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Introduction: \

Vaccination is key in controlling Childhood diseases.

But what vaccination strategies are optimal given
constraint on resources.

Pulse vaccination (Agur(1993), ...) better results
than Homogeneous Constant vaccination.

Success cases of PVS.(D’Onofrio,2002):
-Central and South America-Polio, Measles
-U.K, measles-1994.

Justification of PVS
=Reimmunization

*Periodic resonance between contact and
vaccination rates leading to disease eradication

msBetter use of vaccination doses

\-Campaings preceeding vaccination day.J




The Model
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An SIR Model with:
= Population Dynamics
= Periodic contact rate

= Periodic vaccination rate.

Contact rate: p(t)e L,”(0,T)
Vaccination rate: w(t)e L,”(0,T)
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Proposition 1. Existence of Disease Free Stable State -
(DFPO).

Given w(t)e L.”(0,T), I(t)=0,

There exists a unique periodic solution and all solutions
with initial condition I(t)=0, tend to this periodic solution.

Proof:

e Periodic Solution: Periodic vaccination (and contact)

e This is a unique solution:
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1(0)=0, I(t)=0 at all times.
The remaining linear equation is not dependent on
R(t) and has solution,

—?ﬂﬂ//(f)df ! —?ﬂﬂ//(f)df
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Stability Analysis \

Floquet Theory Sinqular Pertubation Theory

e Systems with different
e Standard—Periodically time scales
driven systems.

e Fast, slow systems
e Systems with similar analysed seperately and
Time scales then jointly.
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Floquet Theory \

» linearize the system about a solution.

[S[w 1(1), 0, Z__ S [y ](r)j

» Obtain independent solutions of the linearized
system,

v initial conditions (1,0,0), (0,1,0), (0,0,1).

v" the solution vectors form columns of the
Monodromy matrix.
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FLOQUET THEORY
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» The Monodromy matrix reads

ex;E—]‘ U+ w(t)dt] *

ex:{— j L+ adt+j‘ ﬂ(t)S[w](t)dt]
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* The main diagonal defines the spectrum of the matrix.

L@)Sly 1()dt <T(u+«a)
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= disease free periodic orbit (DFPO) is orbitally stable if
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Proposition 2:
If the Uninfected periodic orbit is
orbitally stable, it attracts all

B solutions with non-negative initial
conditions.

e Proposition 2.1: the solution is unique

S()—> Sy 1(¢)

e Proof:

d(S(7) :;Iw](t)) =+ O)SO-SQ)):

S0)-SyA0) =S5,
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e Proposition 2.3:

I(t) —=— 0

e Proof:

%:—(um—ﬂ(ﬂsmﬂ(ﬂ; 1(t)=0

1(t)=1(0)exp {—I (u+a)—p()S (T)d”['}

= 1(0) exp{— [(u+a) —ﬂ(r)S[w](f)df} exp{— [ B@[SIy1(@)-S@)] dr}

t
] ptp(0)de

t >, y(r)—>ow =p, =1

Due to Periodicity, p,(nT)=(p,T)"

T

Infective solution tends to zero \

=1(0)exp {—I (1+a) —ﬂ(r)S[l//](r)dr} exp {I B(T)3e © df} =1(0)p,p,

QnT) exp{—njy + a —,B(T)S[l//](l’)dl’} —> 0; n —)y
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Singular Perturbation Theory

Slow timescales (population dynamics) and fast time
scales (epidemics).

time scales for epidemics: fast contact and recovery rates.
autonomous system aids in the Geometric Interpretation.

dsS 1
“=b—uS -y ()S = —F@SI S(y) =Sy 1(,),0< s <<
d—]:—luI+L,B(q)SI—LOlI, I(t,) =1,
dt £ &
dR 1 b
d—:—yR+(//(q)S+—a], R(ty) = ——Sly 1(¢,)
! & M
dq _

7 I, q(ty) = t,
Separate time scales

Introducing an invariant functional X,

X

X :R?*® > R

= -85S + -2 In S - I;
£ (aq)
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Why X?

. Lets change to the fast time scale of epidemics and

. Set epsilon to zero to get limiting fast system.

. The result is the SIR model without Pop. Dyn.

