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Standard Mass Action SIR model

Population divided into Susceptible, Infected, and Recovered
individuals, S+ /+ R =1.

e “Mass Action” mixing

e Behavior is homogeneous: Everyone has exactly k randomly
chosen contacts.

o Contacts are fleeting: At each moment in time, those k
contacts are with new people.

e Infection is transmitted at rate (3 per contact.

e Recovery occurs at rate 7.



This has a simple graphical interpretation as a flow diagram.

BIS vl

s > | > =R

The equations can be directly written down as

S=-3Is
I =3IS —~l
R =~l

where B = Ok

The '-' means: “rate of change in time”.



Why use the Mass Action model?

When there is variation in contact rates or partnerships have
duration, mass action model assumptions are false. Why use them?

e Simple equations

e + Simple graphical description
e = Simple interpretation



Why use the Mass Action model?

When there is variation in contact rates or partnerships have
duration, mass action model assumptions are false. Why use them?

e Simple equations

e + Simple graphical description
e = Simple interpretation

Does cost/effort of more accurate model give improved policy
recommendation?



Network epidemic model
e Assume (for now) that population contacts are static.
Contacts are referred to as “edges”.

e Degree distribution P(k) gives probability an individual has
degree k, i.e., k contacts. Partners chosen “randomly”.

e Infection spreads along each edge at rate 3. An infected
individual recovers at rate 7.




Size Bias

The probability the neighbor of a given node has degree k is



Size Bias

The probability the neighbor of a given node has degree k is

kP(k)
Po(k) = =5~
(K)
[c.f., Why your friends have more friends than you do. S. Feld.
American Journal of Sociology, 1991]




Previous approaches for final size

e A number of researchers have looked at the question of final
size for epidemics in this (and similar) populations.

e The fundamental approach may be summarized as calculating
the probability that a random individual wasn't infected
during an epidemic.

e This is done by calculating the probability a neighbor was
infected, and, if infected, the probability the neighbor
transmitted.



Previous approaches for final size

A number of researchers have looked at the question of final
size for epidemics in this (and similar) populations.

The fundamental approach may be summarized as calculating
the probability that a random individual wasn't infected
during an epidemic.

This is done by calculating the probability a neighbor was

infected, and, if infected, the probability the neighbor
transmitted.

We change our focus to calculating the probability that an
individual hasn't been infected yet.



Previous approaches for dynamics
We have three pre-existing options



Previous approaches for dynamics
We have three pre-existing options

A system with O(M) equations where M is the maximum degree:

S p(0)[(+ 7o Ak + D]
Vi — Bk + vk — kil — e
+ p(8) [(k + DIBr1 + Yir) + k] = k(B + )yl
where
p(t) = Zkz(;fy:m

X is number of susceptible individuals u with k susceptible or in-
fected neighbors, and yy is the number of infected individuals with
k susceptible or infected neighbors (along edges which have not
transmitted to/from u).



Previous approaches for dynamics
We have three pre-existing options

A system with O(M?) equations where M is the maximum degree.
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Previous approaches for dynamics
We have three pre-existing options

A system with a bounded number of equations.
Table 3 A summary of the
nonlinear differential equations
used to the describe the spread
of a simple SIR type epidemic
through a random network. The . _ o8 " (©)
degree distribution of the Ps =TPsPI g’ ()
network is generated by g(x) S =g®)

[ =rpi0g'(0) — ul

6 =—rpt
"
. )
P = rpsm@i,(e) —rpi(L—pp) —pru

There is no flow diagram, so the derivation is less intuitive.
Note g(x) = >, P(k)xk.



Deriving the Dynamics

The following are (almost) equivalent:

1. The proportion of the population that is susceptible, infected,
or recovered at a given time.

2. The probability a random individual is susceptible, infected, or
recovered given the initial conditions.

3. The probability that a random individual is susceptible,
infected, or recovered given the initial conditions and that the
individual is prevented from causing infection.



Deriving the Dynamics

The following are (almost) equivalent:

1. The proportion of the population that is susceptible, infected,
or recovered at a given time.

2. The probability a random individual is susceptible, infected, or
recovered given the initial conditions.

3. The probability that a random individual is susceptible,
infected, or recovered given the initial conditions and that the
individual is prevented from causing infection.

