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Overview

This talk considers two extensions of the standard network
SIR epidemic model to include important real-life features
yet remain susceptible to analysis

Casual contacts — Frank Ball and Peter Neal

Households — Frank Ball, David Sirl and Pieter
Trapman
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NETWORK — Configuration model

Population N = {1, 2, . . . , N}

D= degree of typical individual

p
k

= P(D = k) (k = 0, 1, . . . ) specified µ
D

= E[D]

D1, D2, . . . , DN iid copies of D, conditioned on
SN = D1 + D2 + · · · + DN being even

Attach Di half-edges to individual i (i = 1, 2, . . . , N)

Pair up the SN half-edges uniformly at random to form the network

IMPERFECTIONS — sparse if σ2

D
= var(D) < ∞

(Bollobás (2001))
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Epidemic model

SIR (susceptible → infective → removed)

Infectious periods I1, I2, . . . , IN iid ∼ I (arbitrary but specified)

If infected, individual i makes

(i) local contacts along each of the Di edges emanating from
him/her independently at rate λ

L
for each edge

(ii) global contacts at rate λ
G

, with individuals chosen independently
and uniformly from N (CASUAL CONTACTS)

Latent period

SPECIAL CASES

(i) λ
L

= 0 Standard homogeneously mixing SIR epidemic

(ii) λ
G

= 0 Standard network SIR epidemic

Diekmann et al. (1998), Ball and Neal (2002), (2008a), Kiss et al (2006))
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Approximate deterministic model

For t ≥ 0, let xi(t) and yi(t) be the proportion of the population that have

degree i and are susceptible and infective, respectively, at time t and
y(t) =

P

∞

i=1 yi(t).

dxi

dt
= −λ

G
yxi −

λ
L
ixi

µ
D

∞
P

j=1

(j − 1)yj

dyi

dt
= λ

G
yxi +

λ
L
ixi

µ
D

∞
P

j=1

(j − 1)yj −
1

µ
I

yi (i = 0, 1, . . .)

Model makes three approximations

(i) Globally contacted individuals lose one neighbour on infection

(ii) Allows repeated local transmission down same edge

(iii) Effective degrees of individuals do not decrease as epidemic progresses

Exact deterministic model given in Ball and Neal (2008a)

(Kiss et al. (2006); cf. May and Lloyd(2001), Moreno et al.(2002))

Network epidemic models with two levels of mixing – p.5



Exact deterministic model

Form network as epidemic evolves.

For t ≥ 0, let xi(t) and yi(t) be the proportion of the population

that have effective degree i and are susceptible and infective,

respectively, at time t.

dyi

dt
= λGyxi + λL [(i + 1)yi+1 − iyi] − γyi

+ρE(t){(i + 1)[λ
L
(xi+1 + yi+1) + γyi+1] − i(λ

L
+ γ)yi(t)},

dxi

dt
= −λ

G
yxi − ρE(t)[(λ

L
+ γ)ixi − γ(i + 1)xi+1], (i = 0, 1, . . .),

where γ = 1
µ

I
, ρE(t) = (

∑∞
i=1 iyi(t)) /

∑∞
i=1 i(yi(t) + xi(t)) and

y(t) =
∑∞

i=1 yi(t).

(Ball and Neal (2008a))
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Basic reproduction numberR0

Suppose N is large and there are few initial infectives

Early stages of epidemic can be approximated by a two-type branching

process

Type-L infectives — infected locally (i.e. through the network)

Type-G infectives — infected globally (i.e. by a casual contact)

Mean offspring matrix

M =

2

4

m
GG

m
GL

m
LG

m
LL

3

5 =

2

4

λ
G

µ
I

p
L
µ

D

λ
G

µ
I

p
L
(µ

D̃
− 1)

3

5,

where p
L
= P(individual infects given neighbour locally) = 1 − E[e−λ

L
I ] and

µ
D̃

= E[D̃]. Here D̃= degree of typical locally contacted individual

[P(D̃ = k) = kp
k
/µ

D
k = 1, 2, . . . ]

