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Stochastic SIR model

For any small interval of time h,

Pr(an infection occurs by t + h) = βS(t)I (t)h + o(h)

Pr(a recovery occurs by t + h) = γI (t)h + o(h)

Pr(no event occurs by t + h) = 1− [βS(t)I (t) + γI (t)]h + o(h)

• Replaces rates of change with jump probabilities (Kermack
and McKendrick 1927); agree for large N [Kurtz 1978]

• A continuous-time Markov chain

• Enough to track S , I if S(t) + I (t) + R(t) = N, i.e. closed
population

• Assumes random mixing: everyone is equally likely to come in
contact with one another



Stochastic version of the SIR model

• Basic reproductive number R0 = βN/γ: “average number of
secondary infections” caused by an infectious individual.



Even the simple stochastic SIR is difficult to fit to data

Under the baseline model, it’s already difficult to infer the
parameters from data without additional simplifying assumptions

• Common to approximate the model (discrete-time, branching
(early), diffusion (late), locally constant, TSIR)

• Simulation methods (SMC, particle filters, ABC) are powerful
and popular, often suffer poor mixing/degeneracy, nontrivial

Instead, we pursue likelihood-based methods for fitting
continuous-time, stochastic models in the partially observed setting

• In many ways, complementary to filtering methodology



Toward inference: the complete-data likelihood

A continuous-time Markov chain jumps between states according
to exponential rates based on the generator Q.

For instance, qxy in Q means the time T until the process jumps
between two states x , y ∈ Ω is distributed T ∼ exp(qxy ).

• Diagonals −qj :=
∑

k∈Ω qjk give rate of jumping out of j .

• Likelihood is simply a product of exponentials:

Lc(τ , x;Q) =qx0e
−qx0τ1qx1e

−qx1 (τ2−τ1) . . .

· qxNT−1
e
−qxNT−1

(τNT−τNT−1)
e
−qxNT (T−τNT )

NT∏
i=1

qxi−1xi

qxi−1

.



The complete-data likelihood of general CTMC

CTMC with rate matrix Q: likelihood factorizes nicely

Lc(θ;X) =
∏
x6=y

(
q
N(x,y)
xy

)
e
∑

x τ(x)qxx

`c(θ;X) =
∑
x

∑
x6=y

N(x, y) ln qxy −
∑
x

∑
x6=y

τ(x)qxy

N(x, y) = total x→ y transitions, τ(x) = total time spent in x

• MLEs are easy: q̂xy = N(x, y)/τ(x)

• Posteriors with conjugate Gamma(α, β) priors also easy:

qxy|N, τ ∼ Gamma(N(x, y) + α, τ(x) + β)



Challenge: partial observations



The discretely observed data log-likelihood

`o(θ;Y) =
m∑

p=1

n(p)−1∑
i=0

log pXp(tp,i ),Xp(tp,i+1)(tp,i+1 − tp,i |θ)

In particular, composed of finite-time transition probabilities:

px,y(s) = Pr (X(t + s) = y|X(t) = x)

• Marginalized over infinitely many endpoint-conditioned paths (i.e.
evaluating a hard integral). We’ve worked a lot on this!

• Classical matrix exponentiation for CTMCs is O(|Ω|3)

P(t) :=
{
px,y(t)

}
x,y∈Ω

= eQt =
∞∑
k=0

(Qt)k

k!
.



Data augmentation: integration via latent sampling
The partial data likelihood is obtained by marginalizing over
missing data denoted Z:

Lo(X|θ) =

∫
Lc(X,Z|θ)dZ

When difficult to compute this integral directly, an alternative view
entails proposing possible values of Z, and construct a Markov
chain to explore the joint posterior distribution π(Z, θ|X).

By targeting the joint posterior, computations (MH acceptance
ratios, etc) require the tractable joint likelihood Lc above.

If we use MCMC to draw {(Z1, θ1), . . . , (Zm, θm)} ∼ π(Z, θ|X),
marginalizing out Z in the posterior is trivial.



Data augmentation: integration via latent sampling

To answer original questions regarding model parameters θ given
observations X, we simply ignore the samples of Zi . That is, the
remaining {θ1, . . . , θm} form a sample from the posterior π(θ|X)

I will attempt to make the case that classical MCMC with data
augmentation works well for the challenges in SIR models, and is
extensible when relaxing various assumptions.

