Macroscopic Degeneracy and Scaling at a First Order Transition

Marco Mueller (good guy), Wolfhard Janke (good guy), Des Johnston (bad guy) NUI Maynooth, Nov 2016 A family of 3*D* Ising models motivated by random surface simulations

A problem with the 1st order FSS for a plaquette 3*D* Ising model in this family

A solution

Quantum version of the model - fractons

The Gonihedric action

Savvidy "Gonihedric" surface action

Gonia: angle Hedra: face

Spins Cluster Boundaries as Surface Models

Spin cluster boundaries \leftrightarrow surfaces Edge spins: $U_{ij} = -1$ Vertex spins: $\sigma_i \sigma_j = -1$

Counting configurations with spins (areas and intersections)

Ising/Surface correspondence

Allow energy from areas, edges and intersections (*A. Cappi, P Colangelo, G. Gonella and A. Maritan*)

$$H = \sum (\beta_A n_A + \beta_C n_C + \beta_I n_I)$$

$$\beta_A = 2J_1 + 8J_2, \quad \beta_C = 2J_3 - 2J_2, \quad \beta_I = -4J_2 - 4J_3$$

$$H = J_{1} \sum_{\langle ij \rangle} \sigma_{i}\sigma_{j} + J_{2} \sum_{\langle \langle ij \rangle \rangle} \sigma_{i}\sigma_{j} + J_{3} \sum_{[i,j,k,l]} \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}$$

Gonihedric \rightarrow Tune Out Area Term

One parameter family of "Gonihedric" Ising models (Savvidy, Wegner)

$$\mathcal{H}^{\kappa} = -2\kappa\sum_{\langle i,j
angle}\sigma_i\sigma_j + rac{\kappa}{2}\sum_{\langle\langle i,j
angle
angle}\sigma_i\sigma_j - rac{1-\kappa}{2}\sum_{[i,j,k,l]}\sigma_i\sigma_j\sigma_k\sigma_l$$

 $\kappa = 0$ pure plaquette

$$\mathcal{H} = -\sum_{[i,j,k,l]} \sigma_i \sigma_j \sigma_k \sigma_l$$

The Dual ($\kappa = 0$)

Constraint on dual spins at centre of plaquettes:

Double up spins, anisotropic interactions

The Dual ($\kappa = 0$)

An anisotropically coupled Ashkin-Teller model

$$\mathcal{H}_{dual} = -\sum_{\langle ij
angle_{x}} \sigma_{i}\sigma_{j} - \sum_{\langle ij
angle_{y}} \tau_{i}\tau_{j} - \sum_{\langle ij
angle_{z}} \sigma_{i}\sigma_{j}\tau_{i}\tau_{j} \,,$$

Standard duality relation

$$\tanh \beta = e^{-2\beta^*}$$

Known: First Order Transition

Strong first order transition

$$\mathcal{H} = -\sum_{\Box} \sigma_i \sigma_j \sigma_k \sigma_l$$

Only inaccurate (Metropolis, yours truly, bad ...) determination of transition point

Same for dual model - (Metropolis, yours truly, bad ...) determination of transition point

Exercise for a starting PhD student (Marco Mueller)

Simulate 3*d* plaquette model and dual, using multicanonical methods

Do a better job than, ahem, before at determining transition point of both

Obtain consistent estimates of transition point

"Standard" First Order Transitions

Mueller, Janke, Johnston Degeneracy/FSS 12/35

The *q*-state Potts model

Hamiltonian

$${\cal H}_{m{q}}=-\sum_{\langle ij
angle}\delta_{\sigma_i,\sigma_j}$$

Evaluate the partition function, derivatives give observables

$$Z(eta) = \sum_{\{\sigma\}} \exp(-eta \mathcal{H}_q)$$

1st Order FSS: Heuristic two-phase model

A fraction $W_{\rm o}$ in q ordered phase(s), energy $e_{\rm o}$

A fraction $W_{\rm d} = 1 - W_{\rm o}$ in disordered phase, energy $e_{\rm d}$

Ignore transits

1st Order FSS: Energy moments

Energy moments become

$$\langle e^n \rangle = W_{\rm o} e^n_{\rm o} + (1 - W_{\rm o}) e^n_{\rm d}$$

And the specific heat then reads:

$$C_{V}(\beta,L) = L^{d}\beta^{2}\left(\left\langle e^{2}\right\rangle - \left\langle e\right\rangle^{2}\right) = L^{d}\beta^{2}W_{o}(1 - W_{o})\Delta e^{2}$$