R0 is the maximal eigenvalue of M

P(global epidemic) > 0 ⇐⇒ R0 > 1
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Directed graph of potential local contacts

i → j if and only if i, if infected, contacts j locally (i.e. through the
network).
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Local susceptibility setSN
i

i

SN
i = {j ∈ N : j  i}, where j  i if and only if there exists a

chain of directed arcs from j to i, and SN
i = |SN

i |.
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Final outcome of global epidemic

Suppose N is large and there are few initial infectives. Let z be the expected proportion
of the population who are infected by the epidemic. Then

π = P(typical susceptible avoids global infection) = exp

„

−
λ

G

N
Nzµ

I

«

= exp(−λ
G

zµ
I
)

and

1 − z = P(typical susceptible avoids infection by epidemic)

= P(typical local susceptibility set avoids global infection)

=

∞
X

k=1

P(S = k)πk = fS(π) = fS(e−λ
G

zµ
I ) (1)

R0 ≤ 1 z = 0 is the only solution of (1) in [0, 1]

R0 > 1 unique second solution ẑ ∈ (0, 1), giving mean ‘size’ of global epidemic

Fully rigorous proof and central limit theorem for final size of global epidemic is available
using Scalia-Tomba (1985) embedding technique (Ball and Neal(2008b))
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SizeSN of typical local susceptibility set

SN a.s.
−→ S as N → ∞, where S is the total size of a branching process having offspring

law Y0 ∼ Bin(D, p
L
) for the initial individual and Y1 ∼ Bin(D̃ − 1, p

L
) for all subsequent

individuals

S = 1 +
PY0

k=1 S̃k, where S̃1, S̃2, . . . are iid ∼ S̃ and S̃ is the total size of the branching
process in which all individuals have law Y1. Thus,

S̃ = 1 +

Y1
X

k=1

S̃′

k, where S̃′

1, S̃′

2, . . . are iid ∼ S̃

Let f
D

(x) =
P

∞

k=0 P(D = k)xk be the pgf of D. Then,

fS(x) = E[xS ] = E[E[xS |D]] = E[x(1 − p
L

+ p
L
f

S̃
(x))D ] = xf

D
(1 − p

L
+ p

L
f

S̃
(x))

and

f
S̃
(x) = E[xS̃ ] = E[x(1 − p

L
+ p

L
f

S̃
(x))D̃−1] =

x

µ
D

f(1)
D

(1 − p
L

+ p
L
f

S̃
(x))

Proportion z of population infected by a global epidemic is given by the largest root of

1 − z = fS(e−λ
G

zµ
I )
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No global infection (λ
G

= 0)

Proportion z of population infected by a global epidemic is given by the largest root of

1 − z = fS(e−λ
G

zµ
I ), (2)

where fS(x) = xf
D

(1 − p
L

+ p
L
f

S̃
(x)) and f

S̃
(x) = x

µ
D

f
(1)
D

(1 − p
L

+ p
L
f

S̃
(x))

Let λ
G

↓ 0. Then model becomes standard network SIR epidemic and (2) yields

1 − z = fS(1−) = P(S < ∞) =⇒ z = P(S = ∞),

so z > 0 ⇐⇒ mLL > 1 (i.e. local epidemic above threshold)

If mLL > 1 then

z = 1 − f
D

(1 − p
L

+ p
L
u), where u = f

S̃
(1−) =

1

µ
D

f(1)
D

(1 − p
L

+ p
L
u),

agreeing with previous results (e.g. Andersson (1999) and Newman (2002)).

