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Some ApologiesSome Apologies
This review is far from comprehensiveThis review is far from comprehensive
It reflects my own interestsIt reflects my own interests
If I omit your work, it’s not personal….If I omit your work, it’s not personal….
…..but please mention it in discussions …..but please mention it in discussions 

this week!this week!
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1. Space and Structure1. Space and Structure

What are space and structure…?What are space and structure…?

Do they matter for inference?Do they matter for inference?



1. Space and Structure1. Space and Structure

“Real” space“Real” space
Botanical epidemicsBotanical epidemics
Animal diseases in the wildAnimal diseases in the wild
How to measure distance?How to measure distance?



1. Space and Structure1. Space and Structure

NetworksNetworks
STD networksSTD networks
Transportation networksTransportation networks
LongLong--range interactionsrange interactions



1. Space and Structure1. Space and Structure

Structured populationsStructured populations
Household modelsHousehold models
Different levels of mixingDifferent levels of mixing
SmallSmall--scale structure e.g. scale structure e.g. 
hospital wardshospital wards



1. Space and Structure1. Space and Structure
Q: Are space/structure important for Q: Are space/structure important for 

statistical inference?statistical inference?



1. Space and Structure1. Space and Structure
Q: Are space/structure important for Q: Are space/structure important for 

statistical inference?statistical inference?
Answer 1: Answer 1: 
Yes, because of confoundingYes, because of confounding

Mechanism of disease spread Mechanism of disease spread 
depends on both spatial depends on both spatial 
components and infection ratescomponents and infection rates



1. Space and Structure1. Space and Structure
Example (Britton and O’Neill, 2002)Example (Britton and O’Neill, 2002)

SIR model on a Bernoulli random graphSIR model on a Bernoulli random graph
Parameters include infection rate Parameters include infection rate ββ, edge , edge 

probability probability pp
Inference using MCMC methodsInference using MCMC methods



1. Space and Structure1. Space and Structure



1. Space and Structure1. Space and Structure

Example: Different levels of mixingExample: Different levels of mixing
Should schools/workplaces be shut to Should schools/workplaces be shut to 
prevent influenza spread?prevent influenza spread?

Hard to answer without good estimates of Hard to answer without good estimates of 
infection rates at different levelsinfection rates at different levels



1. Space and Structure1. Space and Structure
Q: Are space/structure important for Q: Are space/structure important for 

statistical inference?statistical inference?
Answer 2: Answer 2: 
Yes, because that is the question…Yes, because that is the question…



1. Space and Structure1. Space and Structure

Example: Isolation for Example: Isolation for HCAIsHCAIs in ICUsin ICUs
Does isolating patients help to prevent Does isolating patients help to prevent 
spread of spread of nosocomialnosocomial infections?infections?
Can address by statistical inference Can address by statistical inference 
with modelwith model--choice methods.choice methods.
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2. Data2. Data

Examples of data types:Examples of data types:
Data in both space and timeData in both space and time
Snapshot data at a given time = tSnapshot data at a given time = t
Final outcome data at time = TFinal outcome data at time = T

(t is a fixed time. T is a stopping time.)(t is a fixed time. T is a stopping time.)
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3. Methods of inference3. Methods of inference
Mechanistic models (deterministic or Mechanistic models (deterministic or 

stochastic) used to describe disease stochastic) used to describe disease 
spread dynamics.spread dynamics.

Such models have parameters such asSuch models have parameters such as
Infection rates….Infection rates….
SpatialSpatial--spread parameters….spread parameters….
WithinWithin--host parameters….. etchost parameters….. etc



3. Methods of inference3. Methods of inference
Objective of statistical inference is Objective of statistical inference is 

(usually) to provide (usually) to provide 
estimates of the model parameters estimates of the model parameters 
some measure of uncertainty of the some measure of uncertainty of the 
estimatesestimates

using the available data.using the available data.



3. Methods of inference3. Methods of inference
For deterministic models, this means For deterministic models, this means 

trying to match the (single) model trying to match the (single) model 
outcome to the observed data as outcome to the observed data as 
closely as possible. closely as possible. 

For example, minimise leastFor example, minimise least--squares squares 
errors.errors.



3. Methods of inference3. Methods of inference
For stochastic models, estimation requires For stochastic models, estimation requires 

the formulation of a likelihood, i.e. given the formulation of a likelihood, i.e. given 
data data xx and model parameters and model parameters θθ, , 
L(L(θθ) = f( x | ) = f( x | θθ) ) 

= = P(dataP(data given parameters)given parameters)
( In many cases, f is actually a density)( In many cases, f is actually a density)



3. Methods of inference3. Methods of inference
Given a likelihood, estimation can Given a likelihood, estimation can 

proceed along various lines, most proceed along various lines, most 
common approaches beingcommon approaches being
MaximumMaximum--likelihood estimationlikelihood estimation
Bayesian estimationBayesian estimation



