Variance of the giant component of a random graph

Peter Neal

University of Manchester

13 September 2011

Joint work with Frank Ball (University of Nottingham)

Overview

- 1. Introduction random graphs
- 2. Variance calculations
- 3. Numerical example
- 4. Questions random graphs and epidemics

1. Introduction – random graphs

Configuration model. n vertices.

Vertex i has degree D_i . (D_i half-edges.)

Half-edges connected, uniformly at random, to form edges, and hence, the graph.

Interested in the asymptotic behaviour of the graph as $n \to \infty$.

Let $\bar{\mathbf{D}}^n = (\bar{D}_1, \bar{D}_2, \dots, \bar{D}_n)$ with $\mathbf{D}^n = (D_1, D_2, \dots, D_n)$ a random permutation of $\bar{\mathbf{D}}^n$.

Molloy-Reed: $\bar{\mathbf{D}}^n$, a deterministic sequence with $\frac{1}{n} \sum_{i=1}^n 1_{\{\bar{D}_i = k\}} \to \pi_k$.

Newman-Strogatz-Watts: \bar{D}_i iid according to D.

Questions of interest – random graphs (epidemics)

Size of components. Does a giant component exist?

Yes, if
$$\mathbb{E}[D(D-1)]/\mathbb{E}[D] > 1$$
.

Size (mean) of giant component, R_n : ρn , where

$$\rho = 1 - f(z),$$

and z is the solution in [0, 1)

$$z = \frac{1}{\mu} f'(z),$$

where for $0 \le s \le 1$, $f(s) = \mathbb{E}[s^D]$ and $f' = \mathbb{E}[Ds^{D-1}]$.

Precisely,

$$\frac{1}{n}R_n \xrightarrow{p} \rho \text{ as } n \to \infty.$$

Question: What is the (limiting) distribution of R_n ?

Question: What is the (limiting) variance of R_n ?

Erdös-Rényi random graph

n vertices.

Probability of an edge between two vertices: $\mu/(n-1)$.

If $\mu > 1$ (supercritical):

$$\sqrt{n}\left(\frac{1}{n}R_n - \rho\right) \xrightarrow{D} N(0, \sigma^2) \text{ as } n \to \infty,$$
(1)

where ρ is the non-zero solution of $\rho = 1 - \exp(-\mu \rho)$ and $\sigma^2 = \frac{\rho(1-\rho)}{(1-\mu(1-\rho))^2}$.

2. Variance Theorem

For a supercritical Newman-Strogatz-Watts random graph with $\mathbb{E}[D^{12}] < \infty$,

$$var\left(\sqrt{n}\left(\frac{R_n}{n}-\rho\right)\right) \to \sigma^2 \text{ as } n \to \infty,$$
 (2)

where

$$\sigma^{2} = \rho(1-\rho) + \frac{z^{2}}{1-f''(z)/\mu}\mu(1+z^{2}) + \frac{z^{4}}{(1-f''(z)/\mu)^{2}}(\mu(\nu-2) + f''(z))$$

and $\nu = \mathbb{E}[D(D-1)]/\mathbb{E}[D].$

For a supercritical Molloy-Reed random graph with $\frac{1}{n} \sum_{i=1}^{n} \bar{D}_{i}^{12} \to \mathbb{E}[D^{12}] < \infty$, (2) holds with σ_{MR}^{2} replaced by

$$\begin{split} \sigma_{MR}^2 &= 1 - \rho - f(z^2) + \frac{z^2}{1 - f''(z)/\mu} \{ (1 + z^2)\mu - 2f'(z^2) \} \\ &+ \frac{z^2}{(1 - f''(z)/\mu)^2} \{ z^2\mu + z^2f''(z) - f'(z^2) - z^2f''(z^2) \}. \end{split}$$

Proof.

Let $U_n = n - R_n$, total number of vertices *outside* the giant component.

Let \mathcal{C}_i^n denote the component containing vertex i, and let $C_i^n = |\mathcal{C}_i^n|$.

