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Standard Mass Action SIR model

Population divided into Susceptible, Infected, and Recovered
individuals, S + I + R = 1.

• “Mass Action” mixing
• Behavior is homogeneous: Everyone has exactly k randomly

chosen contacts.
• Contacts are fleeting: At each moment in time, those k

contacts are with new people.

• Infection is transmitted at rate β per contact.

• Recovery occurs at rate γ.



This has a simple graphical interpretation as a flow diagram.

S I R

γIβ̂IS

The equations can be directly written down as

Ṡ = −β̂IS

İ = β̂IS − γI
Ṙ = γI

where β̂ = βk

The ’·’ means: “rate of change in time”.



Why use the Mass Action model?

When there is variation in contact rates or partnerships have
duration, mass action model assumptions are false. Why use them?

• Simple equations

• + Simple graphical description S I R

γIβ̂IS

• = Simple interpretation

Does cost/effort of more accurate model give improved policy
recommendation?
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Network epidemic model

• Assume (for now) that population contacts are static.
Contacts are referred to as “edges”.

• Degree distribution P(k) gives probability an individual has
degree k, i.e., k contacts. Partners chosen “randomly”.

• Infection spreads along each edge at rate β. An infected
individual recovers at rate γ.



Size Bias

The probability the neighbor of a given node has degree k is

Pn(k) =
kP(k)

〈K 〉

[c.f., Why your friends have more friends than you do. S. Feld.
American Journal of Sociology, 1991]
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Previous approaches for final size

• A number of researchers have looked at the question of final
size for epidemics in this (and similar) populations.

• The fundamental approach may be summarized as calculating
the probability that a random individual wasn’t infected
during an epidemic.

• This is done by calculating the probability a neighbor was
infected, and, if infected, the probability the neighbor
transmitted.

• We change our focus to calculating the probability that an
individual hasn’t been infected yet.



Previous approaches for final size

• A number of researchers have looked at the question of final
size for epidemics in this (and similar) populations.

• The fundamental approach may be summarized as calculating
the probability that a random individual wasn’t infected
during an epidemic.

• This is done by calculating the probability a neighbor was
infected, and, if infected, the probability the neighbor
transmitted.

• We change our focus to calculating the probability that an
individual hasn’t been infected yet.



Previous approaches for dynamics
We have three pre-existing options



Previous approaches for dynamics
We have three pre-existing options

A system with O(M) equations where M is the maximum degree:

dxk

dt
= −ρ(t) [(β + γ)kxk − γ(k + 1)xk+1]

dyk

dt
= β[(k + 1)yk+1 − kyk ]− γyk

+ ρ(t) [(k + 1)[β(xk+1 + yk+1) + γyk+1]− k(β + γ)yk ]

where

ρ(t) =

∑
kyk∑

k(yk + xk)

xk is number of susceptible individuals u with k susceptible or in-
fected neighbors, and yk is the number of infected individuals with
k susceptible or infected neighbors (along edges which have not
transmitted to/from u).
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A system with O(M2) equations where M is the maximum degree.Effective degree network disease models
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them from the network. Thus, unlike in our SIS model, the degree s + i of each sus-
ceptible or infectious node may decrease as their infectious neighbors recover and are
removed from the network.

For a node in class Ssi , the recovery of one of its neighbors decreases its infectious
degree by one while leaving the susceptible degree unchanged, and hence the node
moves to class Ss,i−1. The rate at which such nodes leave Ssi and enter Ss,i−1 is given
by γ i Ssi , as each infectious neighbor recovers with rate γ . Similarly, the rate at which
nodes in Isi enter Is,i−1 is given by γ i Isi . Infectious nodes in Isi recover and leave
the network with rate γ Isi . The infection terms for this SIR model are the same as for
the SIS model formulated in Sect. 2.1. The flow chart for the SIR system is shown in
Fig. 5. Note that since nodes may be removed from the network, it is possible that a
node has degree zero, that is, s + i can be zero.

Our SIR effective degree model on a contact network is thus governed by the system
of M(M + 3) equations:

S′
si = −βi Ssi + γ

[
(i + 1) Ss,i+1 − i Ssi

]

+
∑M

k=1
∑

j+l=k jβl S jl
∑M

k=1
∑

j+l=k j S jl

[
(s + 1) Ss+1,i−1 − sSsi

]
, (13a)
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The flow diagram is
straightforward to under-
stand.



Previous approaches for dynamics
We have three pre-existing options

A system with a bounded number of equations.

