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Abstract. We show that an interpolated loop expansion produces a convex effective 
potential for Higgs fields in the vector representations of S U ( N )  and S O ( N )  and the 
adjoint representation of any simple Lie group, provided one considers the Higgs fields 
as a sector of a gauge theory and uses the gauge fixing freedom to choose a ’t Hooft-type 
gauge fixing term. We consider the adjoint case in some detail, exploiting the correspon- 
dence between the Dynkin diagrams used to classify the symmetry breaking and the 
Coexeter graphs that describe the symmetries of regular polytopes to determine the shape 
of the linearly interpolated regions that appear in the true, convex effective potential. 

1. Introduction 

The effective potential V ,  as was pointed out by Iliopoulous et a1 (1975), is a convex 
function, i.e. 

V ( 6 + ( l - A ) q ) S  V ( 6 ) + ( 1 - - A ) V ( q )  

O S A S l  V 6, q (classical fields). 

Explicit perturbation theory calculations, as pioneered by Jackiw (1974), use the loop 
expansion and vacuum graph formula 

r(6) = U ( ~ , ) + C  (1.2) 

where r is the effective potential, U the classical potential, and  C is the sum of vacuum 
graphs in the theory with the Lagrangian shifted by 6. However, this approach produces 
a non-convex effective potential, which we will call ‘V’ to indicate its dubiety, in 
theories with a non-convex U. The ‘ V ’  also suffers from the disease of becoming 
complex inside the points of inflection of U. 

The reason for the apparent disagreement between the formal convexity property 
and the result of the loop calculations is that the loop expansion, and consequently 
the vacuum graph formula, break down for certain ranges of 6 when one has a 
non-convex V. The regions where ‘ V’ becomes complex are contained within these. 
Fujimoto et al (1983) proposed a solution to these problems by taking into account 
the effect of competing saddle points from all the classical minima in the case of a 
theory with non-convex U. The net result is that the correct V is produced by linear 
interpolations across the non-convex regions of ‘V’. This is in agreement with the 
arguments of Haymaker and Perez-Mercader (1984) which were based on analogy 
with statistical mechanics. They deduced that the non-convex regions of ‘ V’ correspon- 
ded to higher energy branches of the ground-state energy of the combined system and 
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Figure 1. The effective potential for a 44 theory. ‘V’is  the potential calculated in a loop 
expansion, and V is the convexified version. The region between -& and 4,) corresponds 
to a superposition of the two ground states with energy E ,  based at -4,. 

source. V is produced by taking the locus of the tangent (hyper) planes to ‘ V’. Lattice 
calculations (Callaway and Maloof 1983, Do Amaral et a1 1984) support the 
interpolated form of V, as does the application of Wilson recursion relation (Fukuda 
1976) (see figure 1). It would, of course, be more satisfactory to derive V initially 
instead of patching up  ‘V’. In this paper we follow the philosophy of Fujimoto et al, 
who considered A@‘, by taking account of the various classical minima and obtaining 
V directly. We consider Higgs fields in the adjoint representation of any simple Lie 
group and the vector representation of SO( N )  and SU( N ) .  

The paper is divided up as follows. In 2, as a preliminary to demonstrating 
convexity we discuss the linearly interpolated, or convexified, regions of V and  how 
they are produced. In  $ 3 we consider the behaviour of 6, the classical field, as a 
function of the external source J and we show how, provided we have separated 
classical minima, the non-convex portions of ‘ V’ are excised. In $ 4  we show that this 
separation may be achieved by assuming that we are working with the Higgs sector 
of a gauge theory and using a ’t Hooft-style gauge fixing 

where T; is a generator of the gauge group and w, is an  arbitrary vector in the Higgs 
representation space. This reduces the manifold of minima G / H  to a discrete set of 
points, which allows us to apply the arguments of § 3 .  We also show that the convexified 
region in the vector case is analogous to A@‘, as the gauge condition corresponds to 
taking a one-dimensional slice through the manifold of minima, which is a hypersphere. 
The adjoint case, however, is more subtle and we consider it in some detail in 9 5, 
where we show that the convexified region is a polytope whose dimension depends 
on the direction of the external source J and whose size depends on its magnitude J. 
This is the result of the correspondence between the Dynkin diagrams that are used 
to classify symmetry breaking in the adjoint representation and Coxeter graphs which 
classify the symmetries of polytopes (Coxeter 1948)t. We summarise the relevant 
mathematics in the appendix. In  9 6 we present our conclusions. 

