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Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, U.K.

(November 26, 1999)

Abstract

We study the influence of the phonon spectrum on polaron formation and

show that three self-trapping regimes can occur. If the lattice and the electron-

lattice Hamiltonians are dominated by the same type of phonons, the self-

trapping transition is smooth. If there is an imbalance, the transition can

either be abrupt or completely eliminated. The binding energies are larger in

the case of imbalance. The bandwidth varies linearly with hopping strength,

even for strongly localized states.
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The motion of quasiparticles in deformable crystals constitutes a long standing problem in

solid state physics [1]. Landau was the first to suggest that a lattice distortion could induce

a localized, low mobility state of the electron now known as polaron [1]. The possibility that

the electron can induce a lattice deformation in which it becomes trapped was later studied in

[2–5] and polaron theory continues to be an active area of research [6–13]. Indeed, charge and

energy localization have important consequences on properties such as conductivity, optical

spectra and mechanical integrity and are thus fundamental for practical applications. An

important question that remains is how to distinguish experimentally between a localized

and a delocalized state. Furthermore, the possible implication of polarons or bipolarons in

High Temperature Superconductivity [14–18] adds extra interest to this field.

The effect of the force range and dimensionality of the system on the self-trapping tran-

sition was investigated by Toyozawa [19] and Emin and Holstein [20]. Here we extend these

studies and consider the influence of the phonon spectrum in the nature of the self-trapping

transition in a one dimensional lattice. Our Hamiltonian Ĥ has three parts:

Ĥ = Hph + Ĥe + Ĥe-ph (1)

where Hph is the phonon Hamiltonian, Ĥe is the electron Hamiltonian and Ĥe-ph describes

the electron-phonon interaction.

The phonon Hamiltonian is:

Hph =
1

2
κD

N∑
n=1

(un − un−1)2 +
1

2
κE

N∑
n=1

u2
n +

1

2M

N∑
n=1

p2
n (2)

where un and pn are the displacement from equilibrium position and the momentum of site

n. The first term includes dispersive, or Debye phonons, also designated as acoustic phonons

in many articles; the second term includes dispersionless, or Einstein, phonons. These terms

include the respective restoring constants, κD and κE.

The electron Hamiltonian is the usual tight binding Hamiltonian:

Ĥe = ε
N∑
n=1

â†nân − V
N∑
n=1

(
â†nân−1 + â†nân+1

)
(3)
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where â†n (ân) is the Fermi creation (annihilation) operator for an electron at site n (n =

1, . . . , N), ε is the energy of the electron, and V the transfer term for the electron to move

between neighbouring sites.

The Hamiltonian for the electron-lattice interaction includes coupling to Debye and Ein-

stein modes:

Ĥe-ph = χD
N∑
n=1

(un − un−1) â†nân + χE
N∑
n=1

un â
†
nân (4)

where χD (χE) is a parameter which describes the strength of the interaction of the electron

with Debye (Einstein) modes. Making κD = 0 and χD = 0, the molecular crystal model

of Holstein [4,5] is recovered. Making κE = 0 and χE = 0, the Davydov/Scott model [21]

is recovered. Mixed cases arise in many physical situations, from adsorbates on surfaces,

to the Frenkel-Kontorova model of dislocations and chains of dipoles in a magnetic field.

The Hamiltonian (1-4) thus covers a wide range of physical phenomena in which a quantum

quasiparticle, which can be either an electron, a vacancy, or any other collective excitation,

interacts with the vibrations of a lattice.

Exact calculations for the the full quantum mechanical system have been made for small

systems [22–24]. For extended systems, studies in which both the electron and the lattice are

treated quantum mechanically usually require approximations either regarding the relative

strength of the parameters [2,4,5] or in the wavefunctions considered [21,25,26,8,10–12].