SIR dynamics in random networks with heterogeneous connectivity 297

Table 2 Network-based dynamic variables for the network SIR model

• θ := The fraction of degree one nodes that remain susceptible at time t

• pI := MSI /MS . The probability that an arc with a susceptible ego has an infectious alter

• pS := MSS/MS . The probability that an arc with a susceptible ego has a susceptible alter

Table 3 A summary of the
nonlinear differential equations
used to the describe the spread
of a simple SIR type epidemic
through a random network. The
degree distribution of the
network is generated by g(x)

θ̇ = −r pI θ

ṗI = r pS pI θ
g′′(θ)

g′(θ)
− r pI (1 − pI ) − pI µ

ṗS = r pS pI

(
1 − θ

g′′(θ)

g′(θ)

)

S = g(θ)

İ = r pI θg′(θ) − µI

For example, two variables will be especially important in the derivations that fol-
low. MSS is the fraction of arcs with a susceptible ego and a susceptible alter. MSI
is the fraction of arcs with a susceptible ego and and infectious alter. MS will be the
fraction of arcs with a susceptible ego and an alter of any type.

2.2 Dynamics

Our objective is to develop a deterministic model to describe epidemic dynamics
expressed with a low-dimensional system of differential equations. At first, this goal
may seem incompatible with network-SIR dynamics described in the previous section.
Infection spreads along links in a random network, which implies the epidemic inci-
dence at any time as well as the final size must also be random, depending on the par-
ticular structure of a given random network. This is true, however it is possible to avoid
such considerations by focusing on epidemic dynamics in the limit as population size
goes to infinity. This strategy has been used in previous work to calculate the expected
final size of epidemics in infinite random networks [24] expressed as a fraction of the
total population size. A similar strategy is followed here by considering the fraction
of nodes in sets S, I, and R, after a small fraction ε nodes are infected initially in a
susceptible population.1 The conclusion is the system of equations given in Table 3 in
terms of the dynamic variables given in Table 2. The dynamics predicted by these equa-
tions are compared to stochastic simulations with large but finite networks in Sect. 3.1.

Consider a susceptible node ego at time t with a degree k. Then there will be a
set of k arcs {(ego, alter1), (ego, alter2), · · · , (ego, alterk)} corresponding to ego.
We will assume that for each arc (ego, alteri ) there will be a uniform probability
pI = MSI /MS that alteri is infectious. Then there is an expected number kpI arcs
(ego, alter) such that alter is infectious. In a time dt , an expected number rkpI dt of
these will be such that the infectious alter transmits to ego. Consequently, the hazard
for ego becoming infected at time t is

1 Although it has not yet been proven, there is computational evidence that a continuous-time stochastic
SIR epidemic will converge to our deterministic model in the limit of large population size.
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There is no flow diagram, so the derivation is less intuitive.
Note g(x) =

∑
k P(k)xk .



Deriving the Dynamics

The following are (almost) equivalent:

1. The proportion of the population that is susceptible, infected,
or recovered at a given time.

2. The probability a random individual is susceptible, infected, or
recovered given the initial conditions.

3. The probability that a random individual is susceptible,
infected, or recovered given the initial conditions and that the
individual is prevented from causing infection.

(1) → (2) is where the hard rigorous work is hiding, but if there is
a deterministic limiting behavior, then it “must” be true.
(2) → (3) allows us to simplify the mathematics.
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Assumptions:

• Very small initial proportion infected. (this can be weakened)

• Very large initial number of infections.



The test node

• Consider a randomly chosen test node u in the population.

• Disallow infection from the test node to its neighbors (allows
independence assumption for neighbors).

• The probability the node is Susceptible, Infected, or Recovered
is affected by the status of its neighbors.

• The fraction of the population that is still susceptible S(t) is
equal to the probability u is still susceptible.

• The fractions of the populations that are infected I (t) or
recovered R(t) satisfy

I = 1− S − R

Ṙ = γI

• All that remains is to determine S(t), the probability u is
susceptible.
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Finding S(t)

• Consider a random partner v of the randomly chosen test
individual u.

• v has degree k with probability Pn(k) = kP(k)/ 〈K 〉.
• Let θ be the probability v has not yet transmitted infection to

u.



θ
θ θ

θ
θ

Probability a random degree k test individual still susceptible is

S(t) =
∑
k

P(k)

θ(t)k

= ψ(θ)

where
ψ(x) =

∑
k

P(k)xk

is the Probability Generating Function (pgf) of the distribution
P(k).
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A new (partial) flow diagram

S = ψ(θ) I R

γI

We conclude

Ṙ = γI S = ψ(θ) I = 1− S − R

We just need θ.
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How does θ evolve?