2. Linear interpolation 

In this section we will demonstrate, following Evans and McCarthy (1984), that we 
can construct the linearly interpolated regions of the effective potential by taking 
t We are grateful to T W B Kibble for pointing this out to us 
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quantum superpositions of the degenerate ground states, and it will emerge in 0 5 that 
these regions in the space of the adjoint fields are just the regular polytopes as classified 
by Coxeter (1948). 

Evans and McCarthy took a 44 theory with two degenerate vacuum states I+) and 
I-) at *4,. For any finite volume of spacetime there will be matrix elements of 
observables connecting the two, as it requires a finite amount of energy to cross the 
hump in the potential. In the infinite volume limit, however, the matrix elements will 
vanish, and we may write 

(+IHl*) = Eo6,, (+I+) = *4,6t* (2.1) 

where H includes the energy of interaction with the current. Any linear combination 
of these states will be an  equally good ground state with energy E,, as we may see 
from the following: 

/ A )  = A + l + ) +  A-l- ) ,  I lA+l l*+  I l A - l / 2 =  1 (2.2) 

( ~ i ~ i ~ ) = ( I I ~ + l l ’ + / 1 ~ - 1 1 ~ ) ~ ~ =  E ,  (2.3) 

( A I @ I A ) =  I IA+I1240-  I /A - /1240 .  (2.4) 

Note that the state I A )  has a field ueu lying between the two minima. Since the effective 
potential can be defined as the minimum of ( H )  with $=(@) constrained to take a 
spacetime constant value, we have found that its true value between -4, and +& is 
E,; i.e. a linear interpolation (figure 1). At zero temperature we may interpret a 4 
lying between the minima as a quantum superposition describing an ensemble of 
systems in one or other of the ground states (Glimm and Jaffe 1981)i.  If the spacetime 
volume is finite, then there will be transitions between the minima and the equilibrium 
state must be an equal mixture of the two; this will produce a single minimum at 6 = 0, 
a finite volume effect which shows up  in path integral (Fujimoto et a1 1983) and lattice 
(Callaway and  Maloof 1983) calculations. 

If we can take the minima to be n discrete points in R‘, then the obvious generalisa- 
tion is to consider a superposition of ground states la) ,  a = 1,. . . , n, each with energy 
Eo, so that (2.1) become 

(2.5) ( a  1 H 1 b ,  = E06ub (a lo lb )  = ~ $ , “ 6 ~ ~  (no sum) 

and (2.2) becomes 

Again, any such state \ A )  is a ground state, with energy 

( A I H I A ) =  Eo (2.7) 

and $ given by 

This is just the convex hull of the set {&,} (see figure 2). For suitable gauge-fixed 
adjoint scalar theories this set will turn out to be the vertices of a regular polytope 

+ At finite temperature the effective potential is the Helmholtz free energy, and the minimum free energy 
for a particular (space averaged) (6) will occur for an inhomogeneous mixture as this has greater entropy 
than a homogeneous state. 
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T 

Figure 2. The convex hull C of the set of position vectors { a , ,  a,, u 3 }  in R2, defined by 
C = { U :  u = Z  t p , ,  Z 1, = I}. 

(see the appendix) and so the linearly interpolated region is just its boundary and 
interior. 

In the next section we will find that an approximation to the functional integral 
shows that as J moves through a critical value (where two or more minima are 
degenerate in energy) &jumps  discontinuously from one minimum to another, precisely 
the behaviour expected if the effective potential between them is flat rather than humped. 

3. Behaviour of 6 

If we have a non-convex U the minima of U ( @ ) - J @  are not uniquely specified for 
all J. For certain critical values of J ,  say J,, a small variation in J will cause the 
absolute minimum of U ( @ )  - J @ ,  " @ ( J ) ,  to jump discontinuously between the local 
minima @:. For example, in the case of a symmetric double well potential in a A@' 
theory, J ,  is zero and a small variation either side of this causes the absolute minimum 
to jump between the two local minima. To deal with this we subdivide the path integral 
into regions R,, each of which contains one of the @,o" (Fujimoto et a1 1983) 

(3.1) 

where W " [ J ]  =exp[-(R/h)(U(@,")-J@:)] j R ,  [DQ] exp[-(-l /h) SA",] 

AaL = L ( @  + @ g a )  - L(@, ,")  + J @  

fL= d4x. 5 (3.2) 

The approximation necessary to evaluate (3.1) is the extension of the regions R ,  to 
cover the full range of @. We would expect the overlap error thus introduced to be 
exponentially small, as the 5 S , L  are large and  positive in the regions of overlap. With 
each R, replaced by R (3.2) can be thought of as defining a Jackiw-style expansion 
for V about each 6;. 