(1) — (2) is where the hard rigorous work is hiding, but if there is
a deterministic limiting behavior, then it “must” be true.
(2) — (3) allows us to simplify the mathematics.



Assumptions:

e Very small initial proportion infected. (this can be weakened)

e Very large initial number of infections.



The test node

Consider a randomly chosen test node u in the population.
Disallow infection from the test node to its neighbors (allows
independence assumption for neighbors).

The probability the node is Susceptible, Infected, or Recovered
is affected by the status of its neighbors.

The fraction of the population that is still susceptible S(t) is
equal to the probability u is still susceptible.



The test node

Consider a randomly chosen test node u in the population.

Disallow infection from the test node to its neighbors (allows
independence assumption for neighbors).

The probability the node is Susceptible, Infected, or Recovered
is affected by the status of its neighbors.

The fraction of the population that is still susceptible S(t) is
equal to the probability u is still susceptible.

The fractions of the populations that are infected /(t) or
recovered R(t) satisfy

/I=1-S§S—R
R:’y/

All that remains is to determine S(t), the probability u is
susceptible.



Finding S(t)

e Consider a random partner v of the randomly chosen test
individual u.

e v has degree k with probability P,(k) = kP(k)/ (K).

e Let 0 be the probability v has not yet transmitted infection to
u.



~

Probability a random degree k test individual still susceptible is

o(t)"



Probability a random degree—k test individual still susceptible is

Z P(k)0(t)k



Probability a random degree—k test individual still susceptible is
Z P(k)(t)* = v(6)

where

= P(k)x*
k

is the Probability Generating Function (pgf) of the distribution
P(k).



A new (partial) flow diagram




A new (partial) flow diagram

S=yO) > | P R

We conclude
R=~l S=¢@® I1=1-5S-R

We just need 6.



How does 6 evolve?

e Let ¢s be the probability v (the partner) is susceptible.
e Let ¢; be the probability v is infected and has not infected u.
e Let ¢r be the probability v is recovered and did not infect wu.

Then 0 = (ﬁs—l—d)/ —i—(Z)R.
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So ¢; =0 — ¢ps — ¢r can be expressed in terms of 6:

i _ _ ¥'(0) B
0 =—0o1= 59+5¢,() V(1 -90)




Final System

We finally have

¥'(0)
¥'(1)
R=~l S=¢@®) I=1-S-R

0=—-£0+0 + (1 - 0)



Final System

We finally have

¥'(0)
¥'(1)
R=~l S=¢@®) I=1-S-R
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Dynamic Networks

e There are several ways to generalize this to dynamic networks.

e Consider a Configuration-Model like network with nodes
assigned stubs (half-edges) from a distribution.

e Stubs may be active (part of an edge) or dormant (not part of
an edge). At rate 11, dormant stubs become active and at
rate 7, active stubs become dormant.

A node with k stubs has kn1/(n1 + 12) edges on average.




Calculating S

e Consider a randomly chosen test node w.

e The probability u is susceptible is S(t) = >, P(k)0% where 0
is the probability a stub hasn't received infection from a
neighbor.

e Divide 6 into ¢s, ¢;, ¢r, and ¢p where these are the
probabilities that the stub has never received infection and is
currently connected to a susceptible, infected, or recovered
node, or dormant.




Calculating 6

S=4(0)
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The variables ms, 7/, and wr give the probability a random stub in
the population is dormant and belongs to a susceptible, infected,
or recovered node.

We have m = ms + mj + mr = 12/(1m1 + 1m2) is the probability a stub
is dormant.

Similar variables exist for & representing active stubs.




Dormant Contact equations
We arrive at

9 = _ﬁ¢/ )

L P (0) s
bs = —Bdi1ds (0) +m— ép — M2Ps ,

_ P (0) T,

b1 = Boi¢s (0) +m—¢p — (2 + 6 +7)¢1,
¢p =m(0 — ép) — Mmép,

L V() e e
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R=nl, S =4(0), |=1-S—R.



Comparison with simulation
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Note: Mass action almost results if (K?) / (K)? =1 as (K) —
with 3 (K) fixed. It does result if (K*) / (K)* — 1.



Other things we can do

Non-constant rates
Serosorting

Household models
Multitype networks

Random Intersection Graphs

Just about any network with configuration-model-like
properties for which analytic final-size results exist (and some
for which they don't).



Questions?
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