
Spread of information/infection on 
networks 

Valerie Isham

Department of Statistical Science
University College London

ICMS workshop: stochastic models for populations and networks 

12-16 September 2011



2

Acknowledgements

Maziar Nekovee
Complexity Group, BT Research 
& Centre for Computational Science, UCL

Simon Harden
Joanna Kaczmarska
Department of Statistical Science, UCL



3

Models for the spread of infection/information
homogeneous mixing, closed population (size n)

Epidemics: SIR model ( )

susceptible    →  infective    → removed

Rumours: 
ignorant →  spreader → stifler

??
Spreaders in contact with spreaders or stiflers become stiflers

(Kendall, ‘57; Daley & Kendall ‘64,’65; Daley & Gani, ‘99)

δY

λXY/n

λXY/n
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Some stifling options

Undirected contacts:
spreader – spreader contacts         both stifled

Directed contacts: Maki-Thompson (1973) model
only initiating spreader is stifled           spreader    → stifler

or, spreaders become stifled with prob.  

add “forgetting” at rate δ

cf control via contact tracing (Borgs et al, 2010)

Rumour model becomes an SIR model if p = 0

λ(Y + Z)Y/n

λp(Y + Z)Y/n

λp(Y + Z)Y/n+ δY
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Starting from single infective, probability of extinction is 

δ/λ for δ<λ (certain for δ ≥ λ )

U-shaped final size distribution ( J-shaped for δ ≥ λ)
Reproduction ratio: R0 = λ/δ

p>0 (rumour model)
Exactly as SIR case: extinction is certain if δ ≥ λ, and has 

probability zero if δ = 0, regardless of value of p.

Threshold behaviour

Branching process approximation

p=0 (SIR)
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Look at properties of this rumour model superposed on
a network structure (application: social interaction networks).
Rumour spreads along the edges of the graph. 
Spreaders make contact with each neighbour at rate

i.e. contact rate is λk if node has degree k
Homogeneous mixing = completely connected graph

Questions….
• What is the threshold for the general rumour model on a 

network?
• How does the threshold depend on n?
• What is the effect of network structure? 

λ

Rumours on random networks
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What is a threshold for finite n?

Nåsell (1995): SIR model 
threshold defined as value of for which the final size dn

changes from J-shape to U-shape

Conjecture: 
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Insights from an approximate model

Notation:
nodes of degree

ignorants, spreaders, stiflers of degree 

and network degree-degree correlation function

pj k = P(neighbour node has degree k | index node has degree j)

Nekovee et al (Physica A, 2007) used approximation re 
dependence, so that the influence of the network is 
encapsulated in the pj k matrix. 
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Specifically, the total rate of “infection” of degree     ignorants
is 

Similarly, the total rate of stifling of degree    spreaders is 

i.e metapopulation mixing structure (the “approximate” model)

regular network (fixed     ) and no stifling (   ) 
SIR Model 
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Nekovee et al’s results (deterministic,                 )

Regular case (all nodes have same degree    ) : 

final size eqn where

For rumour to spread (non-zero     ) need
If  (no forgetting) then (no threshold)
If then  need regardless of (cf SIR)

“Uncorrelated” case ( , where      is marginal degree dn)

If then, to leading order in , need
(size-biased mean)
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Approximate model – stochastic case

• Spreading rate 
• Stifling rate

Analytic derivation of final size distribution for regular 
networks (fixed k, or small number of possible degrees ) 
allows investigation of thresholds

Threshold – in δ for fixed p and λ – at which final size 
distribution changes from bimodal to unimodal (increasing 
control)

Otherwise via simulation
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Final size distribution - embedded Markov chain
- regular network (fixed degree)

For 

(Note that these probs are independent of     )
and states are absorbing

Absorption in state final size is 

Time in state         :
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Let then

with initial condition

the equations can be solved iteratively to give .
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Thresholds for stochastic case (approximate model)

rumours: (p=0 for SIR)

Threshold becomes independent of p as n increases 
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Thresholds for stochastic case (approximate model) ctd

0.00 -0.056 0.327
0.25 -0.089 0.333
0.50 -0.127 0.335
0.75 -0.167 0.335
1.00 -0.190 0.338

Estimates of coefficients A and B in 
the log-linear form 

for a range of values of 
where

(fitting to 103  ≤ ≤ 2 x 105)
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Full network model
• What can be said about the full network? 
• The thresholds in delta for the approximate model provide 

upper bounds for those for full network, but ignore the 
correlation of node states given their degrees and hence 
many effects of network structure

• Compare three basic networks 
- simple random graph (Erdõs-Rényi)
- scale free graph (Barábasi-Albert)
- random geometric graph 
with a fixed mean degree (denoted D in the following 
slides)
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Network properties