• Let φS be the probability v (the partner) is susceptible.

• Let φI be the probability v is infected and has not infected u.

• Let φR be the probability v is recovered and did not infect u.

Then θ = φS + φI + φR .

φS φI

1− θ

φR

βφIφS
ψ′′(θ)
ψ′(θ)

γφI

βφI
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β
(1−θ)

, φS =
∑
k

Pn(k)θk−1 =
∑
k

kP(k)

〈K 〉 θ
k−1 =

ψ′(θ)

ψ′(1)

So φI = θ − φS − φR can be expressed in terms of θ:

θ̇ = −βφI = −βθ + β
ψ′(θ)

ψ′(1)
+ γ(1− θ)
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Final System

We finally have

θ̇ = −βθ + β
ψ′(θ)

ψ′(1)
+ γ(1− θ)

Ṙ = γI S = ψ(θ) I = 1− S − R
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Dynamic Networks

• There are several ways to generalize this to dynamic networks.

• Consider a Configuration-Model like network with nodes
assigned stubs (half-edges) from a distribution.

• Stubs may be active (part of an edge) or dormant (not part of
an edge). At rate η1, dormant stubs become active and at
rate η2 active stubs become dormant.

• A node with k stubs has kη1/(η1 + η2) edges on average.



Calculating S

• Consider a randomly chosen test node u.

• The probability u is susceptible is S(t) =
∑

k P(k)θk where θ
is the probability a stub hasn’t received infection from a
neighbor.

• Divide θ into φS , φI , φR , and φD where these are the
probabilities that the stub has never received infection and is
currently connected to a susceptible, infected, or recovered
node, or dormant.

1− θ

φS φI φR

βφIφS
ψ′′(θ)
ψ′(θ)

γφI

βφI

η1
πS

π
φD

η1
πI

π
φD

η1
πR

π
φD

φD

η2φS

η1φD η2(θ − φD)

η2φR

η2φI



Calculating θ

1− θ

φS φI φR

βφIφS
ψ′′(θ)
ψ′(θ)

γφI

βφI

η1
πS

π
φD

η1
πI

π
φD

η1
πR

π
φD

φD

η2φS

η1φD η2(θ − φD)

η2φR

η2φI

S = ψ(θ)

I

R

γI

ξS =
(θ−φD)ψ′(θ)

ψ′(1)

ξI

ξR πR

πI

πS =
φDψ

′(θ)
ψ′(1)

γξI γπI

η2ξR

η2ξI

η2ξS

η1πS

η1πI

η1πR

The variables πS , πI , and πR give the probability a random stub in
the population is dormant and belongs to a susceptible, infected,
or recovered node.
We have π = πS + πI + πR = η2/(η1 + η2) is the probability a stub
is dormant.
Similar variables exist for ξ representing active stubs.



Dormant Contact equations
We arrive at

θ̇ = −βφI ,

φ̇S = −βφIφS
ψ′′(θ)

ψ′(θ)
+ η1

πS

π
φD − η2φS ,

φ̇I = βφIφS
ψ′′(θ)

ψ′(θ)
+ η1

πI

π
φD − (η2 + β + γ)φI ,

φ̇D = η2(θ − φD)− η1φD ,

ξ̇R = −η2ξR + η1πR + γξI , ξS = (θ − φD)
ψ′(θ)

ψ′(1)
, ξI = ξ − ξS − ξR ,

π̇R = η2ξR − η1πR + γπI , πS = φD
ψ′(θ)

ψ′(1)
, πI = π − πS − πR ,

ξ =
η1

η1 + η2
, π =

η2

η1 + η2
,

Ṙ = γI , S = ψ(θ) , I = 1− S − R .



Comparison with simulation
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Hierarchy

Dormant con-
tacts

Dynamic
Fixed Degree

Mixed Pois-
son

Dynamic Vari-
able Degree

Configuration
Model

Mean Field
Social Hetero-
geneity

Mass Action
SIR

Note: Mass action almost results if
〈
K 2
〉
/ 〈K 〉2 → 1 as 〈K 〉 → ∞

with β 〈K 〉 fixed. It does result if
〈
K 4
〉
/ 〈K 〉4 → 1.



Other things we can do

• Non-constant rates

• Serosorting

• Household models

• Multitype networks

• Random Intersection Graphs

• Just about any network with configuration-model-like
properties for which analytic final-size results exist (and some
for which they don’t).



Questions?
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