. X is constant on the fast time scale, so X can represent
the slow variable.

X = -8 + ¢ In § - 1 ;
p (q)
t=ct (t faster)
dsS
E=5{b—ﬂS—W(Q)S}—ﬁ(Q)SI,
d—I: —sul + f(q)SI —al,
dr
a4 _ .
dr
g—0, §=—,6’(q)S],
dr
A pigysi-al,
dr
49 _
dr ’
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Fast-Slow Systems

® direct computation on X leads to the slow system

af'(q)q'In§
[B(9)]

——=-b-uX-g(S,9)-
dt

dsS o
8;—g{b—,uS—l//(q)S}—,B(q)S{—S+ﬂ(q)lnS—X}

44 _,
dt

® And the fast system

dX af'(q)g'InS

— = —b_ X Sa o

ir ‘9{ S T }

ds a
;__,B(q)s[—S+%1nS—X]+8[b—ﬂS—l//(61)S]

\ @:5, t=er.
dr
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c—> 0

Limiting fast and slow systems \

Limiting fast

ax _
dr
dS o

== S[-S
12 B(q)S[ +ﬂ(q)

a4 _y,
dr

0

InS - X]

Limiting slow

d X apB '(¢g)qg 'In S
= -b - uX - g(S,q) -
d1 a ¢ (5. 4) (B ()]

0= -F(g)S[-5§ +

In § - X ]
B (q)

Slow M anifold:

0= -B8(qg)S[-S + In § - X ]
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Stability along the slow manifold.

o

(9)

h(S)z—ﬂ(q)S[—S+ﬂ InS - X ]

dh(S) _ P

S _s ¢ Ins-Xx1- ST—1
T B (q)l + 5 () n 1= B(g)S[-1+ 5415
M<0 = Stability
dS

= the uninfected periodic orbit is instantaneously stable if
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A simulation of the epidemic.

time independent contact rate (dashed curve),
varying periodic contact rate (solid curve),
constant case, f=1.4 , varying case,
B=0.9+cos(t)0.5.
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= Orbital stability may not necessarily
Imply instantaneous stability

= |If we start close to DFPO, we eventually
converge back to it, though an outbreak
IS possible.

= One has a choice to use any approach,
bearing in mind the possible limitations.
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Remarks. \
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Optimization Problems and Existence of
Solutions

4

Measuring Efficiency of vaccination efforts:
» Orbital Stability

> Instatenious Stability of DFPO.

e Problem 1:
min Fly 1= [B()S[y I(z)dr,

given # vacc. doses é[w ]=C,

w here

Cly 1:= Jw (r)Sly J(z)dr.

e Problem 2:

m inimize [[R [y ]|l

where., R[vw 1(1) = ﬁ(t)i[l//](t)’
given Cl[y ]= C,
C”[w]:=1w<r)5[w J(z)d 7,
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Existence of Solutions
in the set of vaccination strategies.

e Define the set of vaccination strategies by
Q,=CHQ=Slyl(t)ly e L},

d(y,,v,) =Sy, 1-Sly,]1ll, -

Q) , is compact in L'

e The objective function and cost functional (the

in the set.
Fly 1= [ B()STy 1(t)dt
Cly 1= Jv (1)Sly 1(1)d1

o\Squtions exist for Problem 1 in this set.

e Compactin L1 for existence of solutions(Muller, 1998).

conditions of optimizations) have continuous extensions

~

/
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Convexity.

Proposition 6.

The set of vaccination strategies is compact and convex and
therefore is fully characterised by ist extremal points.
(Krein-Milman Theorm)

Proof
5.(1)=35,() +(1=7)S,(¢)
Differentiating the expression w.r.t.t

ds ¢ (1)
dt
where,

=b—uS;(t)+yS; (1),

(1S (1) + (=) 5 (1), (1)
St (1) ’

v (1) =

Is y,(t)e L ?

e (OS2, (£)S, (1)
Iy z (1) o = s S0 )
7S, (1) (l—z')Sz(t)

<Ol O

<ol ool <=
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I Concluding Remarks.
4

e \We have some guarantee
that the set of population
profiles contains at least a
solution.

e The solutions (optimal

e That is on-going.

\_
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solutions) need to be defined.
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