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The purely plaquette 3d Ising Hamiltonian with the spins living at the vertices of a

cubic lattice displays several interesting features. The symmetries of the model lead to
a macroscopic degeneracy of the low-temperature phase and prevent the definition of a

standard magnetic order parameter. Consideration of the strongly anisotropic limit of

the model suggests that a layered, “fuki-nuke” order still exists and we confirm this with
multicanonical simulations. The macroscopic degeneracy of the low-temperature phase

also changes the finite-size scaling corrections at the first-order transition in the model

and we see this must be taken into account when analysing our measurements.

Keywords: Statistical mechanics; First-order phase transitions; Ising model.

1. Introduction

The 3d plaquette Ising Hamiltonian, with the Ising spins σ = ±1 sited at the

vertices of a 3d cubic lattice,

H = −1

2

∑
[i,j,k,l]

σiσjσkσl (1)

sits at the κ = 0 limit of a one-parameter family of 3d “gonihedric” Ising

Hamiltonians.1,2,3 In general these contain nearest neighbour 〈i, j〉, next-to-nearest

1
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neighbour 〈〈i, j〉〉 and plaquette interactions [i, j, k, l],

Hκ = −2κ
∑
〈i,j〉

σiσj +
κ

2

∑
〈〈i,j〉〉

σiσj −
1− κ

2

∑
[i,j,k,l]

σiσjσkσl , (2)

which have been fine tuned to eliminate the bare surface tension. While not gauge

theories, the Hamiltonians are still highly symmetric. In the general case when

κ 6= 0, parallel, non-intersecting planes of spins may be flipped in the ground

state at zero energy cost, which gives a 3 × 22L ground-state degeneracy on an

L×L×L cubic lattice. A low-temperature expansion reveals that this is broken at

finite temperature.4 However, when κ = 0, planes of spins (including intersecting

ones) may be flipped throughout the low-temperature phase, giving a macroscopic

low-temperature phase degeneracy of 23L. This in turn leads to non-standard cor-

rections to finite-size scaling at the first-order transition in the model.5,6,7 The

same degeneracy precludes the use of a standard magnetic order parameter such

as m =
∑
i σi/L

3 in the plaquette model since it would be zero throughout the

low-temperature phase.

In this paper we identify a class of suitable order parameters for the 3d pla-

quette gonihedric Ising model and using high-precision multicanonical simulations

we investigate the scaling properties of the order parameters and their associated

susceptibilities.

2. Model and Observables

If we allow for anisotropic couplings the Hamiltonian of the 3d Ising model with

purely plaquette interactions may be written as

Haniso = −Jx
L∑
x=1

L∑
y=1

L∑
z=1

σx,y,zσx,y+1,zσx,y+1,z+1σx,y,z+1

−Jy
L∑
x=1

L∑
y=1

L∑
z=1

σx,y,zσx+1,y,zσx+1,y,z+1σx,y,z+1 (3)

−Jz
L∑
x=1

L∑
y=1

L∑
z=1

σx,y,zσx+1,y,zσx+1,y+1,zσx,y+1,z

where we have indicated each site and directional sum explicitly, assuming we are on

a cubic L×L×L lattice with periodic boundary conditions, i.e., σL+1,y,z = σ1,y,z,

σx,L+1,z = σx,1,z, σx,y,L+1 = σx,y,1, for convenience in the sequel.

A hint about the nature of the magnetic ordering in the model comes from

considering the strongly anisotropic limit where Jz = 0. In this case the horizontal

plaquettes have zero coupling, which Hashizume and Suzuki gave the apt name of

the “fuki-nuke” (“no-ceiling” in Japanese) model.8,9 The low-temperature order in
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such an anisotropic 3d plaquette Hamiltonian at Jz = 0,

Hfuki-nuke = −Jx
L∑
x=1

L∑
y=1

L∑
z=1

σx,y,zσx,y+1,zσx,y+1,z+1σx,y,z+1

−Jy
L∑
x=1

L∑
y=1

L∑
z=1

σx,y,zσx+1,y,zσx+1,y,z+1σx,y,z+1 , (4)

may be discerned by rewriting it as a stack of 2d nearest-neighbour Ising models.