(3.3) exp( W [ J ] )  = 1 exp[- (R/h) ( 'v ' (6 ," )  - J+ ," ) ] .  
a 
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We can think of the ' V' in the exponent as being calculated to any given order in the 
loop expansion. Outside a critical range, J - J ,  > O( h )  one of the terms in the summa- 
tion will dominate and  we recover the standard loop expansion, which is acceptable 
as we are outside the non-convex region. Inside the critical range we need to consider 
the full summation. Thus to evaluate 6 in this interval we consider 

Writing J = J ,  + J '  we obtain. 

6=C6" exp[- (n /h) ( -J '6 , "  - J C 6 ) " + ' V ' ( 6 " ) ) ]  
a 

(3.4) 

(3.5) 

Now -J,6'" + '  V'(6 ," )  is the same for all the terms in the summation, so we can 
divide it out to obtain: 

In these summations the element, or elements, with the largest component in the 
J' direction will dominate in the infinite volume limit. If J '  . 6' is maximised for a 
set of 6a, denoted by {6a} say, then 6, as defined by (2.61, will lie at the centroid of 
the figure defined by the (6)"). Although this apparently lies in the non-convex portion 
of ' V' it has resulted from a linear combination of states of equal energy which are 
orthogonal in the Hilbert space in the infinite volume limit. It therefore follows that 
it lies on an  interpolated portion of V as shown in 5 2. 

In conclusion we have shown that 6 will lie at a 6', in which case it will be outside 
a non-convex region or it will lie on an interpolated portion of V. The non-convex 
portions of 'V'  have been excised in the manner suggested by the arguments of 
Haymaker and Perez-Mercader (1984). 

4. Gauge fixing and explicit examples of convexification 

Our demonstration of the convexity of V from the properties of & depended crucially 
on the various saddle point contributions being separated. In general with a group G 
being broken to a (maximal) subgroup H the manifold of minima will be given by 
G / H  and we d o  not achieve this separation. The remedy, as mentioned in the 
introduction, is to use an  't Hooft-style gauge fixing term which has the effect of 
allowing only a discrete set of directions for symmetry breaking in the vector space 
defined by the @'S. This picks out a discrete set of allowed points on the manifold of 
minima. In passing we note that not using such a gauge fixing and cavalierly extending 
the sum (3.4) to an  integral over the group manifold does not appear to affect the 
behaviour of 6, namely that it jumps discontinuously between minima, but one cannot 
use the approximation R, + R to justify the procedure. 
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We assume a gauge theory with gauge group G, with the Higgs fields in an  
n-dimensional vector or  adjoint representation. The gauge fixing is then 

- (1 /2~~) (a ,A~- iTP;w,4 , )*  (1.3) 

with the w, an arbitrary vector in Higgs representation space. Consideration of the 
Nielsen identities (Nielsen 1976, Aitchison and Fraser 1984) for the theory, which 
guarantee the gauge invariance of physical quantities, then shows that we must have 
the following condition on the 4,'s 

TG w1& = 0. (4.1) 

TG w/&,o = 0. (4.2) 

This will be true in particular on the manifold of minima, 

We now consider separately the vector and adjoint representations of the Higgs fields. 

4.1. Vector representation 

Taking a real representation first, we note that we can write any &o on the manifold 
of minima as a group rotation of some particular &, say x l :  

- 
d t o  = exp(i&TT",)x,. (4.3) 

( a / a t m  w/ . &,a) = 0. (4.4) 

Thus condition (4.2) can be written as 

Now in a vector representation the manifold of minima will, in general, be a hypersphere 
as we have only one invariantll&l/2 We can see this by considering 

which shows that the extrema of U are the local maximum at the origin and  the minima 
on the hypersphere at the radius defined by aU/all&II*=O. On this sphere (4.4) will 
be satisfied for ,f parallel or antiparallel to w, which picks out two antipodal points 
on the hypersphere. For a complex vector representation we simply write 

4 = 4, +idz (4.6) 

-( 1 / 2 c u ) [ a , A ~ + ( - i T ~ r t , ~ + , ) + ( - i T ~ ~ ; ' ~ , ) * ] ' .  (4.7) 

with the 6, real and use the gauge fixing term 

The argument for the real case is repeated, with the number of components doubled. 