3. Methods of inference3. Methods of inference
However: likelihood might be very hard However: likelihood might be very hard 

(or impossible) to evaluate.(or impossible) to evaluate.
Key reasons for this areKey reasons for this are

Model intractabilityModel intractability
Missing data e.g. do not observe Missing data e.g. do not observe 
infectionsinfections



3. Methods of inference3. Methods of inference
Example: Swine Fever in penned pigsExample: Swine Fever in penned pigs
(H(Hööhlehle, J, Jøørgensenrgensen, and O, and O’’Neill, 2005)Neill, 2005)

Animal experimentAnimal experiment
Pigs kept in adjacent pensPigs kept in adjacent pens
Regular tests to detect infected pigs Regular tests to detect infected pigs 
Interest in infection rates and efficacy of Interest in infection rates and efficacy of 
control measurescontrol measures



3. Methods of inference3. Methods of inference
SEIR (SusceptibleSEIR (Susceptible--ExposedExposed--InfectiveInfective--
Removed) spatial model with Removed) spatial model with 
exposure/infection/removal times unobservedexposure/infection/removal times unobserved
Data consist of antibody detection times and Data consist of antibody detection times and 
testing for infectivitytesting for infectivity
Likelihood is intractableLikelihood is intractable……
……but augmented likelihood with event times is but augmented likelihood with event times is 
tractabletractable



3. Methods of inference3. Methods of inference

Exposure time

Infectivity
starts

Antibodies
detected

Not observed
Observed data

Infectivity
ends

= infectivity test

TD TI
TE



3. Methods of inference3. Methods of inference
Model includes: Model includes: 

Time from exposure to antibody Time from exposure to antibody 
detection (Tdetection (TDD))
Time from exposure to infectivity (TTime from exposure to infectivity (TEE))
Period of infectivity (TPeriod of infectivity (TII))
SpatiallySpatially--dependent infection ratedependent infection rate



3. Methods of inference3. Methods of inference
If exposure, infection and removal If exposure, infection and removal 
times are imputed and fixed (“best times are imputed and fixed (“best 
guess”) then could e.g. proceed via guess”) then could e.g. proceed via 
maximum likelihoodmaximum likelihood
Obvious problem with this approach is Obvious problem with this approach is 
that it requires additional assumptionsthat it requires additional assumptions



3. Methods of inference3. Methods of inference
If exposure, infection and removal If exposure, infection and removal 
times are unknown then likelihood times are unknown then likelihood 
involves integrating over all such involves integrating over all such 
possible  times possible  times –– difficult because of difficult because of 
interinter--dependenciesdependencies
Thus exposure times are treated as Thus exposure times are treated as 
additional model parameters (in additional model parameters (in 
MCMC framework in this case)MCMC framework in this case)



3. Methods of inference3. Methods of inference
MCMC (Markov Chain Monte Carlo)MCMC (Markov Chain Monte Carlo)

Target probability density of interest Target probability density of interest 
= = f(parametersf(parameters | data)| data)

MCMC works by constructing a Markov MCMC works by constructing a Markov 
chain whose stationary distribution is fchain whose stationary distribution is f
Run chain for a long time; samples from Run chain for a long time; samples from 
chain are (approx) samples from fchain are (approx) samples from f



3. Methods of inference3. Methods of inference
MCMC (Markov Chain Monte Carlo)MCMC (Markov Chain Monte Carlo)

In practice, implementation requires In practice, implementation requires 
finding ways of making the Markov finding ways of making the Markov 
chain move around easilychain move around easily
E.g. here, how to update the unknown E.g. here, how to update the unknown 
exposure/infection/removal times? exposure/infection/removal times? 
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5. Botanical Epidemics5. Botanical Epidemics
Plant experiments can provide very Plant experiments can provide very 
rich data sets…rich data sets…
…which naturally leads to issues of …which naturally leads to issues of 
experimental design, e.g.experimental design, e.g.
How many data are really necessary?How many data are really necessary?
How often should data be collected?How often should data be collected?



5. Botanical Epidemics5. Botanical Epidemics
Experimental setting also reduces Experimental setting also reduces 
extent to which data are missing, e.g. extent to which data are missing, e.g. 
may know when plants are infectedmay know when plants are infected
This in turn makes likelihood This in turn makes likelihood 
evaluation simplerevaluation simpler



5. Botanical Epidemics5. Botanical Epidemics
Models often use spatial (or dispersal) Models often use spatial (or dispersal) 
kernel, i.e. a way of modelling how kernel, i.e. a way of modelling how 
likely infection is to occur at a given likely infection is to occur at a given 
distance  distance  
Choice of kernel? Choice of kernel? –– model choice and model choice and 
goodnessgoodness--ofof--fit issuesfit issues
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6. Two6. Two--level mixinglevel mixing
Model (Ball, Model (Ball, MollisonMollison, Scalia, Scalia--TombaTomba 1997)1997)

