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1. Introduction — random graphs

Configuration model. n vertices.
Vertex ¢ has degree D;. (D; half-edges.)

Half-edges connected, uniformly at random, to form edges, and hence, the

graph.
Interested in the asymptotic behaviour of the graph as n — oo.

Let D" = (Dy, Do, ..., D,) with D" = (D1, Do, ..., D,) a random permu-
tation of D",

Molloy-Reed: D", a deterministic sequence with %2?21 Lp—ry — Tk

Newman-Strogatz-Watts: D; #id according to D.



Questions of interest — random graphs (epidemics)

Size of components. Does a giant component exist”?
Yes, if E[D(D — 1)]/E[D] > 1.

Size (mean) of giant component, R,: pn, where

p=1-—f(2),

and z is the solution in [0, 1)

1 /
z=—f(z2),
1)
where for 0 < s < 1, f(s) = E[s”] and f' = E[Ds?1].

Precisely,

1 p
—R, — p asn — oc.
n



Question: What is the (limiting) distribution of R,,?

Question: What is the (limiting) variance of R,,?



Erdos-Rényi random graph

n vertices.
Probability of an edge between two vertices: p/(n —1).

If 4 > 1 (supercritical):

v (%Rn _ p> D, N(0,6%) asn— oo, )

where p is the non-zero solution of p = 1 — exp(—pp) and 02 =



2. Variance Theorem

For a supercritical Newman-Strogatz-Watts random graph with E[D?] <

0,

var (ﬁ(%—p»ﬂf? —— 2)

where

2 4
9 Z

0" = p(l=p)+ 1= ) /u““ +27) + T 7)) mQ(u(v —2)+ f(2))

and v = E[D(D — 1)]/E|D].



For a supercritical Molloy-Reed random graph with = 37" | D* — E[D?] <

00, (2) holds with %, replaced by

2
‘7]2\4}% = 1_P_f<z2>+21 — "(2)/u
2z

T A~ P = 2}

{1+ 2 —2f'(=")}




Proof.

Let U, = n — R, total number of vertices outside the giant component.
Let CI" denote the component containing vertex ¢, and let C" = |C!"].

n
U= X
1=1

Since the second largest component of a supercritical random graph is of size
O(logn), |U, — Uy,| = 0 as n — oo.

Focus upon the variance of U,,.



Coupled branching processes

Condition upon D" = (D}, D%, ..., D").

Let mf = 3y Lpymkp tn = 5 2 iy Di and let mp = P(Dy = k).

Branching process BY.
Initial ancestor: & offspring with probability ;.
Subsequent individuals: k& — 1 offspring with probability km}!/ .

I/, total progeny and E7, event the branching process goes extinct.



Branching process B.

Initial ancestor: k offspring with probability 7.
Subsequent individuals: k — 1 offspring with probability kmy /.

B, total progeny and E, event the branching process goes extinct.

CP|CT < ] 2, B|E asn — oo.



var(vn(Uy /n — (1 = p)))
Exploiting exchangeability of the vertices,

var(v/n(Uy,/n — (1= p))) = %zn: zn: cov(xi', X})
— war(x) + (0 — Deov(id )
Now var(x") — (1 — p)p and
(n = 1cov(xi, x3) = (n— DE[cov(x], x5D")] + var(vn — 1E[x]|D"]).

(The second term is zero for the Molloy-Reed random graph.)



(n — 1)E[cov(x7, x5|D")]

(n — L)cov(x{, x3|D")
= (0= DE |Licpery (E [Legenn D" €| B [LicgunD"]) | D7)
Two parts: 2 € C' and 2 & Cf.
Note that, if 2 € C7, E[l{cgg[ng]”f)",C?,Q c C7| = Lien<pns)y, Whereas
E [1{0%[”@]}@)”} does not depend upon Cy'.
(n — L)cov(x{, x5|D")
= E | Ly (& = D) (Lcpeoy — B {HC&[M]HDH}ND”}
+ E | (0= D1y (B [Lepeuny/D™ 2 € G| = E |11y, |D") ) | D"|.




D [1{0%[”/3]}(0? —1) (1{0{‘3[71/3]} — b {1{035[71[3]}\]3”}) ‘ Dn}
Given that C7 < [n”],
Liop<ry — B [1{03s[nﬁ]}|]5”] — 1-E[lp)]
= 1-(1—-p)=p
Also,
E[1{cn<puiy (CF — 1)|/D" — E[l{p(Bi — 1.

Hence, the limit is

PE[1(z(B1 — 1)] = o7.



2¢Cf

Construct two (coupled) realisations of C3 using D",

Realisation 1: Taking account of C" and 2 & C}. Size CY.

Realisation 2: Independent of C?. Size C3""

Let H' = con Dj(= 2(CT = 1)).

