Optimal Vaccination Strategies in Periodic Settings

Onyango Nelson

Centre of Mathematical Sciences, Technical University of Munich.

#### Introduction:

Vaccination is key in controlling Childhood diseases.

But what **vaccination strategies are optimal** given constraint on resources.

Pulse vaccination (Agur(1993), ...) better results than Homogeneous Constant vaccination.

Success cases of PVS.(D'Onofrio,2002):
-Central and South America-Polio, Measles
-U.K, measles-1994.

### **Justification of PVS**

- Reimmunization
- Periodic resonance between contact and vaccination rates leading to disease eradication
  - Better use of vaccination doses
  - Campaings preceeding vaccination day.

## The Model

$$\frac{dS}{dt} = b - \mu S - \psi(t)S - \beta(t)SI, \quad S(t_0) = S_0 > 0$$

$$\frac{dI}{dt} = -\mu I + \beta(t)SI - \alpha I, \quad I(t_0) = I_0 > 0$$

$$\frac{dR}{dt} = -\mu R + \psi(t)S + \alpha I, \quad R(t_0) = R_0 > 0$$

#### An SIR Model with:

- Population Dynamics
- Periodic contact rate
- Periodic vaccination rate.

Contact rate: 
$$\beta(t) \in L_{+}^{\infty}(0,T)$$
  
Vaccination rate:  $\psi(t) \in L_{+}^{\infty}(0,T)$ 

## Proposition 1. Existence of Disease Free Stable State (DFPO).

Given 
$$\psi(t) \in L_{+}^{\infty}(0,T), I(t) \equiv 0,$$

There exists a unique periodic solution and all solutions with initial condition I(t)=0, tend to this periodic solution.

#### Proof:

- I(0)=0, I(t)=0 at all times.
- The remaining linear equation is not dependent on R(t) and has solution,

$$s[\psi](t) = s(0)e^{-\int_{0}^{t} \mu + \psi(\tau)d\tau} + b\int_{0}^{t} e^{-\int_{0}^{t} \mu + \psi(\tau)d\tau} d\sigma$$

- Periodic Solution: Periodic vaccination (and contact) rates,
- This is a unique solution:

## **Stability Analysis**

#### **Floquet Theory**

- Standard—Periodically driven systems.
- Systems with similar Time scales

### **Singular Pertubation Theory**

- Systems with different time scales
- Fast, slow systems analysed seperately and then jointly.

## Floquet Theory

linearize the system about a solution.

$$\left(S[\psi](t), 0, \frac{b}{\mu} - S[\psi](t)\right)^{T}$$

- Obtain independent solutions of the linearized system,
- $\checkmark$  initial conditions (1,0,0), (0,1,0), (0,0,1).
- ✓ the solution vectors form columns of the Monodromy matrix.

## **FLOQUET THEORY**

The Monodromy matrix reads

$$\begin{pmatrix}
\exp\left(-\int_{0}^{T}\mu+\psi(t)dt\right) & * & 0 \\
0 & \exp\left(-\int_{0}^{T}\mu+\alpha dt+\int_{0}^{T}\beta(t)S[\psi](t)dt\right) & 0 \\
* & * & \exp\left(-\int_{0}^{T}\mu dt\right)
\end{pmatrix}$$

- The main diagonal defines the spectrum of the matrix.
- disease free periodic orbit (DFPO) is orbitally stable if

$$\widetilde{F} = \int_{0}^{T} \beta(t) S[\psi](t) dt < T(\mu + \alpha)$$

## **Proposition 2:**

If the Uninfected periodic orbit is orbitally stable, it attracts all solutions with non-negative initial conditions.

Proposition 2.1: the solution is unique

$$\hat{S}(t) \xrightarrow{t} S[\psi](t)$$

Proof:

$$\frac{d(\hat{S}(t) - S[\psi](t))}{dt} = -(\mu + \psi(t))(\hat{S}(t) - S[\psi](t));$$
$$\hat{S}(0) - S[\psi](0) = \tilde{S},$$

$$\hat{S}(t) - S[\psi](t) = \tilde{S}e^{\int_{0}^{t} \mu + \psi(\tau)d\tau} = 0, \quad t \to \infty.$$

#### Infective solution tends to zero

#### Proposition 2.3:

$$I(t) \longrightarrow \frac{t}{\infty} \to 0$$

#### Proof:

$$\frac{dI(t)}{dt} = -(\mu + \alpha - \beta(t)S(t))I(t); \qquad I(t) \ge 0$$

$$I(t) = I(0) \exp\left\{-\int_{0}^{t} (\mu + \alpha) - \beta(\tau)S(\tau)d\tau\right\}$$

$$= I(0) \exp\left\{-\int_{0}^{t} (\mu + \alpha) - \beta(\tau)S[\psi](\tau)d\tau\right\} \exp\left\{-\int_{0}^{t} \beta(\tau)\left[S[\psi](\tau) - S(\tau)\right]d\tau\right\}$$

$$= I(0) \exp\left\{-\int_{0}^{t} (\mu + \alpha) - \beta(\tau)S[\psi](\tau)d\tau\right\} \exp\left\{-\int_{0}^{t} \beta(\tau)\tilde{s}e^{-\int_{0}^{t} \mu + \psi(\tau)d\tau}d\tau\right\} = I(0) p_{0} p_{1}$$

$$t \to \infty$$
,  $\psi(\tau) \to \infty$   $\Rightarrow p_1 = 1$ .