Max of $C_V^{\text{max}} = L^d (\beta^{\infty} \Delta e/2)^2$ at $W_{\text{o}} = W_{\text{d}} = 0.5$

Volume scaling

1st Order FSS: Specific Heat peak shift

Probability of being in any of the states

 $W_o \sim q \exp(-\beta L^d f_o), \ W_d \sim \exp(-\beta L^d f_d)$

Take logs, expand around β^{∞}

$$\begin{aligned} \ln(W_o/W_d) &= & \ln q + \beta L^d (f_d - f_o) \\ &= & \ln q + L^d \Delta e (\beta - \beta^\infty) \end{aligned}$$

Solve for specific heat peak $W_o = W_d$, $\ln(W_o/W_d) = 0$

$$\beta^{C_V^{\max}}(L) = \beta^{\infty} - \frac{\ln q}{L^d \Delta e} + \dots$$

1st Order FSS: summary

Peaks grow as L^d

Critical points shift as $1/L^d$

Except ...

Fixed boundaries (1/L leading term)

$$Z(\beta) = \left[e^{-\beta (L^d f_d + L^{d-1} \tilde{f}_o)} + q e^{-\beta (L^d f_o + L^{d-1} \tilde{f}_d)} \right] \left[1 + \ldots \right]$$

A Problem

Mueller, Janke, Johnston Degeneracy/FSS 18/35

Plaquette Model: Careful Multicanonical Simulations

Multicanonical histograms

Scaling of the Plaquette Model and Dual

Determine critical point(s) L = 8...27, periodic bc, $1/L^3$ fits - the nice exercise for a PhD student (Marco)

Original model:

 $\beta^{\infty} = 0.549994(30)$

Dual model:

 $eta_{dual}^{\infty} =$ 1.31029(19) $eta^{\infty} =$ 0.55317(11)

Estimates are about 30 error bars apart

Potential Solutions

Blame the student (yours truly, bad....)

Incorrect, try again (good guys)

What is special about plaquette model?

Groundstates: Plaquette

Persists into low temperature phase: degeneracy 2^{3L}

Groundstates: Dual

Dual degeneracy

Ground state

1st Order FSS with Exponential Degeneracy

Normally q is constant

Suppose instead $q \propto e^{L}$

$$\beta^{C_V^{\max}}(L) = \beta^{\infty} - \frac{\ln q}{L^d \Delta e} + \dots$$

becomes

$$\beta^{C_V^{\max}}(L) = \beta^{\infty} - \frac{1}{L^{d-1}\Delta e} + \dots$$

FSS

Plaquette Hamiltonian fits

Dual Hamiltonian fits

Quality of fits

Forcing a fit to $1/L^3$ gives much poorer quality

Standard 1st order FSS: $1/L^3$ corrections in 3D

Fixed BC: 1/L (surface tension)

Exponential degeneracy: $1/L^2$ in 3D

A Quantum Postscript

Mueller, Janke, Johnston Degeneracy/FSS 30/35

Quantum Plaquette Hamiltonian

We can write down a quantum version

$$H_0 = -t \sum_{[i,j,k,l]} \sigma_i^z \sigma_j^z \sigma_k^z \sigma_l^z - h \sum_i \sigma_i^x .$$

....and its dual

$$H_{\rm nexus} = -t \sum_{i} \tau_i^z - h \sum_{i} A_i ,$$

Dual Hamiltonian

$$\mathbf{A}_i \equiv \prod_{j \in \mathbf{P}(i)} \tau_j^{\mathbf{x}}$$

The X-Cube fracton Hamiltonian

Construct a "fracton" Hamiltonian

$$\mathcal{H}_{ ext{fracton}} = -\sum_{i} \mathcal{B}_{i} - \sum_{i} \mathcal{A}_{i}$$

c.f. Ising gauge \rightarrow Toric Code

Planar flip symmetry has conseqences for behaviour of excitations

Fractons

Excitations have restricted mobility (Pics plagiarized from arXiv:1603.04442, Vijay, Haah and Fu)

Linear motion (magnetic) excitations

Pinned (electric) excitations

References

G.K. Savvidy and F.J. Wegner, Nucl. Phys. B **413**, 605 (1994).

M. Mueller, W. Janke and D. A. Johnston, Phys. Rev. Lett. **112** (2014) 200601.

M. Mueller, D. A. Johnston and W. Janke, Nucl. Phys. B 888 (2014) 214; Nucl. Phys. B 894 (2015) 1.

S. Vijay, J. Haah and L. Fu, Fracton Topological Order, Generalized Lattice Gauge Theory and Duality, arXiv:1603.04442