4.2. Adjoint representation 

For Higgs fields in the adjoint we can write (4.1) as 

fm,/&W, = 0 (4.8) 
because the T, are represented by the structure constants -i&. By making the 
definitions 

w = w/T,, 5 = &/q (4.9) 
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(4.8) can be rewritten as 

[ w, G ]  =o.  (4.10) 

If we now choose W to be a regular element of the algebra (one whose centraliser 
is the Cartan subalgebra) (4.10) means that 6 is constrained to lie in the Cartan 
subalgebra. All equivalent minima in U - J& are disconnected because, with 6 in 
the Cartan subalgebra, they are taken into one another by the elements of the Weyl 
group of G which leave the projection of J onto the Cartan subalgebra invariant. This 
is a discrete group. 

For the vector representations the only critical value of the current is zero and we 
just consider convexifying between the absolute minima. This is not the case for the 
adjoint representation, where there may be solutions to aula4 = - J ,  and hence to 
d‘V’/d$ = -J ,  for values of J ,  other than 0. 

As an example of this one could consider an  SU(3) adjoint potential, though this 
is not representative in that the relation (Tr a2)* = 2 Tr (P4 ensures that the non- 
convexity vanishes when the quartic terms become dominant. This is not necessarily 
true in other cases as one can see from consideration of a general adjoint potential at  

U ( & )  - A ( L $ ~ ) ~ + ; A , ( z $ ~ ) .  (4.11) 
large ll4Il 

The matrix of second derivatives for this 

d2U/a&a& = [4A(C62)+6A16~]S,I ,+8A6,&~ = U,, (4.12) 

would be positive semi-definite (which would ensure convexity) only if u,UJkvk 3 0 for 
all U and 6. If A were negative, which is allowed by the positivity constraint on the 
potential, choosing U = (0, 1,O . . $ 0 )  and & = ( j j  & 0 . . . 0) would give U , q k u k  < 0, 
thus showing the potential was non-convex at this point. 

Returning to the SU(3) case we could write the SU(3) adjoint potential as (Corrigan 
et al 1976) 

(4.13) 

after restricting 6 to lie in the Cartan subalgebra, A 3  and A s  in the Gell-Mann basis, 
the potential may be written as 

U ( 6) = p ( 1 - 62)2 + 4 ( 61 + f i d , k $ , & k  )2  P3 q’o 

u(&3, 6 8 )  = p (  1 - 6:- &i)2+ q[&:( 1 +2&,)2+ ($8- 6,’+ &:)2]. (4.14) 

C B A 

(0 I lbi  
Figure 3. ( a )  The locus of solutions to d U 3 6 3  = 0 is represented by the broken circle. The 
absolute minima of U are denoted by x .  ( b )  The form of U on the sections a, b, c, in 
figure 3 ( a ) .  
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A plot of U(&,, &) shows that there are now other solutions for J ,  (see figure 3a ) .  
The form of U ( & )  on three sections A, B, C of figure 3 ( a )  is given in figure 3(b). 

In section B for instance the minima 1 ,2  are the solutions to d U / d +  = J for some 
J in the 8 direction and would have to convexify between points 1 and  2. By the time 
we have reached C the quartic terms are dominant and the non-convexity has disap- 
peared. 

In the general adjoint case, the shape of the region to be convexified can be 
determined for any given direction of J. This is demonstrated in the next section, 
which also introduces the geometric correspondence between Dynkin diagrams and  
Coxeter graphs. 

5. The geometry of the convexified regions 

In the last section we saw that for a vector representation the convexified region was 
a hypersphere. The adjoint case is now considered. For a scalar field + in the adjoint 
representation it is known that the Higgs-Kibble mechanism will break the symmetry 
group G to a maximal compact subgroup with local structure U ( l )  X K  (Kim 1984). 
The algebra k of K is obtained by removing a dot from the Dynkin diagram correspond- 
ing to the simple root to which (4) is not orthogonal. In other words (4) lines up  
parallel to a fundamental weight (Goddard and Olive 1981a). The elements of K, and 
in particular the elements of the Weyl group of K, leave (4) invariant, and  so (4) must 
lie on the intersection of the hyperplanes normal to the simple roots. 