Due to Periodicity,  $p_0(nT) = (p_0T)^n$ 

$$p_0(nT) = \exp\left\{-n\int_0^T \mu + \alpha - \beta(\tau)S[\psi](\tau)d\tau\right\} \to 0; \quad n \to \infty$$

## Singular Perturbation Theory

- Slow timescales (population dynamics) and fast time scales (epidemics).
- time scales for epidemics: fast contact and recovery rates.
- autonomous system aids in the Geometric Interpretation.

$$\begin{split} \frac{dS}{dt} &= b - \mu S - \psi(q) S - \frac{1}{\varepsilon} \beta(q) SI, \quad S(t_0) = S[\psi](t_0), \, 0 < \varepsilon << 1 \\ \frac{dI}{dt} &= -\mu I + \frac{1}{\varepsilon} \beta(q) SI - \frac{1}{\varepsilon} \alpha I, \qquad I(t_0) = I_0 \\ \frac{dR}{dt} &= -\mu R + \psi(q) S + \frac{1}{\varepsilon} \alpha I, \qquad R(t_0) = \frac{b}{\mu} - S[\psi](t_0) \\ \frac{dq}{dt} &= 1, \qquad q(t_0) = t_0 \end{split}$$

- Separate time scales
- Introducing an invariant functional X,

$$X : \mathbb{R}^{2} \to \mathbb{R}$$

$$X = -S + \frac{\alpha}{\beta (q)} \ln S - I;$$

# Why X?

- Lets change to the fast time scale of epidemics and
- Set epsilon to zero to get limiting fast system.
- The result is the SIR model without Pop. Dyn.
- X is constant on the fast time scale, so X can represent the slow variable.

$$X = -S + \frac{\alpha}{\beta (q)} \ln S - I;$$

$$t = \varepsilon \tau \quad (\tau \quad faster)$$

$$\frac{dS}{d\tau} = \varepsilon \left\{ b - \mu S - \psi(q) S \right\} - \beta(q) S I,$$

$$\frac{dI}{d\tau} = -\varepsilon \mu I + \beta(q) S I - \alpha I,$$

$$\frac{dq}{d\tau} = \varepsilon,$$

$$\varepsilon \to 0, \quad \frac{dS}{d\tau} = -\beta(q)SI,$$
 
$$\frac{dI}{d\tau} = \beta(q)SI - \alpha I,$$
 
$$\frac{dq}{d\tau} = 0,$$

## Transformation from (S,I) to (S,X)

#### SI-Plane



#### **SX-Plane**



## **Fast-Slow Systems**

direct computation on X leads to the slow system

$$\frac{dX}{dt} = -b - \mu X - g(S, q) - \frac{\alpha \beta '(q) q ' \ln S}{[\beta(q)]^2}$$

$$\varepsilon \frac{dS}{dt} = \varepsilon \left\{ b - \mu S - \psi(q) S \right\} - \beta(q) S \left\{ -S + \frac{\alpha}{\beta(q)} \ln S - X \right\}$$

$$\frac{dq}{dt} = 1,$$

And the fast system

$$\frac{dX}{d\tau} = \varepsilon \left\{ -b - \mu X + g(S, q) - \frac{\alpha \beta'(q) q' \ln S}{[\beta(q)]^2} \right\}$$

$$\frac{dS}{d\tau} = -\beta(q) S[-S + \frac{\alpha}{\beta(q)} \ln S - X] + \varepsilon [b - \mu S - \psi(q) S]$$

$$\frac{dq}{d\tau} = \varepsilon, \qquad t = \varepsilon \tau.$$

## Limiting fast and slow systems

$$\varepsilon \to 0$$

#### **Limiting fast**

$$\frac{dX}{d\tau} = 0$$

$$\frac{dS}{d\tau} = -\beta(q)S[-S + \frac{\alpha}{\beta(q)}\ln S - X]$$

$$\frac{dq}{d\tau} = 0,$$

#### **Limiting slow**

$$\frac{dX}{dt} = -b - \mu X - g (S, q) - \frac{\alpha \beta '(q) q '\ln S}{[\beta (q)]^{2}}$$