Example: relax random mixing with contact networks [Bu et al 2022]:

1. Formulate a model for co-evolution of SIR and contact network

2. Derive its complete data likelihood Lc

3. Construct a sampler to augment the data to make use of Lc



Beyond the well-mixed case

Naturally, one may be interested in transmission through links in a
contact network (right panel).
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• Recent growing interest in network setting, largely due to advances
for gathering data at this resolution



SIR over a contact network: “mobile health” data

week 4 week 6 week 7 week 10

Motivating example: we will analyze eX-FLU data (Aiello et al,
2016) study; collected social contacts of 103 individuals at 5-min
intervals using a Bluetooth app to study flu symptoms



Goals

In this project, we sought to develop a framework that

1. models how the contact network impacts disease spread,

2. describes the influence of disease spread on network evolution,

3. enables inference based on exact likelihood of the stochastic
SIR and network processes

4. accommodates partial observations (missing epidemic
information but complete network information).



Notation and a very simple network process

Each individual’s contacts can be represented via an adjacency matrix A.
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To allow network to adapt, we will have each Aij(t) evolve according to a
Markov process taking values of 0 or 1.

In particular, the rates of edge creation αAB and deletion ωAB should
depend on disease status A,B of the two individuals.



Individual-level network events

ii j

i: infectious (I)
j: susceptible (S)
i and j linked i and j not linked

with rate 𝝎𝑺𝑰
i, j break up

j

with rate 𝜶𝑺𝑰
i, j connect

i j

i and j linked

i j

i: infectious (I)
j: susceptible (S)
i and j not linked



Individual-level SIR dynamics

i ji j

i: infectious
j: susceptible
i and j in contact i and j both infected

with rate 𝜷
i infects j

with rate 𝜸
i recovers

i j

i recovered, j susceptible



Joint dynamics of the model

At the individual level, four competing Poisson processes:

1. Infection: an I individual infects an S neighbor with rate β ;

2. Recovery: an I individual recovers with rate γ
independently;

3. Link activation: a link is formed at rate αAB between a
status A individual and a status B individual;

4. Link termination: a link is removed at rate ωAB analogously

5. Assume recovered and susceptible individuals behave
identically in terms of the network



Dynamics of the overall generative model

At the population level, the entire process sums over all
individual-level rates (superposition property):

1. Infection occurs with rate βSI (t) , where SI (t) = number of

S-I links at time t;

2. Recovery occurs with rate γI (t) , I (t) = number of I

individuals at time t;

3. Link activation for A-B pairs occurs with rate αABM
d
AB(t) ,

Md
AB(t) = number of disconnected A-B pairs at time t;

4. Link termination for A-B pairs is dissolved with rate

ωABMAB(t) , MAB(t) = number of connected A-B pairs at
time t.



Deriving the complete-data likelihood

Given the initial network structure G0 initial infective at time 0,

L(β, γ, α̃, ω̃|G0)

=γnRβnE−1αCHH

SS αCHI

SI α
CII

II ω
DHH

SS ωDHI

SI ω
DII

II

n∏
j=2

[
M̃(tj)

(
Ipj1 (tj)

)Fj
]

× exp

(
−
∫ Tmax

0

[
βSI (t) + γI (t) + α̃TMmax(t) + (ω̃ − α̃)TM(t)

]
dt

)
.

with parameters Θ = {β, γ, αSS , αSI , αII , ωSS , ωSI , ωII}

• This takes same simple form presented in beginning of talk, just
with more notation/bookkeeping (see paper for full notation!)

• Difficult to write the likelihood for very similar models, i.e.
preventative rewiring [Ball & Britton 2022]



Closed form inference

Analogously to the introduction slides: when completely observed,

β̂ =
nE − 1∑n

j=1 SI (tj)(tj − tj−1)
, γ̂ =

nR∑n
j=1 I (tj)(tj − tj−1)

,

α̂SS =
CHH∑n

j=1

[
H(tj )(H(tj )−1)

2
−MHH(tj)

]
(tj − tj−1)

, ω̂SS =
DHH∑n

j=1 MHH(tj)(tj − tj−1)
,

α̂SI =
CHI∑n

j=1 [H(tj)I (tj)−MHI (tj)] (tj − tj−1)
, ω̂SI =

DHI∑n
j=1 MHI (tj)(tj − tj−1)

,

α̂II =
CII∑n

j=1

[
I (tj )(I (tj )−1)

2
−MII (tj)

]
(tj − tj−1)

, ω̂II =
DII∑n

j=1 MII (tj)(tj − tj−1)
.

