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Abstract

We study the interplay between nonlinearity and localization in a model consisting of
a quantum quasiparticle interacting with a nonlinear extended lattice. The isolated
lattice can support discrete breathers, and the coupling of the quasiparticle to the
lattice leads to localized quasiparticle states. Minimum energy states of the full
system can have both a breather and a solitonic character. Excited states lead
to interesting new phenomena, such as full breather states, which arise from the
combination of intrinsic and extrinsic nonlinearity.
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1 Introduction

Experimental evidence for intrinsic localized modes (ILMs) has been accu-
mulating recently [1–4]. For example, intrinsic localized spin waves have been
generated with a microwave pulse [1], and localized vibrational modes have
been detected by the structure and redshifts of the overtone Raman spectra
of a halide-bridged mixed-valence transition metal complex [2]. The latter is
formally very similar to the experiments performed in the early 80’s by Careri
and co-workers [5] (for a review see [6]), in which a spectral line, particu-
larly visible at low temperature, was observed in a crystal of acetanilide. Here
the shifts in the overtone spectrum could be accounted for, in a quantita-
tive manner, by a nonlinear coupling of the amide I mode to optical phonons
[7,6]. Finally, following a proposal by Floŕıa et al. [8], localized excitations in
Josephson junction ladders have been detected in I/V curves [3] and visualized
by laser microscopy [4].
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ILMs in classical lattices are also known generically as discrete breathers
(DBs). They were first recognized as a general phenomenon in the works of
Takeno and Sievers [9], and the extent of this genericity was rigorously proven
in [10]. For a review, see [11,12]. On the other hand, a different area, also con-
cerned with nonlinear localization and with a longer history, is that of solitons.
Strictly speaking, a soliton is a localized solution of a completely integrable
system. By extension, many nonlinear localized solutions in non-integrable
systems are also called solitons [13,14]. This loose terminology can be confus-
ing, and in addition some solutions which have for many years been called
solitons are perhaps better described as breathers. This is the case of some
nonlinear-Schrödinger class of lattices, like the discrete self-trapping equation
(DST) [15]. Conversely, the term “breather” was hijacked from an integrable
system (the sine-Gordon equation). However, DBs are more generic than soli-
tons in discrete systems, since they do not require complete integrability and
arise from an interplay of nonlinearity and lattice discreteness [11]. As a work-
ing definition here we will designate as DBs those localized solutions with at
least two degrees of freedom in a one dimensional lattice (i.e. they have an
“internal” degree of freedom, a vibrational motion). Stable localized solutions
with one degree of freedom we will call solitons.

The Davydov model for interaction between a quantum quasiparticle and a lat-
tice exhibits solitons. In the original model [6,16], one arrives at a continuum-
approximation description which is essentially the nonlinear Schrödinger equa-
tion (NLS). In the discrete model, one also finds localized stationary solutions
(which, by extension, we keep calling Davydov solitons). The Davydov model
is very similar to the Holstein model for the interaction of an electron with
a polarizable lattice [17,18]. In both, the origin for the nonlinearity lies only
in the coupling between the lattice vibrations and the quasiparticle. In most
studies, the lattice Hamiltonian and the quasiparticle Hamiltonian are both
linear.

We wish to extend the previous studies to nonlinear lattices, where DBs are
also possible. Hence, our Hamiltonian has two sources of nonlinearity: that
inherent in the lattice, and an extrinsic one due to the quasiparticle-lattice
interaction. There have been previous works which have analyzed the effect of
introducing lattice nonlinearities in the polaron problem. Davydov[19] studied
an extension to his model which included a nonlinear lattice, while Kenkre
et al. [20–22] showed the non-trivial effects that lattice nonlinearities have
in the context of the general polaron problem, under a semiclassical (DNLS)
approximation (a recent study [23] extended these findings to a fully quantum-
mechanical treatment). Gaididei et al. [24] have also studied a related problem.
All these works were centered on the the ground state or stationary states of
the polaron.

However in this paper we wish to take advantage of the lattice nonlinearity to
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be able to produce discrete breathers. We investigate DBs as excited states of
the soliton/polaron states of such systems. This is done in the framework of a
mixed quantum-classical, non-adiabatic treatment, which allows to compute
the dynamical evolution of the system. This work can be seen as a preliminary
step in the study of interactions between neutral DBs and polarons.

In the next section we introduce the Hamiltonian and describe the minimum
energy solutions of this Hamiltonian. In Section 3 we describe the states that
arise due to different excitations of the minimum energy states.