This can be carried out by defining bond spin variables τx,y,z+1 = σx,y,zσx,y,z+1 at

the end of each vertical lattice bond. The τ and σ spins are thus related by

τx,y,1 = σx,y,1, τx,y,2 = σx,y,1 σx,y,2 , . . . , τx,y,L = σx,y,L−1 σx,y,L (5)

where to maintain a one-to-one correspondence between the σ and τ spin configu-

rations the value of the σ and τ spins on a given horizontal plane (here 1) must be

specified.8,10 The resulting Hamiltonian when Jx = Jy = 1 is then

H = −
L∑
x=1

L∑
y=1

L∑
z=1

(τx,y,zτx+1,y,z + τx,y,zτx,y+1,z) (6)

which can be seen to be that of a stack of decoupled 2d Ising layers with nearest-

neighbour in-layer interactions in the horizontal planes.

Since each 2d Ising layer will magnetize independently at the 2d Ising model

transition temperature a suitable order parameter in a single layer is the standard

Ising magnetization, which in terms of the original σ spins is

m2d,z =

〈
1

L2

L∑
x=1

L∑
y=1

σx,y,z−1σx,y,z

〉
. (7)

The suggestion of Hashizume and Suzuki8 was that similar order parameters could

still be viable for the isotropic plaquette action. To avoid accidental cancellations

between different planes we could use either absolute values for each plane or square

the values. This gives a candidate 3d order parameter in the isotropic case as either

mx
abs =

〈
1

L3

L∑
x=1

∣∣∣∣∣
L∑
y=1

L∑
z=1

σx,y,zσx+1,y,z

∣∣∣∣∣
〉
, (8)

or

mx
sq =

〈
1

L5

L∑
x=1

(
L∑
y=1

L∑
z=1

σx,y,zσx+1,y,z

)2〉
, (9)

where we assume periodic boundary conditions and with obvious similar definitions

for the other directions, my
abs, sq and mz

abs, sq. For the isotropic model we would

expect mx
abs = my

abs = mz
abs and similarly for the squared quantities, which can

form a useful consistency test in simulations.
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Metropolis simulations indicated that mx,y,z
abs and mx,y,z

sq as defined above might

indeed be suitable order parameters11 for the isotropic plaquette model, but these

were subject to the usual problems of simulating a strong first-order phase transition

with such techniques. Here we discuss multicanonical Monte Carlo simulations,12,13

combined with reweighting techniques,14 which allow us to carry out much higher

precision measurements of mx,y,z
abs and mx,y,z

sq and confirm the suitability of the

proposed order parameters. We also investigate their scaling properties near the

first-order transition point.

3. Numerical Investigation

Details of the simulation techniques may be found in Ref. 6. A two-step process

is used, where estimates of an unknown weight function W (E) for configurations

with system energy E are iteratively improved. This replaces the Boltzmann weights

e−βE that give the acceptance rate in traditional Metropolis Monte Carlo. In the

first step the weights are adjusted so that the transition probabilities between con-

figurations with different energies become constant, giving a flat energy histogram15

as shown in Fig. 1 below.

Fig. 1. The approximately flat energy histogram p(E) for various lattice sizes produced in the

multicanonical simulations on the left ordinate, and the reweighted canonical probability density

at the temperature of equal peak-height on the right ordinate with dotted lines.

The second step consists of a production run using the fixed weights produced

iteratively in step one. This yields a time series of the energy, magnetization and

the two different fuki-nuke observables mabs and msq in the three possible different

spatial orientations. With sufficient statistics such a time series together with the

weights provides an 8-dimensional density of states Ω(E,m,mx
abs, . . . ) by count-

ing occurrences of E,m,mx
abs, . . . and weighting them with the inverse W−1(E)

of the weights fixed prior to the production run. Practically, estimators of the mi-

crocanonical expectation values of observables are used. When measuring the order
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Fig. 2. Microcanonical estimators for the magnetizationm and fuki-nuke parametermx
sq for lattices

with size L = 20 and L = 27, where we used 100 bins for the energy e for this representation.
Errors are obtained from Jackknife error analysis with 20 blocks.