The reflections generated by the broken part of the Weyl group of G will produce 
a polytope (see appendix) of gauge-equivalent minima of the effective potential 
obtained by placing a ring around the appropriate nodes in the Coxeter graph corre- 
sponding to the Lie algebra of G. For example, SU(3) + SU(2) x U( 1) gives the polytope 
0 - 0 ,  which is a triangle. In fact there are two inequivalent triangles in the root space 
depending on which node we ring. 

SU(4) can break either to SU(3) x U( 1) or  SU(2) x SU(2) x U( 1) and  we obtain an  

octahedron < or a tetrahedron @-@-*. We proceed to enumerate the possible 

polytopes, subject to the condition that the scalar field lines up  parallel to a minimal 
weight, which ensures the stability against decay of the gauge particle (Goddard and  
Olive 1981b). 

Since G2,  F4 and E8 d o  not have any minimal weights we d o  not include them. 
( i )  SU( r )  

/e 

If k = 0 we have a regular ( r  - 1) simplex, written cy, The general figure consists 
of taking the centroids of all the constituent k simplices as the vertices of the new 
polytope. 

In SU(5)+ SU(3) xSU(2)  x U ( l ) ,  k = 1, and we take the centres of the edges of the 
4-simplex; its projection onto a plane (see figure 4). 
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0 

Figure 4. A projection of {:, 3 }  onto a plane, the polytope produced by the minima of the 
potential in SU(5) + SU(3)  x SU(2) x U( 1). 

(ii) S 0 ( 2 r +  1) 
@--.-e-. * . --.-e 

4 

The only minimal weight is the one on the end of the double link. Hence the only 

(iii) Sp(r) 
shape produced is the hypercube, written yr 

@-e-.- . . . --.-e 
4 

The only minimal weight for this group is at the other end; this is the notation for 
Pn or the cross-polytope, which consists of vertices at ( *a,  0 , .  . . , 0) and permutations. 

(iv) SO(2r) 

e ( a )  @-e--. . . . -<: ( b )  .-e--. . . . - 

( a )  is again just a cross-polytope Pn while ( b )  is the partial truncation of yn written 

( V )  E6 

h y ,  obtained by eliminating half of the points on it. Clearly h y ,  is a3. 

e 
@--<,-, 

This is termed Gosset’s regular figure in six dimensions, which is bounded by 72 
6-simplexes ( a 5 )  and 27 five-dimensional cross polytopes ( p 5 ) .  

(vi) E7 

e 

.-e 
@-.-a-< 

This is Gosset’s seven-dimensional regular figure, and is bounded by 56 of the 
previous figures and 576 a6’s. 

We now know the shapes in the Cartan subalgebra of the degenerate minima of 
the effective potential at J = 0. Simple forms of the coordinates of a,, p,, y ,  and h y ,  
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are given in the appendix. The argument supposes that ‘ V’ calculated to some order 
in the loop expansion breaks G to a maximal compact subgroup H,  but we can extend 
it if higher-order radiative corrections break H further. For example, if SU(3)+ 
U( 1) x U( 1) then the Weyl group of SU(3) is completely broken, and the polytope is 
@-@, which is just the semi-regular hexagon obtained by reflecting a point inside 
the positive Weyl chamber. We shall assume for simplicity that H is unbroken beyond 
first order, but the extension to a general subgroup of G should be apparent. 

Our gauge-fixing procedure has reduced the manifold of minima of ‘V’ to the 
centraliser of W, the adjoint gauge-fixing vector, which is by definition the Cartan 
subalgebra if W is regular. Thus from the results of 0 2 the interpolated region must 
lie within or  on the boundary of the polytope formed by the degenerate minima. At 
J = 0 this is just obtained by ringing one of the nodes of the Coxeter graph, as we saw 
in 5 4, but there are other values of J for which the ground state is degenerate. That 
lS, 

( a / @ ) (  ‘ V’ - Tr( J 6 , ) )  = 0 (5.1) 
has more than one solution for J = J,. This can happen in either of two ways. Firstly, 
consider SU(4) + SU(3) x U( 1). Let J be very small and opposite to the outward normal 
to one of the faces of the tetrahedron ( J ,  in figure 5). Then there will be a triangle 
{123} of degenerate minima of ‘V’ -Tr ( J6 ) .  If T r ( J 6 , )  =Tr(J6 , , ) ,  as it does for J 2 ,  
then there will be degenerate minima {34} and { 12}. 