2 The Hamiltonian and its minimum energy states — the solito-
breathers.

The Hamiltonian Ĥ has three parts:

Ĥ = Ĥqp + Ĥqp−ph + Hph (1)

where Ĥqp is the Hamiltonian for a quasiparticle, Ĥqp−ph describes the inter-
action of the quasiparticle with the lattice and Hph is the lattice Hamiltonian.

The Hamiltonian for the quasiparticle has the usual tight binding form:

Ĥqp = ε
N∑
n=1

â†nân − V
N∑
n=1

(
ânâ

†
n−1 + â†nân+1

)
(2)

where â†n is the creation operator for a quasiparticle in site n, ε is the self-
energy of the quasiparticle and V the transfer term for the quasiparticle to
move between neighbouring sites.

The Hamiltonian for the interaction of the quasiparticle with the lattice in-
cludes the coupling to acoustic (or Debye) phonons:

Ĥqp−ph = χ
N∑
n=1

[
(un+1 − un−1) â†nân

]
(3)

where χ is a parameter which describes the strength of the quasiparticle-lattice
interaction.

Hamiltonians of this form have been used in many contexts, from polarons
to bioenergetics [6]. The main difference of the present work with respect to
those studies is the form of the phonon Hamiltonian, which we take as follows:
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Hph =Hc
ph +Ho

ph (4)

Hc
ph =

κa2

72

N∑
n=1

( a

a+ un − un−1

)12

− 2

(
a

a+ un − un−1

)6


Ho
ph =κ′

N∑
n=1

(
1

2
u2
n +

1

4
u4
n

)
+

1

2M

N∑
n=1

p2
n.

Here un is the displacement from equilibrium position of site n, pn is the
momentum of site n, a is the equilibrium distance between sites, κ is the
elasticity constant of the nonlinear lattice and κ′ is a similar constant for
the on-site potential. The coupling interactions between sites are described
by a Lennard-Jones potential Hc

ph, a potential commonly used to describe
interactions between atoms. Finally, the on-site potential Ho

ph is as used in
many breather studies [11]. It can be considered to represent the effect of the
rest of the crystal (in a mean field approach) on the one dimensional chain
whose states are studied explicitly.

Since we will be dealing with localized solutions, it is very useful to know
the spectrum of linear excitations for the lattice in its ground state. This is
the classical “phonon band” of the lattice, and it gives a good approximation
to the spectrum for small perturbations which are not localized around the
polaron or breather. For our lattice Hamiltonian (4), the phonon dispersion
relation reads:

ω2
ph =

κ′

M
+ 4

κ

M
sin2(q/2), −π

2
≤ q ≤ π

2
(5)

We adopt a mixed quantum-classical approach in which the lattice is treated
classically, while the quasiparticle is treated quantum mechanically. Accord-
ingly, the displacements un and momenta pn are real variables. The quasipar-
ticle variables are operators, a distinction which is marked by the hats above
the corresponding variables. This is a natural extension of classical breather
studies [11]. It is a mixed quantum-classical approach which neglects the quan-
tum uncertainty in the lattice positions and momenta [25]. It is particularly
applicable when the mass of the sites is large. Its validity was examined as
a function of temperature (in the context of the Davydov model) in a previ-
ous study [26]. The main difference between the full quantum approach and
the mixed quantum-classical approach is that the former treats the lattice
motion quantum-mechanically, while the latter treats it classically. Thus the
lattice distortion, correlated with the position of the quantum quasiparticle,
was chosen as a particularly relevant quantity to compare. The simulations
showed that, at 2.8K, the mixed quantum-classical model predicts a lattice
distortion that is 6% smaller than that predicted by the full quantum model
[26]. This difference decreases rapidly as the temperature increases, and is
negligible above 11 K. When the aim is to make quantitative comparisons
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with experimental data, and depending on the precision of the experimental
measurements, it may be necessary to treat the lattice quantum mechanically.
But the aim here is to gain a qualitative insight into the type of solutions that
can arise in these systems, rather than achieving quantitative precision. The
mixed classical-quantum treatment has a much lower computational complex-
ity, and allows one to study exact solutions in large-sized systems and with
great detail [25]. It should also be noted that it is different from the adi-
abatic approximation which corresponds to assuming that the mass of the
sites is much larger than that of the quantum quasiparticle. Indeed, while
the adiabatic approximation is valid when the lattice is infinitely slower than
the quasiparticle, the mixed quantum-classical approach makes no assumption
about the time-scales of these two degrees of freedom, as is apparent from the
equations of motion below.