(Approximate) probability a chosen vertex differs between the two realisa-
tions:

Initial vertex: C7/n (choose a vertex in C7')

Subsequent vertices: H{'/nu, (choose a half-edge in Cy)



1. Replace (?g and C3 o by branching process approximations total progenies
of branching process approximations Bg and By L
(Extinction E4 and EZ")

2. Note that

E[E |(n— Cliep<py (B Loy D™2 € C1| = E |1cpepuny D)) | D"|
nk [E [%%W]} (E [HO%WMD”» 2¢ ¢y } -k [%%WMD"D ‘ D”H
nk [E [1{0{‘3[715]} (E [1{355[%5]}“)“’ 240y } -k [1{BS§[nﬁ]}‘DnD ‘ D”H

nB[E[Lc, <0y (B[l gy |D", Ci2 € C7] — K|

Q

Q

Q

1o, D)D"



3. Comparing the extinction probabilities between two branching processes

with a small, O(1/n), mutation rate. Limit

{ Zbkz —l_l—f” Zkbk z— 2" }1{E1}]

where by is the total number of vertices of degree k in C7.




var(v/n — 1E[x}|D"])

V= 1EN{D"] - (1 - p)) = vVn = 1(P(C] < [0][D") -~ P(B} < [n"]|D"))
+vn —1(P(Bf < [n][D") - P(E}|D"))
+vn — LP(EYD") — (1 - p)).

The first two terms converge (in probability) to 0 asn — oo and 1 — p =

P(Ey).

This reduces the problem to comparing the extinction probabilities of two

branching processes.

vn— 1(P(EY|D") — P(E)).



Let y, = P(E?|D") and y = P(E;). Then

Yn — fn(zn>
y = f(2)
where
7 = /fi (o)
<= ;f (2)

and fus) = L0, s and fi(s) = 1500 D



First step, using the central limit theorem,

Z

Vi — 1(P(EYD")~P(E;)) — N (O,Uar (zD + 1 0 /MD(ZD_l — z))) .

Second step, uniform integrability,

var(vn = HEN{D"] ~ (1 - p))) ~ var(vn = 1(B(E}D") - P(Ey))

Z

— var <zD + 1 f”(z)/,LLD(ZD_l — z)>

_ 2




Hence, for the Newman-Strogatz-Watts random graph,

var <\/ﬁ (%(1,0))) — p(1 —p)+ o]+ 05+ 03

and for the Molloy-Reed random graph

var <\/ﬁ <%(1p)>> — p(1 — p)+ o] +03.

The Theorem is completed by showing that

lvar(U,/+/n) — var(U,//n)| — 0

and computing of, 03 and o3.



3. Numerical example

n = 1000.

Four choices of degree distribution:-
LP(D=1)=P(D =3)=1/2;
2.P(D=Fk)=1/4(k=1,2,3,4);
3. D ~ Po(u) with g = 2;

4.P(D =Fk) x k=™ (k =2,3,...

m = 4.

10000 Simulations

,n) and P(D = 1)



NSW random graph

MR random graph

Simulations| Theoretical|  Simulations|  Theoretical
Mean = 813.9| np = 814.8 | Mean = 815.5 np = 814.8
Var = 664.8 no* = 644.7| Var = 271.8|no3,p = 293.6
Mean = 961.6| np = 961.7| Mean = 961.2 np = 961.7
Var = 99.4 no* = 1014 Var = 79.2| noy,p = 77.3
Mean = 796.4| np = 796.8| Mean = 796.8 np = 796.8
Var = 318.7 no* = 310.7| Var = 130.5|no3,, = 136.5
Mean = 890.2| np = 890.6 | Mean = 887.3 np = 890.6
Var = 659.3 no* = 660.9| Var = 361.7|no3,, = 353.0



CLT?

NSW MR

Density
0.010 0.015
! ]
I
I
RN
1
1
_
Density
0.010 0.015 0.020
! ! ]
[
\|\)|
1
_

o
o
S
S
o
=]
g
d J XLW\
o o
S S
S - =
© I 1 1 1 1 o I 1 1 1 1 1 1
700 750 800 850 900 740 760 780 800 820 840 860
Size of the giant component Size of the giant component

Histograms of R,, with n = 1000, based upon a sample of size 10000,
plotted against density plots of N(np, no?) with degree distribution 1.



Questions from numerical example

1. Central limit theorem for the size of the giant component.

2. Difference between Newman-Strogatz-Watts random graph with D ~
Po(p) and Erdos-Rényi random graph with degree distribution Po(pu).

For example, p = 2.

Newman-Strogatz-Watts random graph.

1 1
K [—Rn] — (0.7968, var (\/ﬁ (—Rn — p)) — 0.3107

n

Erdos-Rényi random graph.

1 1
K [—Rn] — (.7968, var (\/ﬁ (—Rn — p)) — 0.4595

n



3. Are any of the methods/ideas applicable for subcritical or critical random

graphs?



Questions for epidemics on random graphs/networks

1. Epidemics upon random graphs (directed random graphs). Variance of

the size of a large epidemic outbreak.

2. Applicability of the above approach to other structures (without ex-
changeability). Assessing whether or not a particular pair of individuals

belong to a giant component /major epidemic.

Ball and Neal (2008). Reed-Frost epidemic on a network with D = d > 3.

(Distance between individuals/vertices.)

Ball and Neal (2010). Standard (homogeneously mixing) Reed-Frost epi-
demic. (Exchangeability.)