Letting λ
G

↓ 0 in CLT gives heuristically a CLT for (i) the final size of the standard
network SIR epidemic and (ii) (by then letting λL ↑ ∞) the size of the giant component in
the configuration model.
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Illustration of threshold
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Histograms of size of 10,000 simulated epidemics per parameter combination, for
a constant-degree network with D ≡ d, I ≡ 1 and other parameters as shown.
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Comparisons of simulations and theory

Parameters Theoretical N = 250 N = 1000 N = 5000 N = 10000

d = 4 p̂EXT 0.3137 0.3372 0.3199 0.3119 0.3185

λ
G

= 0.5 Mean 0.6864 0.6758 0.6842 0.6863 0.6859

p
L

= 0.3 Variance 1.3864 1.7852 1.4423 1.3566 1.3971

d = 8 p̂EXT 0.1601 0.1662 0.1618 0.1645 0.1610

λ
G

= 0.5 Mean 0.8399 0.8361 0.8393 0.8395 0.8399

p
L

= 0.2 Variance 0.3743 0.3792 0.3765 0.3771 0.3671

d = 8 p̂EXT 0.3767 0.4118 0.3786 0.3740 0.3685

λ
G

= 0 Mean 0.6233 0.6099 0.6196 0.6226 0.6230

p
L

= 0.2 Variance 2.0351 2.6698 2.1677 2.0334 2.1171

Comparisons of the (scaled) mean, variance and probability of global
epidemics for finite N and their asymptotic limit as N → ∞, when I ≡ 1

and D ≡ d, based on 10,000 simulations per parameter combination.

Network epidemic models with two levels of mixing – p.14



Critical values of (λ
G
, dλL)
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Illustration of CLT
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Histogram of size of 10,000 simulated global epidemics in a population of
size N = 10, 000 when D ≡ 8, λ

G
= 0 and p

L
= 0.2 (I ≡ 1 and

λ
L

= − log 0.8), with asymptotic normal approximation superimposed.
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Mean final outcome
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networks with µ
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= 8 when I ≡ 1.
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Accuracy of Kiss et al. approximation
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Final proportion infected by global epidemic, z, when I ∼ Exp(1) and λ
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= 0, for
constant-degree network (i.e. D ≡ d).
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Accuracy of Kiss et al. approximation
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network with d = 3.
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Interlude

We have seen a model which extends the standard network

SIR epidemic model by incorporating casual, homogeneously

mixing contacts.

Casual contacts can have major impact on outcome of epidemic.

Letting λG ↓ 0 yields useful heuristic approach for studying final outcome

of epidemics without casual contacts.

Kiss et al. (2006) and related deterministic approximations may be poor,

particularly when µD is small and epidemic is close to threshold.

Now we examine another extension where we treat the network

as a global structure and allow for local structure in the form of

households.
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An example
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Model

SIR dynamics, closed population.

The population structure:
A fixed number, m, of households of size n.
A distribution, D, with P(D = k) = pk, k ≥ 0, µD < ∞.
Recall that D̃ satisfies P(D̃ = k) = kpk/µD.

The epidemic:
A single initial infective.
Infectious period distribution I, with Laplace
transform φ(θ) = E[e−θI ], θ ≥ 0.
Whilst infective, individuals contact each of their
local (global) neighbours at the points of Poisson
processes with rate λL (λG).
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Construction of network

Put down the N = mn individuals (in their households).

Construct the network of global contacts according to
the configuration model described earlier: Assign each
individual a degree from D and pair up half-edges
uniformly at random

Recall that the density of imperfections in the graph (par-
allel edges, self-loops) tends to 0 as m increases. This is
also true of the probability that two edges emanating from
the same household lead to individuals who also share a
household.
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Infection spread
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Infection spread
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Infection spread
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Infection spread
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Infection spread
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Infection spread
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Infection spread
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Early stages

Initially the number of infected households behaves like
a branching process (exact as m → ∞).

The offspring of a household are the households it
infects.

We must determine the distribution of the number of
successful global infectious contacts emanating from a
household with a single initial infective who was infected
globally. Denote by C a random variable with this
distribution.

A major outbreak is possible iff R∗ = E C > 1.