For Bayesian approach, Gamma priors again offer conjugacy:

β ∼ Ga(aβ , bβ), γ ∼ Ga(aγ , bγ),

α·· ∼ Ga(aα, bα), ω·· ∼ Ga(aω, bω).



Simulation study: inference with complete data

• Population size N = 100, 4 repetitions;

• Posterior samples concentrate around the truth (bold line)

𝛽: infection 𝛾: recovery

𝛼$$: H-H link activation 𝜔$$: H-H link termination



Inference for partially observed case

Having validated the likelihood, how do we use it toward inference
in the partially observed case?

Recall we need a way to draw valid samples of the missing events
Z, conditional on the model and observed data. In the case of the
real data, Z is the set of unknown recovery times.



Data setting: eX-FLU

Spread of influenza on campus (Aiello et al. 2016) with weekly
health status surveys and high-resolution contact network info via
Bluetooth app

• {(u`, u`+1]}L`=1: intervals ( weeks) during which “health status
reports” are collected

• Times of social link creation/deletion are known continuously

• In the `th interval, there are R` new recoveries (summary
data), but their event times are unknown

• Latent variables: Z = {r`,1, . . . , r`,R`}.
• Observed data: x = events + endpoint statuses.



A simple algorithmic primitive

Proposed inference method: data-augmented MCMC.

for s = 1 : maxIters:

1. Data augmentation. For observation times ` = 1 : L, draw

recovery times {r (s)
`,i }i=1:R` = Z from their joint conditional

p
(
{r`,i}i=1:R` |Θ

(s−1), x, {r`′,i}i=1:R`′ ,`
′ 6=`

)
. (1)

2. Update parameter values. Now that x augmented by Z
comprise the complete data, Gibbs sample parameters Θ(s)

from their (conditional) posteriors.



Conditional sampling/simulation is nontrivial

1. Simulating CTMC with fixed endpoints notoriously difficult

2. Must respect constraints imposed by the contact network
structure.

3. Previous work in well-mixed case proposes individual disease
histories one by one, and require intensive Metropolis-Hastings
steps based on marginal likelihood

Fortunately,

• Network structure “reduces dimension” of the latent space to
be explored (mechanistic information)

• Smart PhD students can think hard and derive a Gibbs step!



Data Augmentation Regulated by Contact Info (DARCI)

u ia ib ic v

a

b

cy

z z

y

At time ia , at
least one of y
and z has to be
infected in order
to infect a.

At time ib , b can
get infected by a,
so both y and z
can recover by
then.

At time u, both y
and z are
infected and the
other three are
susceptible.

time

At time ic , z has
to be infected in
order to infect c.

At time v, both y
and z are
recovered and
the other three
are infected.

Figure: How DARCI “imputes” y and z ’s unknown recovery times in
(u, v ]. = known infected, = possibly infected, = healthy.



Gibbs sampling from conditionals for parameters

β|Data ∼ Ga

aβ + nE − 1, bβ +
n∑

j=1

SI (tj )(tj − tj−1)

 ,
γ|Data ∼ Ga

aγ + nR , bγ +
n∑

j=1

I (tj )(tj − tj−1)

 ,
αSS |Data ∼ Ga

aα + CHH , bα +
n∑

j=1

[
H(tj )(H(tj )− 1)/2− MHH (tj )

]
(tj − tj−1)

 ,
αSI |Data ∼ Ga

aα + CHI , bα +
n∑

j=1

[
H(tj )I (tj )− MHI (tj )

]
(tj − tj−1)

 ,
αII |Data ∼ Ga

aα + CII , bα +
n∑

j=1

(
I (tj )(I (tj )− 1)/2− MII (tj )

)
(tj − tj−1)

 ,
ωSS |Data ∼ Ga

aω + DHH , bω +
n∑

j=1

MHH (tj )(tj − tj−1)

 ,
ωSI |Data ∼ Ga

aω + DHI , bω +
n∑

j=1

MHI (tj )(tj − tj−1)

 ,
ωII |Data ∼ Ga

aω + DII , bω +
n∑

j=1

MII (tj )(tj − tj−1)

 .



eX-FLU data

• 2013 study on influenza transmission among 590 college
students over 10 weeks

• 45,760 network events with low density

week 4 week 6 week 7 week 10



Results and analysis

• The data-augmented inference scheme is employed based on
the exact model likelihood (posterior)

• Modification allows for external infection rate ξ

• Posterior inference gives us summaries of parameters as well
as uncertainty: strong internal force of infection with slow
transmission, quick recovery, short contacts.