Fix
$$0 < \beta < \frac{1}{10}$$
 and let $\chi_i^n = 1_{\{C_i^n \le [n^\beta]\}}$.

$$\tilde{U}_n = \sum_{i=1}^n \chi_i^n$$

Since the second largest component of a supercritical random graph is of size

$$O(\log n), |U_n - \tilde{U}_n| \xrightarrow{p} 0 \text{ as } n \to \infty.$$

Focus upon the variance of \tilde{U}_n .

Coupled branching processes

Condition upon $\bar{\mathbf{D}}^n = (\bar{D}_1^n, \bar{D}_2^n, \dots, \bar{D}_n^n)$.

Let
$$\pi_k^n = \frac{1}{n} \sum_{i=1}^n 1_{\{\bar{D}_i = k\}}$$
, $\mu_n = \frac{1}{n} \sum_{i=1}^n D_i$ and let $\pi_k = \mathbb{P}(D_1 = k)$.

Branching process \mathcal{B}_1^n .

Initial ancestor: k offspring with probability π_k^n .

Subsequent individuals: k-1 offspring with probability $k\pi_k^n/\mu_n$.

 B_1^n , total progeny and E_1^n , event the branching process goes extinct.

Branching process \mathcal{B} .

Initial ancestor: k offspring with probability π_k .

Subsequent individuals: k-1 offspring with probability $k\pi_k/\mu$.

B, total progeny and E, event the branching process goes extinct.

$$C_1^n | C_1^n \le [n^{\beta}] \xrightarrow{D} B | E \text{ as } n \to \infty.$$

$$var(\sqrt{n}(\tilde{U}_n/n - (1-\rho)))$$

Exploiting exchangeability of the vertices,

$$var(\sqrt{n}(\tilde{U}_n/n - (1 - \rho))) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n cov(\chi_i^n, \chi_j^n)$$
$$= var(\chi_1^n) + (n - 1)cov(\chi_1^n, \chi_2^n).$$

Now $var(\chi_1^n) \to (1-\rho)\rho$ and

$$(n-1)cov(\chi_1^n,\chi_2^n) = (n-1)\mathbb{E}[cov(\chi_1^n,\chi_2^n|\bar{\mathbf{D}}^n)] + var(\sqrt{n-1}\mathbb{E}[\chi_1^n|\bar{\mathbf{D}}^n]).$$

(The second term is zero for the Molloy-Reed random graph.)

$$(n-1)\mathbb{E}[cov(\chi_1^n,\chi_2^n|\bar{\mathbf{D}}^n)]$$

$$(n-1)cov(\chi_1^n, \chi_2^n | \bar{\mathbf{D}}^n)$$

$$= (n-1)\mathbb{E}\left[1_{\{C_1^n \leq [n^{\beta}]\}} \left(\mathbb{E}\left[1_{\{C_2^n \leq [n^{\beta}]\}} | \bar{\mathbf{D}}^n, \mathcal{C}_1^n\right] - \mathbb{E}\left[1_{\{C_2^n \leq [n^{\beta}]\}} | \bar{\mathbf{D}}^n\right]\right) \middle| \bar{\mathbf{D}}^n\right].$$

Two parts: $2 \in \mathcal{C}_1^n$ and $2 \notin \mathcal{C}_1^n$.

Note that, if $2 \in \mathcal{C}_1^n$, $\mathbb{E}[1_{\{\mathcal{C}_2^n \leq [n^{\beta}]\}} | \bar{\mathbf{D}}^n, \mathcal{C}_1^n, 2 \in \mathcal{C}_1^n] = 1_{\{\mathcal{C}_1^n \leq [n^{\beta}]\}}$, whereas $\mathbb{E}\left[1_{\{\mathcal{C}_2^n \leq [n^{\beta}]\}} | \bar{\mathbf{D}}^n\right]$ does not depend upon \mathcal{C}_1^n .