Instead, we treat the electron quantum mechanically, neglect quantum effects in the lattice,

and deal with this mixed quantum-classical system in an exact way over all parameter ranges

[27]. The mixed quantum-classical system coincides with the adiabatic approximation in the

limit of sites with infinite mass. A recent work showed good agreement between the adiabatic

approximation and results obtained with the full quantum model by exact diagonalization

[24]. Similar conclusions were obtained in a study which compared results of the exact mixed-

quantum classical system with exact results of the corresponding full quantum system [28].

Here we report on new qualitative features which, given the correspondence that can

be made between the mixed quantum-classical system and the full quantum system [27],
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should also be found in the full quantum system, when treated in an exact way, i.e. avoiding

approximations. Indeed, one of the main advantages of the mixed quantum-classical system

is that it is trivial to show that the exact one-electron states of the mixed quantum-classical

regime is:

|ψ >=
N∑
n=1

ϕn({un}, {pn}, t) â†n|0 > (5)

where ϕn is the probability amplitude for an electron to be at site n and its dependence on

the set of displacements {un} and momenta {pn} at time t is specified by the equations of

motion [27].

Averaging the Hamiltonian (1-4) over the state (5) we obtain an energy functional

E({ϕn}, {un}, {pn}), in terms of the probability amplitudes {ϕn} and the lattice variables

{un}, {pn}. Exact minimum energy states can be found by numerically minimizing this

functional with respect to all the variables, under the nonlinear condition that expresses the

normalization of the wavefunction:

N∑
n=1

|ϕn|2 = 1 (6)

This minimization procedure determines the exact minimum energy states of the mixed

quantum-classical system. It samples both the electron and the lattice variables at the

same time and thus leads to the lattice distortion and electron probability amplitudes that

correspond to the lowest energy state.

Our aim is to determine the importance of the character of the lattice modes in the

minimum energy states, as a function of the parameters. In order to reduce the number of

possibilities we will consider the cases in which the phonon modes have the same parameters,

that is, the case in which one of them is zero, or when κD = κE = κ and χD = χE = χ. A

non-dimensional Hamiltonian can be obtained multiplying the Hamiltonian (1-4) by κ/χ2

and substituting the displacements {un} by the non-dimensional displacements Un = gun,

where g = κ/χ. The non-dimensional energy functional H = κ/χ2E becomes:

H =
1

2

N∑
n=1

(Un − Un−1)2 +
1

2

N∑
n=1

U2
n + (7)
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−v
N∑
n=1

(ϕ∗nϕn−1 + ϕ∗nϕn+1)

+
N∑
n=1

(Un − Un−1) |ϕn|2 +
N∑
n=1

Un |ϕn|2

where it has already been taken into account that the minimum energy states have zero site

momenta pn.

It can be seen from (6) that the first term in (3) produces only a shift in the energy equal

to εκ/χ2. From equation (7) it is clear that the properties of the system in terms of the

nondimensional variables {Un} and {ϕn} can be fully characterized by the single quantity

v = V κ/χ2.

We have investigated the dependence on v of the minimum energy states of nine systems

obtained by considering the different combinations of the two types of phonons in the lattice

and in the electron-lattice interaction, as indicated in the Table. Where it says κ, χ = 0

the corresponding term in (7) has been dropped in the numerical minimization. When the

different terms of the lattice and electron-lattice interaction are included, they are included

with the factors they have in (7).

In Fig. 1 the localization length, evaluated as
(∑N

n=1 |ϕn|4
)−1

, is plotted. When the state

is completely localized this quantity is 1 and when it is completely delocalized, it is N , the

number of lattice sites. In our simulations, N = 50. We find essentially the three types of

behaviour displayed in Fig. 1. For small v small polarons form in all cases considered. For

intermediate and large values of v, however, the nature of the states depends on the balance

between Einstein and Debye modes. When the same type of phonons are predominant

both in the lattice and in the electron-lattice interactions, as v increases, intermediate size

polarons arise until there is a smooth transition to a delocalized state (solid line in Fig. 1).