Thus if J is invariant under the action on the Weyl group of one of the elements 
I l k  of a polytope II,, the degeneracy between the vertices of that element will not be 
lifted, and the convexified region will be the convex hull of the solutions of (5.1), 
which will be the boundary and interior of a polytope Hk. In the previous example 
the tetrahedron is 0-0-0 and J ,  is invariant under the automorphisms of a 0-0, 

while J2 is invariant under the interchange of the ends of an edge 0 .  Hence the 
convexified regions of ‘ V’ - T r ( J 6 )  are a triangle and a line element respectively. As 
we increase the magnitude of J the polytope of the remaining degenerate minima H k  
will move away from the origin in the field space. For SU(3) it eventually vanishes 
in size (line c in figure 3 a ) ,  but as we showed in the last section this is the exception 
rather than the rule: regions of non-convexity may in general extend to infinity, so 
that Hk never disappears. 

There is also the possibility that for certain values of the parameters of the potential 
there may be a local minima which break the symmetry in another way, which also 

1 

3 

Figure S. The tetrahedron of minima for SU(4)  + SU(3) x U(1) showing two possible 
currents that leave some of the minima degenerate (see text). 
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have associated regions of non-convexity. For example, for some values of the para- 
meters in an  SU(5) potential there may be SU(4) xU(1)  local minima which become 
absolute minima for certain values of J. However, the convexification of the absolute 
minima will not be affected, but in general we would expect the shapes of the regions 
of non-convexity to become more complicated. 

Hence we have a general procedure for convexifying ‘ V’ everywhere. 
(1) Find those 6 for which (5.1) has more than one solution for some value of J. 
( 2 )  Linearly interpolate ‘V’ between these points, which will form the vertices of 

a polytope somewhere in the field space, so that everywhere in this region V will take 
the same value as at the vertices. 

The converse procedure, finding V ( 6 )  for some 6, is not easy, as it demands finding 
the minima of ‘V’-Tr(. l6) on whose convex hull 6 lies, and we d o  not attempt it 
here. In general, as shown in Q 4, the regions of non-convexity may extend to infinity 
and change in size but the shapes will always be the same as the cells to which they 
tend as J + 0. 

6. Conclusion 

In  this paper we have shown that it is possible to produce a convex effective potential 
to any desired order using the interpolated loop expansion with the Higgs fields in a 
vector or adjoint representation. This extends the results of Fujimoto er al, who 
considered only a single scalar field, and we find that in order to make sense of their 
procedure it is necessary to treat the scalar fields as a sector in a gauge theory and 
use the consequent freedom to fix the gauge to limit the minima of the effective potential 
to a finite number of separate points. Using the equivalence of Dynkin diagrams and  
Coxeter graphs we find that the convexified regions form regular convex polytopes 
when the scalar fields are in the adjoint representation and that they form hyperspheres 
when in a vector representation. These regions are to be interpreted as quantum 
superpositions of the separate ground states at zero temperature. 
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Appendices 

We summarise as briefly as possible the results about regular polytopes that may be 
found in Coxeter (19481, and show that gauge-equivalent minima of the effective 
potential of adjoint scalars form exactly these shapes in the Cartan subalgebra. Since 
the Coxeter graphs for regular polytopes and the Dynkin diagrams for Lie algebras 
of rank r are derived in similar ways (from considerations of reflection symmetries in 
S ‘ )  this is no surprise, but it is convenient here to make the connection and to present 
the results together in one place. 
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Appendix 1.  Regular polytopes 