$$\begin{split} &(n-1)cov(\chi_1^n,\chi_2^n|\bar{\mathbf{D}}^n) \\ &= \mathbb{E}\left[\mathbf{1}_{\{C_1^n\leq [n^\beta]\}}(C_1^n-1)\left(\mathbf{1}_{\{C_1^n\leq [n^\beta]\}}-\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n\right]\right)\Big|\bar{\mathbf{D}}^n\right] \\ &+ \mathbb{E}\left[(n-C_1^n)\mathbf{1}_{\{C_1^n\leq [n^\beta]\}}\left(\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n,2\not\in\mathcal{C}_1^n\right]-\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n\right]\right)\Big|\bar{\mathbf{D}}^n\right]. \end{split}$$

$$\mathbb{E}\left[1_{\{C_1^n \le [n^{\beta}]\}}(C_1^n - 1) \left(1_{\{C_1^n \le [n^{\beta}]\}} - \mathbb{E}\left[1_{\{C_2^n \le [n^{\beta}]\}} | \bar{\mathbf{D}}^n\right]\right) \middle| \bar{\mathbf{D}}^n\right]$$

Given that $C_1^n \leq [n^{\beta}],$

$$1_{\{C_1^n \le [n^{\beta}]\}} - \mathbb{E}\left[1_{\{C_2^n \le [n^{\beta}]\}} | \bar{\mathbf{D}}^n\right] \xrightarrow{p} 1 - \mathbb{E}[1_{\{E_1\}}]$$

$$= 1 - (1 - \rho) = \rho.$$

Also,

$$\mathbb{E}[1_{\{C_1^n \le [n^{\beta}]\}}(C_1^n - 1)|\bar{\mathbf{D}}^n] \xrightarrow{p} \mathbb{E}[1_{\{E_1\}}(B_1 - 1)].$$

Hence, the limit is

$$\rho \mathbb{E}[1_{\{E_1\}}(B_1 - 1)] = \sigma_1^2.$$

$$2 \notin \mathcal{C}_1^n$$

Construct two (coupled) realisations of \mathcal{C}_2^n using $\bar{\mathbf{D}}^n$.

Realisation 1: Taking account of \mathcal{C}_1^n and $2 \notin \mathcal{C}_1^n$. Size $\check{\mathcal{C}}_2^n$.

Realisation 2: Independent of \mathcal{C}_1^n . Size $C_2^{n,I}$.

Let
$$H_1^n = \sum_{j \in C_1^n} \bar{D}_j (\approx 2(C_1^n - 1)).$$

(Approximate) probability a chosen vertex differs between the two realisations:

Initial vertex: C_1^n/n (choose a vertex in \mathcal{C}_1^n)

Subsequent vertices: $H_1^n/n\mu_n$ (choose a half-edge in \mathcal{C}_1^n)

1. Replace \check{C}_2^n and $C_2^{n,I}$ by branching process approximations total progenies of branching process approximations \check{B}_2^n and $B_2^{n,I}$. (Extinction \check{E}_2^n and $E_2^{n,I}$.)

2. Note that

$$\begin{split} & \mathbb{E}\left[\mathbb{E}\left[(n-C_1^n)\mathbf{1}_{\{C_1^n\leq [n^\beta]\}}\left(\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n,2\not\in\mathcal{C}_1^n\right]-\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n\right]\right)\middle|\bar{\mathbf{D}}^n\right]\right]\\ &\approx n\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\{C_1^n\leq [n^\beta]\}}\left(\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n,2\not\in\mathcal{C}_1^n\right]-\mathbb{E}\left[\mathbf{1}_{\{C_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n\right]\right)\middle|\bar{\mathbf{D}}^n\right]\right]\\ &\approx n\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\{C_1^n\leq [n^\beta]\}}\left(\mathbb{E}\left[\mathbf{1}_{\{\check{B}_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n,2\not\in\mathcal{C}_1^n\right]-\mathbb{E}\left[\mathbf{1}_{\{B_2^n\leq [n^\beta]\}}|\bar{\mathbf{D}}^n\right]\right)\middle|\bar{\mathbf{D}}^n\right]\right]\\ &\approx n\mathbb{E}[\mathbb{E}[\mathbf{1}_{\{C_1\leq n^\beta\}}(\mathbb{E}[\mathbf{1}_{\{\check{E}_2^n\}}|\bar{\mathbf{D}}^n,\mathcal{C}_1^12\not\in\mathcal{C}_1^n]-\mathbb{E}[\mathbf{1}_{\{E_2^{n,I}\}}|\bar{\mathbf{D}}^n])|\bar{\mathbf{D}}^n]] \end{split}$$