Population size N, divided into Population size N, divided into 
householdshouseholds
SIR (or SEIR) modelSIR (or SEIR) model
Infectious period distribution assumed Infectious period distribution assumed 
knownknown
Local infection rate Local infection rate λλLL, global infection , global infection 
rate rate λλGG



6. Two6. Two--level mixinglevel mixing
DataData

Sample from the population Sample from the population 
containing:containing:
Precise household structurePrecise household structure
Numbers initially susceptibleNumbers initially susceptible
Numbers everNumbers ever--infected during infected during 
epidemicepidemic



6. Two6. Two--level mixinglevel mixing
Data Data –– exampleexample

Ever-infected
Never-infected

Sample Unseen



6. Two6. Two--level mixinglevel mixing
Likelihood: f(Likelihood: f(λλL L , , λλG G | data)| data)

Intractable as it standsIntractable as it stands

Possible solutions:Possible solutions:
Use a simpler model with independent Use a simpler model with independent 
households (B, M, Shouseholds (B, M, S--T 1997; etc)T 1997; etc)
Do some kind of data imputationDo some kind of data imputation



6. Two6. Two--level mixinglevel mixing
Data imputation methodsData imputation methods

Impute final severity via approximation Impute final severity via approximation 
((DemirisDemiris and O’Neill, 2005a)and O’Neill, 2005a)
Random graph methodsRandom graph methods



6. Two6. Two--level mixinglevel mixing
Random Graph method 1Random Graph method 1
((DemirisDemiris and O’Neill, 2005b)and O’Neill, 2005b)

For each pair of individuals (For each pair of individuals (i,ji,j):):
X(i,jX(i,j) =  ) =  Indicator{“iIndicator{“i tries to infect j”}tries to infect j”}

P(X(i,jP(X(i,j) = 1) easily evaluated) = 1) easily evaluated
Knowledge of X’s gives likelihoodKnowledge of X’s gives likelihood



6. Two6. Two--level mixinglevel mixing
Random Graph method 1Random Graph method 1

Individual i

32
1 4

5

X(i,1) = X(i,4) = 1      X(i,2) = X(i,3) = X(i,5) = 0

Likelihood = (1-exp(-λI))2 (exp(-λI)) 3



6. Two6. Two--level mixinglevel mixing
Random Graph method 2Random Graph method 2

For each individual i:For each individual i:
X(iX(i) =  number of contacts i has) =  number of contacts i has

X(iX(i) is Poisson () is Poisson (λλ))
C(iC(i) = list of who is contacted ) = list of who is contacted 

Knowledge of X’s and C’s gives likelihoodKnowledge of X’s and C’s gives likelihood



6. Two6. Two--level mixinglevel mixing
Random Graph method 2Random Graph method 2

Individual i

32
1 4

5

X(i) = 3    C(i) = {1, 4, 1}

Likelihood = exp(-λ) λ3 (1/3!) (1/5)3



6. Two6. Two--level mixinglevel mixing
Random Graph methodsRandom Graph methods

Method 2 allows for Gibbs updates of Method 2 allows for Gibbs updates of 
parameters and is fasterparameters and is faster
Method 1 easier to code Method 1 easier to code 
Both methods struggle if unobserved Both methods struggle if unobserved 
population is large: correlations population is large: correlations 
between infection rates and contactsbetween infection rates and contacts



6. Two6. Two--level mixinglevel mixing
Ever-infected
Never-infected

Sample Unseen



6. Two6. Two--level mixinglevel mixing
Random Graph method 2 againRandom Graph method 2 again

X(iX(i) = no. contacts ) = no. contacts ~ Poisson(~ Poisson(λλ))
So X, So X, λλ strongly correlatedstrongly correlated
Makes it hard to update either Makes it hard to update either 
individually within the MCMC codeindividually within the MCMC code



6. Two6. Two--level mixinglevel mixing
Random Graph method 2 againRandom Graph method 2 again

NonNon--centeredcentered parameterisation:parameterisation:
Set Set d(id(i) ) ~ U(0,1)~ U(0,1)
X(iX(i) =  ) =  FF--11(d(i))(d(i)) F = F = cdfcdf Poisson(Poisson(λλ) ) 
Here, Here, d(id(i) and ) and λλ are independentare independent
MCMC mixing much improved MCMC mixing much improved 



6. Two6. Two--level mixinglevel mixing
Random Graph methodsRandom Graph methods

Easily generalised to MultiEasily generalised to Multi--type type 
setting setting 
Easily generalised to other Easily generalised to other 
structures (e.g. 3 levels of mixing; structures (e.g. 3 levels of mixing; 
specific spatial structures) specific spatial structures) 
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7. Concluding remarks7. Concluding remarks
Wide variety of inference methods Wide variety of inference methods 
have been implementedhave been implemented
MCMC methods appear powerful MCMC methods appear powerful 
but are nonbut are non--trivial to implementtrivial to implement
GoodnessGoodness--ofof--fit and model choice fit and model choice 
methods need further work methods need further work 