$$0 = -\beta (q) S [-S + \frac{\alpha}{\beta (q)} \ln S - X]$$

$$\frac{dq}{dt} = 1,$$

## Slow Manifold:

$$0 = -\beta (q) S [-S + \frac{\alpha}{\beta (q)} \ln S - X]$$

## Stability along the slow manifold.

$$h(S) = -\beta(q)S[-S + \frac{\alpha}{\beta(q)}\ln S - X]$$

$$\frac{dh(S)}{dS} = -\beta(q)[-S + \frac{\alpha}{\beta(q)}\ln S - X] - \beta(q)S[-1 + \frac{\alpha}{\beta(q)S}]$$

$$\frac{dh(S)}{dS} < 0 \implies \text{Stability}$$

the uninfected periodic orbit is instantaneously stable if

$$||R_{y}[\psi]||_{L^{\infty}} < 1$$
, where  $R_{y}[\psi] = \frac{\beta(t)S[\psi](t)}{\alpha}$ 



## A simulation of the epidemic.

time independent contact rate (dashed curve), varying periodic contact rate (solid curve), constant case,  $\beta$ =1.4, varying case,  $\beta$ =0.9+cos(t)0.5.



## Remarks.

 Orbital stability may not necessarily imply instantaneous stability

 If we start close to DFPO, we eventually converge back to it, though an outbreak is possible.

 One has a choice to use any approach, bearing in mind the possible limitations.

# Optimization Problems and Existence of Solutions

#### Measuring Efficiency of vaccination efforts:

- Orbital Stability
- Instatenious Stability of DFPO.

#### Problem 1:

m in 
$$\tilde{F}[\psi] = \int_{0}^{T} \beta(t) S[\psi](\tau) d\tau$$
,  
given # vacc. doses  $\tilde{C}[\psi] = C_{0}$   
where  
 $\tilde{C}[\psi] := \int_{0}^{T} \psi(\tau) S[\psi](\tau) d\tau$ ,

#### Problem 2:

minimize 
$$||R_{v}[\psi]||_{\infty}$$
  
where,  $R[\psi](t) = \frac{\beta(t)S[\psi](t)}{\alpha}$ ,  
given  $\tilde{C}[\psi] = C_{0}$   
 $\tilde{C}[\psi] := \int_{0}^{T} \psi(\tau)S[\psi](\tau)d\tau$ ,

# Existence of Solutions in the set of vaccination strategies.

Define the set of vaccination strategies by

$$\Omega_d = C l \{ \tilde{\Omega} = S[\psi](t) | \psi \in L_+^{\infty} \},$$

$$d(\psi_1, \psi_2) = ||S[\psi_1] - S[\psi_2]||_{L^1}.$$

Compact in L1 for existence of solutions(Müller, 1998).

$$\Omega_d$$
 is compact in  $L^1$ 

 The objective function and cost functional (the conditions of optimizations) have continuous extensions in the set.

$$\tilde{F} [\psi] = \int_{0}^{t} \beta (t) S [\psi] (t) dt$$

$$\tilde{C} [\psi] = \int_{0}^{t} \psi (t) S [\psi] (t) dt$$

Solutions exist for Problem 1 in this set.

## Convexity.

Proposition 6.

The set of vaccination strategies is compact and convex and therefore is fully characterised by ist extremal points. (Krein-Milman Theorm)

**Proof** 

$$S_{\tau}(t) = \tau S_{1}(t) + (1-\tau)S_{2}(t)$$

Differentiating the expression w.r.t.t

$$\frac{dS_{\tau}(t)}{dt} = b - \mu S_{\tau}(t) + \psi_{\tau} S_{\tau}(t);$$
where,
$$\psi_{\tau}(t) = \frac{\tau \psi_{1}(t) S_{1}(t) + (1 - \tau) \psi_{2}(t) S_{2}(t)}{S_{\tau}(t)},$$

Is 
$$\psi_{\tau}(t) \in L^{\infty}$$
?

$$\| \psi_{\tau}(t) \|_{\infty} = \left\| \frac{\tau \psi_{1}(t) S_{1}(t)}{S_{\tau}(t)} + \frac{(1 - \tau) \psi_{2}(t) S_{2}(t)}{S_{\tau}(t)} \right\|_{\infty}$$

$$\leq \left\| \psi_{1}(t) \frac{\tau S_{1}(t)}{S_{\tau}(t)} \right\|_{\infty} + \left\| \psi_{2}(t) \frac{(1 - \tau) S_{2}(t)}{S_{\tau}(t)} \right\|_{\infty}$$

$$\leq \left\| \psi_{1}(t) \right\|_{\infty} + \left\| \psi_{2}(t) \right\|_{\infty} < \infty$$

## Concluding Remarks.

 We have some guarantee that the set of population profiles contains at least a solution.

 The solutions (optimal solutions) need to be defined.

That is on-going.

