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Some Apologies

= This review IS far from comprehensive
= |t reflects my own interests
= |f I'omit your work, it's not personal....

= _....but please mention it in discussions
this week!
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1. Space and Structure

What are space and structure...?

Do they matter for inference?




1. Space and Structure

“Real” space

=  Botanical epidemics

=  Animal diseases in the wild
= How to measure distance?




1. Space and Structure

Networks

=  STD networks

= [ransportation networks
= | ong-range interactions




1. Space and Structure

Structured populations
Household models
Different levels of mixing

Small-scale structure e.g.
hospital wards




1. Space and Structure

Q: Are space/structure important for
statistical inference?




1. Space and Structure

Q: Are space/structure important for
Statistical inference?

Answer 1:
Yes, because of confounding

=  Mechanism of disease spread
depends on both spatial
components and infection rates




1. Space and Structure

Example (Britton and O'Neill, 2002)

SIR model on a Bernoulli random graph

Parameters include infection rate f, edge
probability p

Inference using MCMC methods




1. Space and Structure




1. Space and Structure

Example: Different levels of mixing

=  Should schools/workplaces be shut to
prevent influenza spread?

Hard to answer without good estimates of
Infection rates at different levels




1. Space and Structure

Q: Are space/structure important for
Statistical inference?

Answer 2:
Yes, because that Is the question...




1.

Space and Structure

Example: Isolation for HCAIs in ICUSs

Does isolating patients help to prevent
spread of nosocomial infections?

Can address by statistical inference
with model-choice methods.
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2. Data

Examples of data types:

=  Data in both space and time

=  Snapshot data at a given time = t
=  Final outcome data at time = T

(tIs a fixed time. T Is a stopping time.)
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3. Methods of Inference

Mechanistic models (deterministic or
stochastic) used to describe disease
spread dynamics.

Such models have parameters such as
= |nfection rates....

=  Spatial-spread parameters....

= Within-host parameters etc




3. Methods of Inference

Objective of statistical inference Is
(usually) to provide

= estimates of the model parameters

= Ssome measure of uncertainty ofi the
estimates

using the available data.




3. Methods of Inference

For deterministic models, this means
trying to match the (single) model
outcome to the observed data as
closely as possible.

For example, minimise least-squares
errors.




3. Methods of Inference

For stochastic models, estimation requires
the formulation of a likelihood, I.e. given
data x and model parameters 6,

L(O) = 1(Xx [ 0)
= P(data given parameters)
( In many cases, I Is actually a density)




3. Methods of Inference

Given a likelihood, estimation can
proceed along various lines, most
common approaches being

= Maximum-likelihood estimation
=  Bayesian estimation




3. Methods of Inference

Howeyver: likelihood might be very harad
(or Impossible) to evaluate.

Key reasons for this are
=  Model intractability:

=  |Missing data e.g. do not observe
Infections




3. Methods of Inference

Example: Swine Fever in penned pigs
(Hohle, Jgrgensen, and O Nelll, 2005)
Animal experiment
Pigs kept in adjacent pens
Regular tests to detect infected pigs

Interest in infection rates and efficacy of
control measures




3. Methods of Inference

SEIR (Susceptible-Exposed-Infective-
Removed) spatial model with
exposure/infection/removal times unobserved

Data consist of antibody detection times and
testing for intectivity

Likelihood Is intractable. ..

...pbut augmented likelihood with event times Is
tractable




3. Methods of Inference

Infectivity Infectivity

D starts TI ends
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Exposure time Antibodies
] detected

Not
ot observed Observed data

= infectivity test




3. Methods of Inference

Model includes:

Ime from exposure to antibody
detection (Tp)

Time from exposure to infectivity (Tz)
Period of infectivity (T,)
Spatially-dependent infection rate




3. Methods of Inference

If exposure, infection and removal
times are imputed and fixed (“best
guess’) then could e.g. proceed via

maximum likelihood

Obvious problem with this approachi is
that it requires additional assumptions




3. Methods of Inference

If exposure, infection and removal
times are unknown then likelihood
iInvolves integrating over all such

possible times — difficult because of
iInter-dependencies

Thus exposure times are treated as
additional model parameters (in
MCMC framework In this case)