Parameter Mean 2.5% 97.5%
β (internal infection) 0.0695 0.0247 0.1500
ξ (external infection) 0.00331 0.00208 0.00494
γ (recovery) 0.294 0.186 0.428
αSS (H-H link activation) 0.0514 0.0499 0.0529
ωSS (H-H link termination) 38.26 33.55 40.62
αSI (H-I link activation) 0.130 0.0785 0.194
ωSI (H-I link termination) 53.5 22.5 231.7



Building upon the foundation

• Use an inhomogeneous bivariate branching process as faithful
proposal density when no event times are known (for instance,
incidence data) [Morsomme and Xu 2022+]

• Initialized at low density regions, appears to reach stationarity after
100 iterations and yields 100, 000 posterior samples in a couple of
minutes on a simulation with S0 = 1, 000

Figure: Traceplots of data-augmented MCMC with β0 = 0.003, γ0 = 1.



The piecewise-decoupled process

Under the SIR, the population infection rate µpop(t) = βI (t)S(t)
changes after every event. Consider the approximation:

Let µ̃pop be decoupled from only I (t) dynamics (PD-SIR).

µ̃pop(t) := βS(t)I (tk−1), t ∈ [tk−1, tk).

• The corresponding individual infection rate is

µ̃(t) :=
µ̃pop(t)

S(t)
= βI (tk−1) = µk , piece-wise constant!

• As a result, S(t) compartment follows a linear death process
(LDP)— here infections correspond to “deaths”.

• Proposal is equivalent to a bivariate branching process on each
interval, deteriorating only on that interval before “resetting”



A Useful Theorem

Theorem
Consider a LDP with death rate µ and let τ1:N ∈ (tl , tu] be the
times of N deaths occurring between times tl and tu. Then

τj
d
=X(j), j = 1, . . . ,N

where X(j) is the j th order statistic of N IID truncated exponential
variables with rate µ, lower bound tl and upper bound tu.

This will allow us to Gibbs sample all infection times in an
outbreak under the PD-SIR process in one vectorized draw!



Simulating the PD-SIR – pseudo-algorithm

Algorithm 1: Simulating a PD-SIR process conditionally on Y

Output: Z? = {(z Ii , zRi )}i compatible with Y = I1:K

for interval k = 1, . . . ,K do

Compute the infection rate:
µk ← βI (tk−1)

Jointly generate the infection times:

z Ij
iid∼ TruncExp(µk ; tk−1, tk), for j ∈ Ik

Generate the removal times:
zRj | z Ij

indep.∼ z Ij + Exponential(γ), for j ∈ Ik

end



A faithful approximation



A faithful approximation

Figure: SIR (with S in red, I in green and R in blue) and a PD-SIR (in
grey) trajectories under the same infection incidence data I1:K with
K = 5, 10, 50 total observations.



2014-2016 Ebola Pandemic in Western Africa
• Weekly incidence data in Gueckedou, n ≈ 300,000; ρ = 0.1
• Can sample 1, 000, 000 draws from posterior in half an hour

on a Macbook, about 20% acceptance rate
• Overcomes computational limitations while enabling classical

MCMC ideas [O’neill and Roberts 1999, Gibson & Renshaw 2001,

Neal & Roberts 2005]

Figure: Posterior draws of 1/γ, expected infection period, Ebola data



Extensions: Arbitrarily Distributed Infection Periods

• Infection times are the hard part— each removal is conditional
on its corresponding infection event

• Weibull distribution, for instance, may be more plausible for
infectious periods.

• Dropping exponentially distributed infectious period
assumption ⇒ non-Markovian.

• Yet, the likelihood still has a nice, closed form! Inference
carries through straightforwardly



Time-varying Infection Rate β(t)

• A good idea: β ∼ GP(.) (Kypraios, 2018)
• expensive: invert a matrix of order n × n each iteration

• Locally adaptive: ∆(β)k follows a Laplace or HS distribution
(Faulkner & Minin, 2018)
• accommodates sudden variations in β.

• Our first extension: piece-wise constant βk per interval,
promoting sparsity in (βk+1 − βk)
• Makes use of the nice Gibbs steps from this method while

performing change point detection on where breaks occur
• Very simple HMM prior favoring local constancy



Closing thoughts

Fully stochastic modeling: interpretability, uncertainty
quantification, and [eventually] reliable forecasting/decision-making

CTMC framework is extensible in many open directions and yields
tractable computation and workhorse inferential procedures +
statistical guarantees

Many open directions and extensions toward model realism

• Covariates, heterogeneous networks, human behavior?