The mixed quantum-classical regime is ideal as the behaviour of the system
can be probed without any approximations. Indeed, one of its main advantages
is that it is trivial to show that the exact wavefunction for Hamiltonian (1–4)
is:

|ψ(t) >=
N∑
n=1

ϕn({un}, {pn}, t)â†n|0 > (6)

where ϕn is the probability amplitude for a quasiparticle in site n and the
wavefunction is a superposition of states for the quasiparticle to be in each
site. The probability amplitude is dependent on the lattice displacements and
momenta in a way that is specified only by the equations of motion. These
are:

ih̄
dϕn
dt

= εϕn − V (ϕn+1 + ϕn−1) + χ (un+1 − un−1)ϕn (7)

M
d2un
dt2

=−χ
(
|ϕn−1|2 − |ϕn+1|2

)
− ∂Hph

∂un
(8)

The lowest energy states can be determined by numerical minimization of
the functional H({ϕn}, {un}) =< ψ|Ĥ|ψ >. These solutions feature a sta-
tionary lattice. Other authors have computed DB solutions of the system as
a whole, where both the lattice and the electron wavefunction vibrate with
a common frequency—the solutions were dubbed “polarobreathers” [27,28].
However such solutions are most likely excited states. Instead, our starting
point here are minimum energy states.

Figure 1 shows an example of a localized solution which is a minimum-energy
state. It shows the time dependence of the real {ϕrn} and imaginary {ϕin} part
of the probability amplitudes {ϕn}, and of the displacements {un}. These and

5



the other integrations of the equations of motion in this paper were performed
with the RKSUITE routines [29]. This solution is a stationary solution analo-
gous to that found in the Davydov model [6,16,30] and known as the Davydov
soliton. It includes a mixture of the soliton and DB characteristics, in that
the lattice variables show a static, spatially localized distortion, characteristic
of a soliton with zero velocity, while the quasiparticle is in a localized state
with an internal vibration, and can be considered a stationary breather 2 . In
keeping with our working definition of soliton and DB in the previous section,
we suggest that such a state be called a solito-breather, or SDB, for short.

The internal frequency ω of the quasiparticle DB is related to the energy of
the minimum energy state, as follows:

h̄ω =< ψ0|
(
Ĥqp + Ĥqp−ph

)
|ψ0 > (9)

where |ψ0 > is the SDB state determined by numerical minimization of the
functionalH. Figure 2 shows the variation of this frequency with respect to the
quasiparticle hopping parameter V and the quasiparticle-lattice parameter χ.
There are two regimes, one in which the minimum energy states are spatially
delocalized and another in which they are localized. As discussed elsewhere
[31], the transition between the two is discontinuous. For delocalized states,
the frequency ω = −2V/h̄ varies linearly with V , as shown in the figure,
while for localized, SDB states it varies nonlinearly. Depending on the relative
values of V , χ, κ and M it is possible to have cases in which the frequency ω
is larger, of the same order, or smaller than that of the lattice vibrations. In
the next section, states which arise under the action of different excitations of
the SDBs, are explored for the three different cases.

3 Excited states of solito-breathers

Since the SDB in Fig. 1 has zero lattice momenta, one way of creating ex-
citations varying the energy in a continuous manner is by adding non-zero
momenta to that state. In this section the time evolution of such excitations
is followed by using them as initial conditions in the equations of motion (7–8).

2 This is of course a more restrictive application of the concept of breather, since
the particular form of Eqs. (7–8) circumvents the problem of resonances, which is
present in general systems. However, the solution still fits the description of DBs
since it is the result of an interplay between discreteness and nonlinearity.

6



3.1 Low energy excitations

Unless otherwise is specified, the excitations are obtained by adding to the
minimum energy states, the SDB, momenta defined in the following manner:

pn = λM (un − un−1) (10)

where λ is real.

In Fig. 3, the system parameters are as in Fig. 1 and λ ≈ 0.03. Although the
lattice momenta oscillate, this has only a very small influence on the lattice
distortion, which is not visible in the figure. However, the influence on the real
and imaginary (not shown) parts of the probability amplitude is striking: on
top of the oscillation associated with the initial SDB, there is modulation with
a frequency 10 times smaller. The quasiparticle breather has thus become a
multifrequency breather.