Cluster coefficient:   P( i~j | i~k and j~k), 
extent to which triangles appear

Correlation: corr( Di, Dj | i~j )
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• Random networks
- simple random graph (Erdõs-Rényi): n nodes, each pair of 

nodes is connected by an edge with prob π (iid) 

node degree (D, ie no of nodes to which it is connected) 
~Bin (approx Poisson for large n)

the graph is uncorrelated, clustering is asymptotically 
negligible

- uncorrelated graph with an arbitrary degree distribution
(iid over nodes) constructed by “pairing arms at 
random” (Molloy-Reed algorithm)
e.g. regular network (fixed degree)
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- Barábasi-Albert (1999) model of network growth: scale-free
degree distribution (power-law tail) 

characterised by the presence of “hubs” – nodes with 
very high degrees

asymptotically uncorrelated graph and unclustered

- random geometric graph: start from a spatial Poisson 
process and define nodes to be connected if within 
some fixed distance. Poisson degree distribution. 

both correlation and cluster coefficient are the average 
(over c) area of overlap of two unit discs with centres c 
apart
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Simple random and Barábasi-Albert graphs: 

n=50, mean degree = 1.96

SRG B-A
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Simple random and random geometric graphs: 

n=100, mean degree = 3

SRG RGG
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Exact models: simple vs
Barábasi-Albert random graph 

SRG n=103, λ=1, E(D)=6, p=0.1, ψ = δ/[λE(D)] = 0,…,1.33     B-A 
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Exact models: simple random vs
random geometric graph 

SRG n=103, λ=1, E(D)=6, p=0.1, ψ = δ/[λE(D)]= 0,…,1.33    RGG
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Effect of network structure on thresholds

Mean degree S R G B-A R G G
2 2-3 not bimodal not bimodal
4 3-4 7 not bimodal
6 ~5 8 0-1
12 5-6 9 2-3

Thresholds in δ are higher for scale-free networks 
effect of hubs - deterministic approx threshold

and much lower for random geometric graphs 
effect of high clustering/correlation?

When E(D)=6, mean geodesic distances of these networks were
4.1 (SRG), 4.3 (B-A), 16 (RGG)

For a homogeneously mixing population, threshold is δ = 6. 

For n =1000 and total spreading rate λE(D)=6, threshold
δ values are
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Effect of network correlation on thresholds

Rewiring algorithm (cf Xulvi-Brunet and Sokolov (2004) )
• Take an uncorrelated network with a fixed degree 

distribution
• Choose two edges at random
• With probability α, rewire the 4 nodes joining the two 

nodes with the highest degrees and the two with the 
lowest

• Otherwise the nodes are rewired at random
• If one or both new edges already exists the step is 

discarded.
The larger α, the larger the limiting (positive) correlation.
For negative correlations, join nodes with largest and 

smallest degrees.
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Effect of network clustering on thresholds

Rewiring algorithm (cf Bansal et al (2009) )
• Take an uncorrelated network with a fixed degree 

distribution
• Choose a random node x having at least 2 neighbours
• Randomly select two of its neighbours y1,y2 (each with 

degree at least 2)
• Randomly select neighbours z1 of y1, z2 of y2

• Delete edges (y1,z1) and (y2,z2) and add edge (y1,y2) to 
create triangle (x,y1,y2), and edge (z1,z2)

• Step retained if cluster coefficient increases, otherwise 
discarded
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n=200, 
E(D)=6

SRG + correlationSRG

SRG + clustering RGG
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Comparison of correlated SRG, clustered SRG and RGG 
Poisson degrees, n=1000, λ =1, E(D)=6, p=0.1

Network correlation clustering   geodesic dist   threshold δ

SRG 0.02 0.00 4.1 ~5
SRG + corr 0.59      0.01 4.3 ~5
SRG + CORR
SRG + clust

0.94
0.04

0.04
0.58

6.1
7.7

5-6
1-2

RGG 0.56 0.58 16 not bimodal

Little effect of increasing SRG correlation to level of RGG or more (by this 
algorithm)

Increasing clustering in SRG has marked effect in reducing threshold 

Note Increasing correlation in B-A network (to 0.3-0.4, with clustering also 
increasing to about 0.4) also reduces threshold, but not to level of RGG
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δ

Conditional distribution of spread as a function of δ
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Link with spectral graph theory
Multitype population – reproduction ratio is the largest 
eigenvalue of the first generation matrix (branching 
process approx).

Finite network, with each node a separate “type” and 
constant contact rates between nodes – for SIR, first 
generation matrix is λ/δ × adjacency matrix A

How does the largest eigenvalue, and the spectrum more 
generally, of the adjacency matrix for SRG, BA and RGG 
graphs relate to properties such as clustering and 
correlation?
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Spectrum of adjacency matrix A
kth spectral moment: Sk= ∑ι λik = no of cycles of length k

S0=n, S1=no of self loops (we exclude these), 
S2 = 2xno of edges = total degree, 
S3= 6xno of triangles etc

Cluster coefft = S3/[no of paths of length 2]

SRG:  limiting spectral density – semicircular (Wigner’s) law 
BA: eigenvalues have a power-law distribution
RGG: spectrum is not symmetric about 0 

notable singularity at -1, due to presence of cliques
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Summary
• Rumours on networks

- thresholds
- final size distribution
- effects of network structure 

* variability of degree distribution 
* for fixed degree distribution, clustering appears more 

influential than correlation in controlling spread?

• How do thresholds depend on network structure?
• What network properties are most influential in determining spread?
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