Polytopes are regular figures in n dimensions. When n = 0, 1 , 2 , 3  they are respectively 
points, line segments, polygons and polyhedra if they are finite. If they are infinite 
they are Euclidean lattices or honeycombs. Clearly, regular figures will have certain 
reflection symmetries, and it is by the various possible symmetry groups that they are 
classified. We will restrict ourselves to convex polytopes in this discussion, as the 
stellated ones (which occur in up to four dimensions) are not relevant-the group 
transformations on the scalar field leave its length invariant. The finite polytopes must 
be generated by reflections in a finite space, so what we d o  is consider ‘inflated’ 
n-dimensional polytopes n, lying on an ( n  - 1) sphere, and points on this sphere are 
reflected in great ( n  - 2) spheres. These ‘mirrors’ divide the sphere into fundamental 
regions, which are n simplexes-in fact they form a tessellation of the ( n  - 1) sphere 
(see figure A l ) .  The number of these fundamental regions is equal to the order of the 
underlying reflection group. Placing a point on the sphere will generate a regular figure 
from its reflections, the most symmetric figures being obtained by placing it at the 
intersection of all but one of the mirrors, so that the resulting polytope will have all 
but one of the symmetries. 

Figure A l .  Tesselation of the 2-sphere by fundamental regions ti l ,  U*, u3. Reflections of ul 
generate an octahedron; reflections of ti2 and u3 generate tetrahedra. 

Appendix 2. Coxeter graphs and Dynkin diagrams 

The reflection symmetries created by this spherical tessellation may be represented by 
Coxeter graphs, where the nodes stand for mirrors and the connecting numbered 
branches the angles between them. If the nodes are not connected the mirrors are 
orthogonal. A typical graph might be 

e-*-*-- I -e 
p q r r  

(A2.1) 

where the angles between the mirrors are ~ / p ,  n / q ,  etc. If the number is 3 it is omitted. 



Convexity of the efective potential 153 

By considering the geometrical properties of the normals to the mirrors (analogously 
to the roots of a Lie algebra) it is possible to show that the only spherical tessellations 
are as follows:: 

*-e- -*-e E6 e-* D: 
5 

*-e-* G, 
I 
I 

.-e 6 D: I 

A, *-e- . . * -e--. 

e-*--. . -<: B, 

e-.- . . * --.-e 

E7 .-*--*--.-e 5 

*-@-e-* G4 c, 
5 

e-*- -*-e-@-@ E8 

e-e-e-* F4 (A2.2) 
4 

The similarity with the Dynkin diagrams for the generators of compact simple Lie 
groups is obvious. This is because the Weyl reflections in the hypersurfaces normal 
to the simple roots of the algebra generate these finite reflection groups in exactly the 
same way. With the Lie algebras the lengths of the roots are important (as the roots 
are derived from the structure constants), and so we distinguish between S 0 ( 2 r +  1) 
and Sp(r ) ,  whose roots generate the symmetry 

(A2.3) 

The interesting exceptions to the equivalence are the three tesselations D:, G3 and 
G4, which as far as we are aware d o  not correspond to any known algebra. 

*-e- . * . -*-e. 
4 

Appendix 3. Wythoff s construction of the regular polytopes 

Referring to figure A l ,  we see that placing a point at v2 will produce a tetrahedron 
after reflection. We represent this by placing a ring around the node representing the 
mirror which it is nor on, so that a tetrahedron is 

@-e--. (A3.1) 

while an octahedron is 

If the point is somehwere inside the fundamental region we write 

(A3.2) 

(A3.3) 

However, these figures will turn out not be of interest in the context of symmetry 
breaking in the adjoint representation. There is an  alternative notation for these 
polytopes by Schlafli which are for the tetra- and octahedron {3,3} and  {:} respectively. 
If we were to place a ring around an inner node in one of the exceptional groups, 

+ Note that this is Coxeter's notation, which differs slightly from the usual Lie algebra designations; in 
particular his B, is usually written D,, his C, is usually B, and  his D: is more often G,. 
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then we might get 

( A3.4)  

This eight-dimensional figure will also turn out not to be important for our purposes. 
The meaning of the symbol { p ,  q }  = @-;-: is fairly straightforward: it is the polyhe- 

dron with q faces at each vertex, each of which is a { p } .  So for example an  octahedron 
may be written { 3 , 4 } t .  The reciprocal figure {4 ,3 }  =@;*ye is just a cube, which is 

obtained by joining the centroids of the faces of the octahedron. We can obtain another 

polyhedron { i} = 6 by joining the centres of the edges of the polyhedron, so that 

each vertex is replaced by a { q } .  Then if p = 3 and q = 4, {i} = {i} is a cuboctahedron, 
pictured in figure A2. A polytope n,, whose Coxeter graph is 

