) 

where m2o~¢ is the pole mass squared of the scalar field, L couples to the BRS 
variation of q5 

8BRSq~ = -- eC ~ 0~e0 (3.27) 

and p,, couples to the BRS variation of h ~" 

8 . . s  h"~ = e[ a~C ~ + a ~C ~ - n~"( aoc °) - ao(C~h "") + h °~ a~C ~ + h °~ a~Cq , 

(3.28) 

where, for this theory, we have defined ~ g g ' " =  ~;'~+ h;'L As (q~) = 0 here the 
second term in (3.26) will vanish [161 but the third need not because we can have 

8 F ( P )  ~(~, h, ~)n "~ (3.29) f 8p,~ 

and explicit calculations show that ~- =~ 0 [17]. We can write (3.26) as 

2 -l- 2 C3mp°le 0mp°le = 0 (3.30) 

This lends itself to the same sort of interpretation as (3.6), under a change 
~ ~ + 8~ we preserve gauge independence with the compensating change 

(h  ~')  --, ( h " )  + .~n"'6~. (3.31) 

However, we have defined 

so (h ~ )  -- 0 and we re-interpret (3.31) as a (global) rescaling of ~/~ (cf. (3.22)). 

7/~ -~ (1 + ¢8~)~ ~ .  (3.32) 

In this case we have changed our length scale, which again has no effect on 
observable physics. 
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After consideration of these two examples we now arrive at the pole we were 
originally interested in, the massive ghost pole in higher derivative gravity. Before 
writing down the Nielsen identity we observe that the complex nature of the pole(s) 
is not a problem because all we require is a zero of the inverse propagator, whether 
this is at real or complex momenta is irrelevant. We also observe that our use of a 
1 / N  expansion scheme presents no problems (one can work order by order as with 
the ordinary loop expansion which is an expansion in h). The BRS transformations 
for (2.2) in the conventions of [1] are given by 

= O.C + OoC°)I 

+eaK2[(  O~C")h"~ + ( O~C~)h ~ -  ( O~h"~)C~ - h"~(O~C")], (3.33a) 

8BRS C" = - eK 2 O,C" C l~ , 

8 Be, sC, = EKB,, 

(3.33b) 

(3.33c) 

where the difference between (3.33a) and (3.28) comes from the different definitions 
of h ~ and where we have chosen some gauge-fixing similar to that in (3.25). The N 
fermionic fields also have the appropriate BRS transformation properties. 

The procedure that leads to (3.19) and (3.26) then gives us 

o _ f s r ( e )  8 i a2r 
-0~ J 8p.# 87t,~/~ ] 8~,~8~x = 0 ,  (3.34) 

where this time we have differentiated with respect to h rather than ~. We have 
dropped the contribution of the N matter fields to (3.34) as it vanishes for similar 
reasons to the second term in (3.26). We can extract the massive spin two ghost 
poles from (3.34) by multiplying by p(2),~x and setting q2 = M 2 or M 2., where M 2 
and M 2. are the complex conjugate pole masses. This gives 

o ) 
~-~ J ~ 8~-/~ M 2 = 0  (3.35) 

and the equivalent for M 2*. Antoniadis and Tomboulis calculated the lowest order 
contribution to 

f ~ r ( e )  r'n °~ (3.36) 
8p~ a 

in their 1 / N  expansion, using the gauge fixing function 

F ~ = e ( O  2) Ovh ~ e(O2~O"h~ , (3.37) 
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where 

e(  O2) = K 2 a 2 -  

which was chosen to provide both good IR and UV properties. They found 

ia 1 1 

(3.38) 

They also considered the gauge with ~/e(q  2) replaced by ~ and found 

r '  . (3.40) 
32~ "2 K (2~'+ 1) 2 

ia 1 1 

We can see from (3.39) and (3.40) why the O(1) pole masses we found in sect. 2 were 
gauge-independent. Remembering that 