3. Comparing the extinction probabilities between two branching processes with a small, O(1/n), mutation rate. Limit

$$\mathbb{E}\left[\left\{Bf(z) - \sum_{k=1}^{\infty} b_k z^k + \frac{z}{1 - f''(z)/\mu} \sum_{k=1}^{\infty} k b_k (z - z^{k-1})\right\} 1_{\{E_1\}}\right] = \sigma_2^2,$$

where b_k is the total number of vertices of degree k in \mathcal{C}_1^n .

$$var(\sqrt{n-1}\mathbb{E}[\chi_1^n|\bar{\mathbf{D}}^n])$$

$$\sqrt{n-1}(\mathbb{E}[\chi_1^n|\bar{\mathbf{D}}^n] - (1-\rho)) = \sqrt{n-1}(\mathbb{P}(C_1^n \le [n^{\beta}]|\bar{\mathbf{D}}^n) - \mathbb{P}(B_1^n \le [n^{\beta}]|\bar{\mathbf{D}}^n))
+ \sqrt{n-1}(\mathbb{P}(B_1^n \le [n^{\beta}]|\bar{\mathbf{D}}^n) - \mathbb{P}(E_1^n|\bar{\mathbf{D}}^n))
+ \sqrt{n-1}(\mathbb{P}(E_1^n|\bar{\mathbf{D}}^n) - (1-\rho)).$$

The first two terms converge (in probability) to 0 as $n \to \infty$ and $1 - \rho = \mathbb{P}(E_1)$.

This reduces the problem to comparing the extinction probabilities of two branching processes.

$$\sqrt{n-1}(\mathbb{P}(E_1^n|\bar{\mathbf{D}}^n)-\mathbb{P}(E_1)).$$

Let
$$y_n = \mathbb{P}(E_1^n | \bar{\mathbf{D}}^n)$$
 and $y = \mathbb{P}(E_1)$. Then
$$y_n = f_n(z_n)$$

$$y = f(z)$$

where

$$z_n = \frac{1}{\mu_n} f'_n(z_n)$$

$$z = \frac{1}{\mu} f'(z)$$
 and
$$f_n(s) = \frac{1}{n} \sum_{i=1}^n s^{\bar{D}_i} \text{ and } f'_n(s) = \frac{1}{n} \sum_{i=1}^n \bar{D}_i s^{\bar{D}_i - 1}$$

First step, using the central limit theorem,

$$\sqrt{n-1}(\mathbb{P}(E_1^n|\bar{\mathbf{D}}^n)-\mathbb{P}(E_1)) \xrightarrow{D} N\left(0, var\left(z^D + \frac{z}{1-f''(z)/\mu}D(z^{D-1}-z)\right)\right).$$

Second step, uniform integrability,

$$var(\sqrt{n-1}(\mathbb{E}[\chi_1^n|\bar{\mathbf{D}}^n] - (1-\rho))) \approx var(\sqrt{n-1}(\mathbb{P}(E_1^n|\bar{\mathbf{D}}^n) - \mathbb{P}(E_1)))$$

$$\rightarrow var\left(z^D + \frac{z}{1-f''(z)/\mu}D(z^{D-1}-z)\right)$$

$$= \sigma_3^2.$$

Hence, for the Newman-Strogatz-Watts random graph,

$$var\left(\sqrt{n}\left(\frac{\tilde{U}_n}{n} - (1-\rho)\right)\right) \to \rho(1-\rho) + \sigma_1^2 + \sigma_2^2 + \sigma_3^2$$

and for the Molloy-Reed random graph

$$var\left(\sqrt{n}\left(\frac{\tilde{U}_n}{n} - (1-\rho)\right)\right) \to \rho(1-\rho) + \sigma_1^2 + \sigma_2^2.$$