@,.,.- * . . -e-*-*-*-. 5 1 u  . - * - * = { p , q , .  ..,s, t ,  U ) . . . )  x} (A3.5)  

0‘ 
0 \ 

Figure AZ. A cuboctahedron, the figure obtained by joining the midpoints of the edges of 
a cube (or an octahedron). 

contains a number of { p ,  q, . . . , s}’s. If we construct another polytope whose vertices 
are the centroids of these figures we obtain 

9 P  . . * *-e-* 

- - (A3.6) 
- . . * -*-*-e 

H Y  

+This is a consequence of the embedding of SO(2r )  in S O ( 2 r t l ) .  In general, any figure containing a 
fishtail will be the same as one with the three nodes of the tail replaced by . .-*-a-* 
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This operation is called truncation, and the resulting polytope contains, analogously 
to the polygonal faces of the polyhedron, the ( n  - 1)-dimensional boundary cells 

4 5 4 P  -e-. . . -*-e I -e- . . . -*-e-* 

- * . . -*-e--. - .  . . -e-* 
and < (A3.7) 

w x  H’ 

The elements that bound these cells in turn (which will be II,-,’s) may be obtained 
by removing a node and  a branch, working from the right. 

The polytope 

(A3.8) 

is a so-called partial truncation of 

obtained by removing alternate vertices. This can be done unambiguously, as every 
face (4) has an  even number of sides, and every circuit in the polytope can be tiled 
with (4)’s. As a trivial example, the tetrahedron @-*-e is a partial truncation of 
the cube @:*-e. 

contained within a polytope. For example, consider an  ( n  -t 1) simplex 
It is possible to work out how many elements Ilk, 0 4 k < n, of a particular type are 

W, 

(A3.9) 

Suppose we wish to find out the number of triangles @-e in it. Each triangle will be 
left invariant under a reflection subgroup Wn-3r because the normals of the mirrors 
are orthogonal to the plane of the triangle. The subgroup W2 just takes the triangle 
into itself. Thus the number of triangles in an ( n  + 1) simplex is (reading off the orders 
of the reflection groups from table A l )  

O( Wn)/[O( W2)0(  Wn-3) ]  = ( n  + 1)!/[3!(n - 2 ) ! ]  (A3.10) 

where O( W) denotes the order of the Weyl group. The general procedure for calculating 
which and how many of a certain element there are is to remove up  to f nodes from 

Table A1 

Tesselation Order 

( r +  l ) !  
r !  27-1 

2‘r! 
72 x6!  
8 x 9 !  
192 X l o !  
12 
1192 
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Table A3 

Coxeter graph 
( r nodes) Coordinates 

k 
A 

( I ,  . . , I , o , .  . . ,o)+ '+~C,  perms ( in  R'+') 

References 

Aitchison 1 J R and  Fraser C M 1984 Ann. Phys., N Y  156 1 
Callaway D J E and  Maloof D J 1983 Phys. Rec. D 27 406 
Corrigan E, Olive D, Fairlie D B and  Nuyts J 1976 Nucl. Phys. B 106 475 
Coxeter H S M 1948 Regular Polytopes (London :  Methuen)  
D o  Amaral M G, De Carvalho C A A and Shellard R C 1984 Reoisra Bras. Fis. 14 24 
Evans M a n d  McCarthy J 1984 Preprint, On the Quantum Mechanics of Inflation RU84/B/  Rockefeller 

Fujimoto Y, O'Raifeartaigh L and  Parravicini G 1983 Nucl. Phys. B 212 268 
Fukuda R 1976 Prog. Theor. Phyr. 56 258 
Goddard P and  Olive D 1981a Nucl. Phys. B 191 511 

~ 1981b Nucl. Phys. B 191 528 
Glimm J and  Jaffe A 1981 Quantum Physics, a Functional Integral Point of View (Berlin: Springer) 
Haymaker R W and  Perez-Mercader J 1983 Phyr. Rec. D 27 1948 
Iliopoulous J ,  Itzykson C and  Martin A 1975 Rev. Mod. Phys. 47 165 
Jackiw R 1974 Phys. Reo. D 9 1686 
Kim J S 1984 J. Math. Phys. 25 1694 
Nielsen N K 1975 Nucl. Phys. B 101 173 

University 