• Multiple strains, compartments, covariates, reporting rates

• Network missingness/better random graph models

• Hybrid differential equation models, sequential MCMC/ABC



Thank you!

Figure: Students: Fan Bu, Raphael Morsomme, Jenny Huang
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Likelihood-based inference for partially observed stochastic epidemics with
individual heterogeneity. Bu, Aiello, Volfovsky∗, Xu∗, 2021+, arXiv preprint.

Detecting Changes in the Transmission Rate of a Stochastic Epidemic
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of Mathematical Biology.



Slide appendix



We’ve taken approaches via generating functions φ

φjk(t, s1, s2;θ) = Eθ

(
s
X1(t)
1 s

X2(t)
2 |X1(0) = j ,X2(0) = k

)
=
∞∑
l=0

∞∑
m=0

p(jk),(lm)(t;θ)s l1s
m
2 ; |si | ≤ 1

• We derive differential equations governing φjk using the Kolmogorov
forward/backward equations

• φjk may have closed solutions or cheap numerical solutions

Transition probabilities are related to the PGF via differentiation:

p(jk),(lm)(t) =
1

l!m!

∂l

∂s1

∂m

∂s2
φjk(t)

∣∣∣∣
s1=s2=0

.

Repeated differentiation impractical, numerically unstable



From differentiation to integration: series inversion

• Let s1 = e2πiw1 , s2 = e2πiw2 ⇒ φ becomes a Fourier series:

φjk(t, e2πiw1 , e2πiw2 ) =
∞∑
l=0

∞∑
m=0

p(jk),(lm)(t)e2πilw1e2πimw2

p(jk),(lm)(t) =

∫ 1

0

∫ 1

0

φjk(t, e2πiw1 , e2πiw2 )e−2πilw1e−2πimw2dw1dw2

(Fourier inversion + Riemann approximation)

≈ 1

N2

N−1∑
u=0

N−1∑
v=0

φjk(t, e2πiu/N , e2πiv/N)e−2πilu/Ne−2πimv/N .

• simultaneously compute set of probabilities {p(jk),(lm)(t)} for all
l ,m = 0, . . . ,N using Fast Fourier Transform (FFT) [Xu, Guttorp,
Kato-Maeda, Minin 2015]



Nonlinear transition probabilities for marginal likelihood

Much harder to apply these ideas to non-linear processes—recall in
SIR, interaction term βS(t)I (t)

Very briefly, working in the Laplace domain,

φab(s) := L[p(jk),(ab)(t)](s) =

∫ ∞
0

e−stp(jk),(ab)(t)dt

satisfies a recursion with continued fraction representation

φ
(0)
ab (s) =

b∏
i=1

xai
xa,b+1

Ya,b+1 +
xa,b+2Yab

ya,b+2 +
xa,b+3

ya,b+3 +
xa,b+4

ya,b+4 + · · ·

• Evaluate to finite depth with bound on error



A brief outline: direct computation of SIR likelihood

“The associated mathematical manipulations required to generate
solutions can only be described as heroic.”

— Eric Renshaw on computing the SIR marginal likelihood,
Stochastic Population Processes.

• Compute continued fraction by recursion in Laplace domain

• Numerically invert Laplace transform to recover transition
probabilities [Abate and Whitt]

• The marginal likelihood is simply a product of these quantities
[Ho et al 2018, J. Math. Bio.]

• We’ve also used bivariate branching process approximations
that allow for more efficient series inversion approaches via
their probability generating functions



Simulation study: partially observed study

Forward simulate from SIR model and record the complete data

Time Event Type Individual(s) Involved
...... ...... ......
95.8352 Link activation 100 & 5
95.8357 Link termination 148 & 157
95.8361 Recovery 125
95.8432 Link activation 62 & 147
95.8473 Recovery 16
95.8509 Infection 124
...... ...... ......

Table: A sample of simulated complete data.

Hide all recovery times to compile “weekly health reports” to
mimic discretely observed nature in real data



Accurate inference via data augmented MCMC

𝛽: infection 𝛾: recovery

𝛼$$: H-H link act. 𝛼$&: H-I link act.



Posterior for infection and recovery rates

Figure: Posterior (log scale) of recovery rate α and infection rate β. The “+” and
“×” symbol are previous point estimates from deterministic and approximate models
[Brauer 2008; Raggett 1982].