Larger values of λ, and thus greater initial momenta lead to different mod-
ulations for the quasiparticle wavefunction, having more than one frequency,
as seen in Fig. 4, for which λ ≈ 0.26. A slight oscillation can now be seen
in the lattice displacements. Increasing the strength of the initial momenta
leads first to progressively larger amplitudes of the oscillation in the displace-
ments. Initially, no radiation is lost since the induced lattice vibrations have
a frequency out of resonance with the phonons of the extended system, Eq. 5.
After a given size of the perturbation, the amplitude of these oscillations does
not increase and instead the extra energy is deposited in radiation, as can be
seen arising to the right of the central lattice distortion, in Fig. 5. Another
remarkable fact is that the evolution of the momenta is the same, apart from
the scale, in Figs. 3–5. In spite of very different magnitudes, the oscillations
in the lattice momenta have roughly the same time dependence in all cases,
and are only dependent on the initial values.

For other parameter values, in which the frequency of the quasiparticle oscil-
lations are of the same order or slower than the lattice oscillations, low energy
excitations do not have an influence on the quasiparticle oscillations. Higher
energy excitations for the three cases are considered in the next subsection.

3.2 Higher energy excitations

In Fig. 5 the initial momenta are defined as pn = 5.27526M (un − un−1). This
leads to localized oscillations in the momenta and localized oscillations in the
lattice distortions, with a frequency that is 100 times smaller than that of
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the original SDB (compare timescale with Fig. 1). Figure 6 shows that, on
a longer time scale, the excitation energy is split and two breathers arise: a
central one, localized at the site of the initial SDB and a moving breather, with
a lattice distortion approximately ten times smaller. The latter is just visible
at 1.5 ps in Fig. 5, moving towards the end of the chain. In Fig. 6 it reaches
the end of the chain at approximately 10 ps and becomes visible coming out
from the beginning of the chain (due to periodic boundary conditions). At
approximately 20 ps it hits the central breather and is scattered back to the
beginning of the chain and, at the end of the simulation, it is then seen coming
out of the end of the chain again. This moving breather can be seen both in
the displacements and in the momenta. The amplitude of oscillation in the
displacements associated with the moving breather is around zero, while that
for the stationary breather is around the original stationary, localized profile
of the minimum energy state.

In Fig. 7 the initial momenta are defined as pn = 4.51844Mun, so that although
different from those used in Fig. 5 they correspond to trajectories in the same
energy shell. Although the extra energy is the same as in Fig. 6, Fig. 7 shows
that the amount of radiation generated in this case is much less. Indeed, in
this case, all the excitation energy is deposited in the periodic oscillations
of a stationary breather, located at the position of the lattice distortion of
the minimum energy SDB state. The frequency of this stationary breather is
approximately the same as the main frequency of the stationary breather in
Fig. 6.

In Fig. 8, the system parameters were chosen so that the quasiparticle fre-
quency ω is of the same order of magnitude as that of the oscillations in the
lattice. These are generated by a high energy excitation with momenta defined
in the same way as in Fig. 5. The immediate effect of the oscillations in the
lattice variables on the quasiparticle is to create variations in the frequency
of the quasiparticle breather, as seen in Fig. 8. Figure 9 shows that, in rela-
tive terms, more radiation is generated than in the simulations displayed in
Figs. 5–7, but the stationary lattice breather remains localized even in the
presence of such a large perturbation.

In Fig. 10, the system parameters were such that the quasiparticle frequency
of the corresponding SDB was smaller than that of the lattice. A larger system
was used, in order to delay the interference of the radiation which comes back
to the centre of the chain because of the periodic boundary conditions. The
timescale of the figures was also changed to fit the new frequencies of the
lattice. Figure 10 shows that the perturbation creates two moving breathers
(with opposite directions of propagation), together with a central stationary
breather. The larger values of the lattice momenta are found in the moving
breathers. Figure 11 shows that, although the moving breathers carry most
of the kinetic energy of the lattice, they are not stable, and keep spreading.
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The central stationary breather, however, is stable and simulations with a
spatially shorter system show that it survives the impact of the radiation in
the unstable breathers. The quasiparticle frequency remains largely unaffected
by the lattice dynamics.

In Fig. 12 an excitation of a broader SDB is considered. This again leads
to full breather solutions, i.e. periodic oscillations both in the lattice and in
the quantum quasiparticle. However, in this case, the central lattice breather
moves. This is clearly seen in Fig. 12 where, approximately at 15 ps into the
integration, the moving lattice breather is scattered by radiation coming from
the boundaries and its direction is reversed. This is to be expected since, in
general, the Peierls-Nabarro barrier that one has to overcome to move the
polaronic structure is smaller as the structure becomes broader. However,
although broader than the solutions considered in the previous figures, the
solution displayed in Fig. 12 occupies six sites and can still be considered
quite localized.