~ g  g~'~ = ~'~ + aKh ~'~ (2.3) 

we can absorb a K  into 6/8h ~B to see that r ' ,  with a factor of 0¢ 2 in front, is of 
O (1 /N) .  The O(1) version of (3.35) is thus 

OM 2 (o(1)) 

= 0 (3.41) aE 

and similarly for M 2.. Both terms in (3.35) will contribute in higher orders and we 
find behaviour exactly analogous to our second example, that of the gravity/scalar 
system. A change ~ ~ ~ + 8~ induces a global scaling 

~ / ~  (1 + r'6~)~ ~ (3.42) 

which is a change in our length scale. Once again our pole mass(es), in this case 
M 2~*) are left unchanged and are therefore gauge-independent. 

The independence of the pole masses from the second gauge parameter g that we 
introduced could just as easily be demonstrated by using the BRS transform 

8f=ef l  (3.43) 

and the appropriate compensating terms. We would then find an equation of the 
form 

OM 2 OM 2 
- -  + r " ~ a  ,~v--~ R = 0, (3.44) af O/ / -~  

r '  = - -  . ( 3 . 3 9 )  

32~r 2 K 1 -  2~/e (q  2) 
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where 
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0 8F l ,  

013 J 
(3.45) 

4. Discussion 

The case for unitarity of higher derivative gravity theories that was put forward in 
ref. [1] rested on two foundations. The first was the instability of the massive ghost 
and the consequent need to employ a complete propagator perturbation expansion, 
which leads to a pair of complex poles appearing in the first sheet of the complex 
energy plane. The second was that these poles were gauge-dependent and, by 
arguments analogous to those used to demonstrate the disappearance of gauge 
dependent real poles, they did not contribute to physical amplitudes. The crucial 
factor in any such demonstration is the ability to move the unphysical poles around 
by varying the gauge parameters. We have seen, however, that the massive ghost 
poles are gauge-independent in a manner reminiscent of physical poles in a 
spontaneously broken abelian Higgs model and a gravity/scalar theory, so the 
formal proof of unitarity contained in ref. [1] is incorrect. 

This work was supported by a Royal Society/CNRS European Science Exchange 
Research Program Fellowship. I would like to thank the staff of LPTHE where this 
work was carried out for their hospitality and tolerance of my French. 

References 

[1] I. Antoniadis and E.T. Tomboulis, Phys, Rev. D33 (1986) 2756 
[2] B.S. DeWitt, Dynamical theory of groups and fields (Gordon and Breach, New York, 1965) 
[3] B,S. DeWitt, Phys. Rev. 162 (1967) 1239 
[4] G.E. 't Hooft and M. Veltman, Ann. Inst. H. Poincar4 20 (1974) 69; 

S. Deser and P. van Nieuwenhuizen, Phys. Rev. D10 (1974) 401 
[5] K. Stelle, Phys. Rev. D16 (1977) 953 
[6] E.T. Tomboulis, Phys. Lett. 97B (1980) 77 
[7] F.S. Fradkin and A.A. Tseytlin, Nucl. Phys. B201 (1982) 469 
[8] L.D. Faddeev and V.N. Popov, Sov. Phys. Usp. 16 (1974) 777 
[9] M. Veltman, Physica 29 (1963) 186 

[10] E.T. Tomboulis, Phys. Lett. 70B (1977) 361 
[11] N.K. Nielsen, Nucl. Phys. B101 (1975) 173 
[12] C. Becchi, A. Rouet and R. Stora, Phys. Lett. 52B (1974) 344 
[13] O. Piguet and K. Sibold, Nucl. Phys., B253 (1985) 517 
[14] D. Johnston, Nucl. Phys., B253 (1985) 687 
[15] I.J.R. Aitchison and C.M. Fraser, Ann. of Phys. 156 (1984) 1 
[16] D. Johnston, Nucl. Phys. B293 (1987) 229 
[17] I. Antoniadis, J. Iliopoulos and T.N. Tomaras, Nucl. Phys., B267 (1986) 497 