The probability of a major outbreak occuring can be
determined from the PGF of C.
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Early stages—threshold parameter

Letting T be the final size of a local epidemic amongst
n − 1 initial susceptibles, we find that

R∗ = E C0 + E T E C1

=
(

µD̃−1 + µTµD

)

(1 − φ(λG))

=

(

µD(µT + 1) +
σ2

D

µD
− 1

)

(1 − φ(λG)),

since E D̃ = E D + Var D/ E D.

Unless n is very small any analytical formula for µT is
very complicated, so we evaluate this quantity
numerically.
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Major outbreak probability

The probability of a major outbreak is approximated by
the probability that the branching process avoids
extinction, determined from the PGF of the offspring
distribution.

Dependencies between the number of global infections
made by individuals within a household complicates
matters somewhat.

The ‘final state random variable’ framework of Ball and
O’Neill (1999) provides a methodology for us to
calculate the desired PGF numerically.

Note that due to the size-biasing effect the first
generation has a different offspring distribution.

Network epidemic models with two levels of mixing – p.27



Susceptibility sets and final size

Susceptibility set size is again important in determining
the mean final size of a major outbreak.

We can construct the susceptibility set of an individual
by ‘generations’ in a manner similar to our analysis of
the early stages of the epidemic.

This leads to a branching process approximation for the
size of an individual’s susceptibility set in the limit as
m → ∞.

The offspring distribution for this BP is the same as the
distribution of the number of individuals that make
global contact with the members of a given individual’s
local susceptibility set.
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Numerical results
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Histograms of relative final sizes for 10,000 simulations of the model with H ∼ U({1, 2, 3}),
D ∼ Geom(3/4), I ≡ 1, λL = 2, λG = 1/4, on networks of 20 and 200 households.
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Numerical results
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Simulation-based estimates of major outbreak probability against number of households,
together with asymptotic value, for the model with H ∼ U({1, 2, 3}), D ∼ Geom(3/4), I ≡ 1,

λL = 2, λG = 1/4. Each estimate is based on 10,000 simulations and the plot shows the
sample proportions ± 2SE.
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Numerical results
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Major outbreak probability dependence on D.
Other parameters are H ≡ 3, I ≡ 1, λL = 1, λG = 1/10.
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Numerical results
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Plots showing the effect of clustering on major outbreak probability, with expected number of
neighbours of an individual remaining constant.

(a) I ≡ 1, λL = λG = 1/10, average 20 neighbours, D geometric.
(b) I ≡ 1, λL = λG = 1/15, average 20 neighbours, D Poisson.
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Vaccination

We also have results which take account of the effect of an
all-or-nothing vaccine on disease spread for this model with
several vaccine allocation strategies:

vaccinate individuals uniformly at random,

vaccinate whole households uniformly at random,

optimal/worst household size based allocation and

acquaintance vaccination.

The analysis is very similar to that for the original model and
can in principle be extended to deal with more complex vac-
cine action models.

cf. Ball and Lyne (2006); Britton, Janson and Martin-Löf (2007)
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Numerical results
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Potential effects of an all-or-nothing vaccine with efficacy ε = 0.8 on the threshold parameter.
Other parameters are H ∼ U({1, 2, 3}), D ∼ Geom(3/4), I ≡ 1, λL = 2, λG = 1/3.
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Numerical results
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Potential effects of an all-or-nothing vaccine with efficacy ε = 0.8 on major outbreak
probability. Other parameters are H ∼ U({1, 2, 3}), D ∼ Geom(3/4), I ≡ 1, λL = 2,

λG = 1/3.
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Summary / discussion

We have seen two extensions of the standard SIR
network epidemic model—incorporating casual
contacts and household structure.

These models capture important real-life departures
from homogeneous mixing, both of which have a
significant impact on model behaviour and performance
of vaccination strategies, whilst retaining mathematical
tractability.

What further departures from homogeneous mixing can
be considered that are susceptible to analysis?
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