parameters, measurements are carried out every V = L3 sweeps, because the lattice

must be traversed once to measure the order parameters in all spatial orientations

which has a considerable impact on simulation times. Skipping intermediate sweeps

gives less statistics, but the resulting measurements are less correlated in the final

time series. In Fig. 2, we show the estimators of the microcanonical expectation

values 〈〈·〉〉 of our magnetic observables O,

〈〈O〉〉(E) =
∑
O

OΩ(E,O)
/∑

O

Ω(E,O) , (10)

where the quantity Ω(E,O) is the number of states with energy E and value O of

either the magnetization m or one of the fuki-nuke order parameters. We get an

estimator for Ω(E,O) by simply counting the occurrences of the pairs (E,O) in the

time series and weighting them with W−1(E). For clarity in the graphical represen-

tation in Figs. 2 and 3 we used a partition of 100 bins for the energy interval and an

estimate for the statistical error of each bin was calculated by using Jackknife error

analysis16 with 20 blocks of the time series. The fuki-nuke parameters are capable

of distinguishing ordered and disordered states, unlike the standard magnetization,

which is revealed by Fig. 2. It is also obvious from the first of Fig. 3 that the differ-

ent orientations of the fuki-nuke parameters are equal for the isotropic gonihedric

Ising model, which we show for L = 20. This confirms that the sampling is consis-

tent in the simulation. We collect the microcanonical estimators for mx
sq for several

lattice sizes in the second of Fig. 3.

With the stored full time series and its weight function, we are able to measure

the microcanonical estimators for arbitrary functions of the measured observables

f(O),

〈〈f(O)〉〉(E) =
∑
O

f(O) Ω(E,O)
/∑

O

Ω(E,O) , (11)

which provides a convenient way of calculating higher-order moments. For canonical

simulations reweighting techniques14 allow system properties to be obtained in a
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Fig. 3. Left: Microcanonical estimators for the different orientations of the fuki-nuke parameters
mx,y,z

abs, sq for a lattice with linear size L = 20, which fall onto two curves. The statistical errors are

smaller than the data symbols and have been omitted for clarity. Right: Microcanonical estimators

for the fuki-nuke parameter mx
sq for several lattice sizes.

Fig. 4. Canonical curves for the fuki-nuke parameters mx
abs and mx

sq over a broad range of inverse
temperature β for several lattice sizes L with the insets magnifying the sharp jump at the ordered
phase.

narrow range around the simulation temperature whose width and accuracy are

determined by the available statistics of typical configurations at the temperature of

interest. Since multicanonical simulations yield histograms with statistics covering

a broad range of energies (cf. Fig. 1) it is possible to reweight to a correspondingly

broad range of temperatures. The canonical estimator at finite inverse temperature

β > 0 is thus obtained as

〈O〉(β) =
∑
E

〈〈O〉〉(E) e−βE
/∑

E

e−βE , (12)

and Jackknife error analysis is again employed for an estimate of the statistical

error.

The behaviour of mx
abs and mx

sq in a Metropolis simulation11 is reproduced

by the multicanonical data here as shown in Fig. 4. Sharp jumps are found near

the inverse transition temperature, as expected for an order parameter at a first-
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Fig. 5. Inverse temperature β(L) as determined from the peaks in χ plotted against 1/L2 (as
appropriate for the modified scaling expected with macroscopic degeneracy).

order phase transition. The peaks in the associated susceptibilities χ = βL3 var(m)

provide a suitable estimate of the finite-size pseudo-transition point. We find that

the peak locations for the different lattice sizes L are fitted best by the modified first-

order scaling laws with a leading 1/L2 correction appropriate for macroscopically

degenerate systems discussed in detail in Refs. 5 and 6,

βχ(L) = 0.551 37(3)− 2.46(3)/L2 + 2.4(3)/L3 , (13)

where smaller lattices were systematically omitted until a fit with quality-of-fit pa-

rameter Q bigger than 0.5 was found. The fits presented have a goodness-of-fit

parameter Q = 0.64 and 12 degrees of freedom left. Fits to the other directions

my,z
abs and fits to the peak location of the susceptibilities of mx,y,z

sq give the same

parameters within error bars and are of comparable quality. The inverse temper-

ature β(L) for the peak locations of the susceptibilities for both mx
abs and mx

sq is

plotted against 1/L2 in Fig. 5 together with the best fit curve giving the quoted

values for the scaling coefficients. The estimate of the phase transition tempera-

ture obtained here from the finite-size scaling of the fuki-nuke order parameter(s),