The Theorem is completed by showing that

$$|var(U_n/\sqrt{n}) - var(\tilde{U}_n/\sqrt{n})| \to 0$$

and computing σ_1^2 , σ_2^2 and σ_3^2 .

3. Numerical example

n = 1000.

Four choices of degree distribution:-

1.
$$\mathbb{P}(D=1) = \mathbb{P}(D=3) = 1/2;$$

2.
$$\mathbb{P}(D=k) = 1/4 \ (k=1,2,3,4);$$

3. $D \sim Po(\mu)$ with $\mu = 2$;

4.
$$\mathbb{P}(D=k) \propto k^{-m} \ (k=2,3,\ldots,n)$$
 and $\mathbb{P}(D=1)=2\mathbb{P}(D=3)$ with $m=4$.

10000 Simulations

	NSW random graph		MR random graph	
D	Simulations	Theoretical	Simulations	Theoretical
1	Mean = 813.9	$n\rho = 814.8$	Mean = 815.5	$n\rho = 814.8$
	Var = 664.8	$n\sigma^2 = 644.7$	Var = 271.8	$n\sigma_{MR}^2 = 293.6$
2	Mean = 961.6	$n\rho = 961.7$	Mean = 961.2	$n\rho = 961.7$
	Var = 99.4	$n\sigma^2 = 101.4$	Var = 79.2	$n\sigma_{MR}^2 = 77.3$
3	Mean = 796.4	$n\rho = 796.8$	Mean = 796.8	$n\rho = 796.8$
	Var = 318.7	$n\sigma^2 = 310.7$	Var = 130.5	$n\sigma_{MR}^2 = 136.5$
4	Mean = 890.2	$n\rho = 890.6$	Mean = 887.3	$n\rho = 890.6$
	Var = 659.3	$n\sigma^2 = 660.9$	Var = 361.7	$n\sigma_{MR}^2 = 353.0$

CLT?

Histograms of R_n with n=1000, based upon a sample of size 10000, plotted against density plots of $N(n\rho, n\sigma^2)$ with degree distribution 1.

Questions from numerical example

- 1. Central limit theorem for the size of the giant component.
- 2. Difference between Newman-Strogatz-Watts random graph with $D \sim \text{Po}(\mu)$ and Erdös-Rényi random graph with degree distribution $\text{Po}(\mu)$. For example, $\mu = 2$.

Newman-Strogatz-Watts random graph.

$$\mathbb{E}\left[\frac{1}{n}R_n\right] \to 0.7968, \qquad var\left(\sqrt{n}\left(\frac{1}{n}R_n - \rho\right)\right) \to 0.3107$$

Erdös-Rényi random graph.

$$\mathbb{E}\left[\frac{1}{n}R_n\right] \to 0.7968, \qquad var\left(\sqrt{n}\left(\frac{1}{n}R_n - \rho\right)\right) \to 0.4595$$

3. Are any of the methods/ideas applicable for subcritical or critical random graphs?

Questions for epidemics on random graphs/networks

- 1. Epidemics upon random graphs (directed random graphs). Variance of the size of a large epidemic outbreak.
- 2. Applicability of the above approach to other structures (without exchangeability). Assessing whether or not a particular pair of individuals belong to a giant component/major epidemic.

Ball and Neal (2008). Reed-Frost epidemic on a network with $D \equiv d \geq 3$. (Distance between individuals/vertices.)

Ball and Neal (2010). Standard (homogeneously mixing) Reed-Frost epidemic. (Exchangeability.)