3. Methods of Inference

MCMC (Markov: Chain Monte Carlo)
arget probability density of interest
= f(parameters | data)

MCMC works by constructing a Markov.
chain whose stationary distribution Is f

Run chain for a long time; samples from
chain are (approx) samples from f




3. Methods of inference
MCMC (Markov Chain Monte Carlo)

In practice, implementation requires
finding ways ofi making the Markov

chain move around easily

E.g. here, how to update the unknown
exposure/infection/remoyval times?
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5. Botanical Epidemics

Plant experiments can provide very
rich data sets...

...which naturally leads to issues of

experimental design, e.g.
How many data are really necessary?
How: often should data be collected?




5. Botanical Epidemics

Experimental setting also reduces
extent to which data are missing, e.g.
may know when plants are infected

This in turn makes likelihood
evaluation simpler




5. Botanical Epidemics

Models often use spatial (or dispersal)
kernel, I.e. a way of modelling how
likely infection is to occur at a given

distance

Choice of kernel? — model choice and
goodness-of-fit ISsues
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6. Two-level mixing

Model (Ball, Mollison, Scalia-Temba 1997)

Population size N, divided into
households

SIR (or SEIR) model

Infectious period distribution assumed
kKnown

LLocal infection rate A, global infection
iate Az




6. Two-level mixing

Data

Sample from the population
containing:

Precise household structure
Numbers initially susceptible

Numbers ever-infected during
epidemic




6. Two-level mixing

O Ever-infected
Data — example @ Never-infected

S Unseen @




6. Two-level mixing

Likelihood: (A, , Ag | data)
= |ntractable as it stands

Possible solutions:

=  Use a simpler model with independent
households (B, M, S-T 1997; etc)

= [Dosome kind of data imputation




6. Two-level mixing

Data iImputation methods

= |mpute final severity via approximation
(Demiris and O'Neill, 20053)

=  Random graph methods




6. Two-level mixing

Random Graph method 1
(Demiris and O’Nelll, 2005b)

For each pair of individuals (i,)):

X(I,J) = Indicator{'I tries to infect |}
P(X(I,)) = 1) easily evaluated

Knowledge ofi X's gives likelihood




6. Two-level mixing
Random Graph method 1

Individl?Q\Q .

O
O 4
2@ 3

X(i,1)=X(i,4) =1 X(i,2) = X(i,3) = X(i,5) = 0

Likelihood = (1-exp(-Al))2 (exp(-Al)) 3




6. Two-level mixing
Random Graph method 2

For each individual I;

X(I) = number of contacts | has
X(I) Is Poisson (A)
C(1) = list of who Is contacted

Knowledge ofi X's and C's gives likelihood




6. Two-level mixing
Random Graph method 2

Individlyg\g .

O
O 4
5O 3
X(i)=3 C(i)={1,4,1)

Likelihood = exp(-A) A3 (1/3!) (1/5)3




6. Two-level mixing

Random Graph methods

Method 2 allows for Gibbs updates of
parameters and Is faster

Method 1 easier to code

Both methods struggle if unobserved
population is large: correlations
between infection rates and contacts
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6. Two-level mixing
Random Graph method 2 again

X(I) = no. contacts ~ Poisson(A)

S0 X, A strongly correlated

Makes it hard to update either
individually within the MCMC code




6. Two-level mixing

Random Graph method 2 again

Non-centered parameterisation:
Set d(1) ~ U(0,1)

X(i)y= F'(d(i)) F = cdf Poisson(A)
Here, d(1) and A are independent
MCMC mixing much improved




6. Two-level mixing

Random Graph methods

Easily generalised to Multi-type

setting

Easily generalised to other
structures (e.g. 3 levels ofi mixing;
specific spatial structures)
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7. Concluding remarks

Wide variety of inference methods
have been implemented

MCMC methods appear poweriful

but are non-trivial to implement

Goodness-of-fit and model choice
methods need further work