β∞ = 0.551 37(3), is in good agreement with the earlier estimate β∞ = 0.551 334(8)

reported in Ref. 6 using fits to the peak location of Binder’s energy cumulant and

specific heat and the value of β where the energy probability density has two peaks

of the same height or weight.

As a visual confirmation of the scaling, the normalized susceptibilities χ/L3 for

various lattice sizes are plotted against β + 2.46/L2 − 2.4/L3 (where the shifts are

determined by the fitted scaling corrections) in Fig. 6. It is clear that the peak

positions fall on the same point. In Fig. 7 we plot the peak values of both χmx
abs

and χmx
sq

divided by the system volume against 1/L. Empirically the plotted fits

for the maximum values are

χmax
mx

abs
(L)/L3 = 0.135 20(29)− 0.757(10)/L+ 1.58(7)/L2 (14)
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Fig. 6. Canonical curves for the susceptibilities associated with the fuki-nuke parameters mx
abs

and mx
sq plotted against the shifted inverse temperature β + 2.46/L2 − 2.4/L3 for several lattice

sizes L. The peaks fall onto the same point.

where we used all lattices with sizes greater than or equal to Lmin = 10 (with 15

degrees of freedom left and a goodness-of-fit parameter of Q = 0.07) and

χmax
mx

sq
(L)/L3 = 0.134 86(14)− 0.174(4)/L− 1.413(27)/L2 (15)

with Lmin = 8 (with 17 degrees of freedom and Q = 0.08). The leading corrections

of the peak value of the specific heat divided by the system volume are of order

O(1/L2), so those for the susceptibility are already much stronger. Forcing a fit to

leading 1/L2 corrections here gives slightly poorer fits and we cannot distinguish

empirically. The constants, however, are stable around χmax/L3 ≈ 0.135, and barely

change with the various fits, showing that the proportionality factor of χmax ∝ L3

is independent of the leading corrections. By analogy with the maximum of the

specific heat,5,6,7 we expect for the extremal values of the susceptibilities

χmax
abs, sq/L

3 = β∞
(

∆m̂abs, sq

2

)2

+ . . . , (16)

where the gaps ∆m̂abs, sq = m̂ordered
abs, sq −m̂disordered

abs, sq of the fuki-nuke order parameters

in the infinite system enter. This is consistent with the measurements since a value

of χmax/L3 ≈ 0.135 implies ∆m̂abs, sq ≈ 0.99, which is plausible from the insets

in Fig. 4 giving an impression of the value of m̂ordered
abs, sq as L → ∞ and noting that

m̂disordered
abs, sq = 0.

4. Conclusions

The macroscopic degeneracy of the low-temperature phase in the 3d plaquette goni-

hedric Ising model excludes standard magnetic ordering. However, consideration of

the strongly anisotropic limit of the model suggests that a planar, fuki-nuke order

may still be present. Multicanonical simulations of the model strongly support this

suggestion, with the various fuki-nuke magnetizations all showing order parameter

like behaviour. If the effects of the macroscopic low-temperature phase degeneracy
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Fig. 7. Maximum value of the normalized susceptibility χ/L3 plotted against 1/L for both χmx
abs

and χmx
sq

.

on the corrections to scaling detailed in Refs. 5 and 6 are taken into account, the

estimates for the transition point obtained from these fuki-nuke magnetizations are

fully consistent with estimates obtained from energetic quantities. There are, how-

ever, stronger finite-size corrections to the peak value of the susceptibilities for the

fuki-nuke order parameters.
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