4 Discussion

In this article we study ILMs which arise as excitations of the minimum en-
ergy states of one quantum quasiparticle interacting with the vibrations of
a nonlinear classical lattice. The minimum energy states of the system have
been called solito-breathers (SDBs) since they consist of a quasiparticle peri-
odic oscillation coupled to a stationary lattice soliton. A similar SDB state has
also been studied in [32], where an electron is coupled to a Fermi-Pasta-Ulam
lattice. The lattice distortion in this latter case is a kink.

The SDBs in our paper have zero lattice momenta and the study was restricted
to excitations which arise because of finite initial lattice momenta. Apart from
a scale factor, the time evolution of these excitations depend on the shape
of the distribution of the initial momenta but not on their magnitude. A
general finding of this work is that the excitations of the minimum energy
SDB states are full breathers, i.e. both the quasiparticle and the lattice variables
show periodic oscillations. As the excitation energy increases, these breathers
become multifrequency breathers.

Although the excitation energy can be varied continuously, the states gener-
ated fall into different regimes. At very low energy, excitations with a single
frequency modulation of the quasiparticle breather are observed, together with
periodic oscillations in the lattice momenta. It is striking that in spite of their
low energy, such excitations can have a profound influence in the frequen-
cies of the quasiparticle breathers. No amount of radiation is lost to lattice
phonons, since the frequency induced by the perturbations turns out to be out
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of resonance with the spectrum of linear excitations of the tails of the lattice,
Eq. 5.

For higher energy excitations, periodic oscillations in the lattice displacements
become clearly visible, and the quasiparticle breathers become multifrequency
breathers. The amplitude of the lattice oscillations first increases with increas-
ing excitation energy, until it reaches a saturation point. Higher excitation
energies beyond this point lead to the generation of radiation. Part of this
radiation is made up of moving breathers. Eventually, for sufficiently high ex-
citation energies, e.g. corresponding to λ ≈ 11.5, the quantum quasiparticle
becomes less localized and when the lattice is populated by several moving
breathers, it disperses (results not shown).

It was also found that the excitation of less localized SDBs can lead to moving
breathers, in which a quasiparticle breather travels with an associated lattice
breather. Such moving breathers are easily scattered by radiation or by other
breathers.

The conclusion is that the excited states of the stationary (minimum energy)
SBDs obtained by vibrational excitation are breathing states which keep lo-
calized with a remarkable robustness. This was found even in the presence of
strong lattice radiation (although it is possible in this case that the solutions
decay on a much longer time scale than the one studied here).
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Fig. 1. Time dependence in picoseconds of the real ϕrn and imaginary ϕin parts of
the probability amplitude for a quantum quasiparticle in site n, and of the lattice
displacement of site n, un, in Å. The system parameters were: V = 30 · 10−22 J,
χ = 1000 pN, κ = 1 N/m, κ′ = 2κ and M = 0.95 · 10−23 Kg.
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Fig. 3. Time dependence, in picoseconds, of the real part of the probability amplitude
for a quantum quasiparticle in site n, ϕrn, and of the lattice displacement, un, in Å,
and momenta, pn, in M ·Å/ps, of site n. The system parameters are as in Fig. 1.
The initial momenta are defined as pn(0) = 0.02968M(un − un−1).
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Fig. 4. Same as in Fig. 3, but where the initial momenta are defined as
pn(0) = 0.26111M(un − un−1).
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Fig. 5. Time dependence, in picoseconds, of the lattice displacement, un, in Å, and
momenta, pn, in M ·Å/ps, of site n. The system parameters are as in Fig. 1. The
initial momenta are defined as pn(0) = 5.27526M(un − un−1).

17



1020304050

n

4
14

24
34

44
t

-0.5

0

0.5

1

un

1020304050

n

4
14

24
34

44
t

-4

0

4

8

pn

Fig. 6. Same as Fig. 5, for a longer time.
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Fig. 7. Same as Fig. 5, but with initial momenta defined as pn(0) = 4.51844Mun,
so that energy is the same as in Figs. 5, 6.
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Fig. 8. Same as in Fig. 5, but with new system parameters, as follows: V = 0.3·10−22

J and χ = 100 pN.
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Fig. 9. Continuation of time dependence of displacements in Fig. 8.
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Fig. 10. Same as in Fig. 5, but with new system parameters, as follows:
V = 0.003 · 10−22 J and χ = 10 pN.
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Fig. 11. Same as Fig. 10, at a later time.
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Fig. 12. Same as in Fig. 1, but V = 1000 · 10−22 J and initial momenta are defined
as pn(0) = 2.07818M(un − un−1).
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