Relaxing the closed population assumption

• So far, closed population of size N: one can only get infected
from someone inside the community;

• What if the population under study is a sub-population?

• ξ (“external infection rate”): constant force of infection on
every susceptible.

• Likelihood:

L(β, ξ, γ, α̃, ω̃|G0) (2)

=γnRα
CHH
SS α

CHI
SI α

CII
II ω

DHH
SS ω

DHI
SI ω

DII
II

n∏
j=2

[
M̃(tj)

(
βIpj1(tj) + ξ

)Fj ]
× exp

(
−
∫ Tmax

0

[
βSI (t) + ξS(t) + γI (t) + α̃TMmax(t) + (ω̃ − α̃)TM(t)

]
dt

)
.

• No closed-form MLEs for β and ξ, but can be numerically
solved.



Slide appendix: relaxing closed population

• The N = 103 population is in fact a sub-population, so the
closed population assumption has to be relaxed;

• ξ: external infection rate.
• Slight modification; for an infection event ej :

• if there are possible internal infection sources, regard it as an
internal case (labelled as Intj = 1, → β);

• if there are no possible internal infection sources, regard it as
an external case (labelled as Intj = 0, → ξ).

• Complete data likelihood:

L(β, ξ, γ, α̃, ω̃|G0)

=β

(
nint
E −Int1

)
ξ(next

E −1+Int1))γnRα
CHH
SS α

CHI
SI α

CII
II ω

DHH
SS ω

DHI
SI ω

DII
II (3)

×
n∏

j=2

[
M̃(tj )Ipj1 (tj )

Fj Intj
]

× exp

(
−
∫ Tmax

0

[
βSI (t) + ξS(t) + γI (t) + α̃TMmax(t) + (ω̃ − α̃)TM(t)

]
dt

)
.

(4)



Model flexibility

• The framework generalizes:
• static network epidemic process (α·· = ω·· ≡ 0),
• “decoupled” network epidemic process (α·· ≡ α, ω·· ≡ ω).

• It can recognize those cases (e.g., static, link rates = 0).

𝛼$&: H-I link activation 𝜔$&: H-I link termination



Efficiency of DARCI

Compared DARCI with two other data augmentation methods:

1. Rejection sampling (“Reject”): For ` = 1 : L, keep

proposing recovery times {r∗`,i}i=1:R`
iid∼ TEXP(γ(s−1), u`, v`)

until the proposed recovery times are compatible with the
observed events.

2. Metropolis-Hastings (“MH”): For ` = 1 : L, propose

recovery times {r∗`,i}i=1:R`
iid∼ TEXP(γ(s−1), u`, v`), and accept

them as {r (s)
`,i }i=1:R` with probability

min

1,

p

(
x, {r∗`,i}i=1:R`

, {r (s−1)

`′,i }i=1:R
`′ ,`
′ 6=`|Θ

(s−1)
)

pTEXP
(
{r (s−1)
`,i

}i=1:R`
; γ(s−1), u`, v`

)
p
(
x, {r (s−1)

`,i
}i=1:R`,`=1:L|Θ(s−1)

)
pTEXP

(
{r∗
`,i
}i=1:R`

; γ(s−1), u`, v`

)
 .



Efficiency of DARCI

Take 1000 consecutive samples using each method, and evaluate

• effective sample size (ESS),

• Geweke Z-score (Geweke et al., 1991),

• two-sided p-value for the Z-score.

Statistic β γ αII ωSI Method

ESS 1000.00 1000.00 1000.00 1000.00
Z-score -0.90 -0.20 -0.22 -0.02 DARCI
Pr(> |Z |) 0.37 0.84 0.82 0.99

ESS 1000.00 1160.17 1000.00 926.63
Z-score 0.48 -1.01 1.08 -0.16 Reject
Pr(> |Z |) 0.63 0.31 0.28 0.87

ESS 566.43 1000.00 538.12 729.33
Z-score -1.25 -1.83 -2.09 -1.52 MH
Pr(> |Z |) 0.21 0.07 0.04 0.57



Efficiency of DARCI

• Also compared DARCI and Reject in running times.

• On a dataset with 5 intervals containing various numbers of
missing recovery times.

Interval #(To recover)
Min Time Median Time

Reject DARCI Reject DARCI

1 1 227µs 224µs 484µs 245µs
2 8 285µs 287µs 563µs 319µs
3 15 163µs 161µs 279µs 181µs
4 2 138µs 138µs 153µs 156µs
5 1 133µs 133µs 146µs 147µs
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