As was shown in a previous publication [29] the threshold for delocalization increases as the

number of sites N increases. This smooth transition is found either when Debye, dispersive

phonons dominate both the lattice and the electron-lattice interaction (the Davydov/Scott

model [21]) or when Einstein, non-dispersive phonons dominate (the Holstein model [4,5]).
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Because in the Hamiltonians considered here the same weight was attributed to the Debye

and Einstein oscillators and the latter overwhelm the former when they are present, this

kind of smooth transition is observed, no matter what combination, as long as Einstein

oscillators are present in both the lattice and the electron-lattice interactions, as the Table

shows.

A second situation arises when the electron-lattice interaction includes just Debye

phonons and the lattice includes Einstein oscillators (with or without Debye oscillators).

Here, intermediate electron-lattice couplings do not lead to intermediate size polarons and

the self-trapping transition is abrupt. Only small polarons can form at strong coupling val-

ues (dotted line in Fig. 1). The transition to a delocalized state takes place for even smaller

values of v when both Einstein and Debye modes are included in the lattice Hamiltonian.

A third situation results from the reverse case, in which the lattice contains essentially

Debye phonons and the electron-lattice interaction contains Einstein modes (with or without

Debye modes). In this case, both small and large polarons can form and the latter persist

even for very weak electron-lattice couplings (see dash-dotted line in Fig. 1). In fact, the

transition to delocalized states is absent in this case and at very large values of v, e.g. for

v > 10000, very large polarons are found, almost indistinguishable in size from delocalized

states. However, the lattice displacements (not shown) are not zero, as it happens with

delocalized states. A summary of the conditions under which these three situations are

found is given in the Table.

Figure 2 shows the variation of the probability for an electron to be in site n, as a function

of v, for the three regimes. This figure shows clearly that 1) when the phonon spectra is

the same in the lattice and electron-lattice Hamiltonian, the transition from a localized to

a delocalized state is smooth, 2) when the lattice is dominated by Einstein phonons and

the electron-lattice interaction is dominated by Debye phonons the transition is abrupt and

that 3) in the reverse case the transition is eliminated. Plots of the displacements differences

un−un−1 are omitted because, in all cases, the extent of the lattice distortion is the same as

that of the width of the corresponding probability distribution and its location is correlated
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with that of the peak of the probability distribution. The lattice displacements un, on the

other hand have a different profile, which is extended both in thecase of Fig. 2 a and c.

In the case of Fig. 2 c, a localized state is coupled to an extended lattice distortion. This

is similar to what is found in [30,31], in spite of the fact that in the latter the phonon

spectrum is different and the electron-lattice interaction is long range, rather than local, as

we considered here.

A qualitative explanation of these features can be made by inspection of the Hamiltonian

(1-4). First, let us note that the electron-phonon Hamiltonian, Ĥe-ph, is minimized by a

localized electron in a localized lattice distortion. This is true both when the coupling is

to Debye, dispersive phonon modes and to Einstein, dispersionless phonon modes. On the

other hand, the electron Hamiltonian, Ĥe, is minimized by delocalized states, which arise

when the displacements are zero, a condition that also minimizes the lattice Hamiltonian,

Hph. Indeed, any lattice distortion leads to a positive contribution by the Hph to the

overall energy of the state. The crucial point is that this penalty is more severe for Einstein

oscillators than for Debye modes. While the lattice Hamiltonian for Einstein oscillators

is proportional to the displacements of each lattice site, and any non-zero displacement

makes a positive contribution, the lattice Hamiltonian for Debye modes is proportional to

the “space derivative” of the distortion profile. For any smooth distortion profile, the Debye

term will be smaller than the Einstein term. When both the electron-lattice interaction,

which induces the distortion, and the lattice Hamiltonian, which opposes the distortion,

have the same type of phonons, there is a balance between the two tendencies. In this

case polarons of all ranges can be found and the transition to a delocalized state is smooth.

This happens when only Debye phonons are dominant, or when Einstein oscillators of equal

weight are present in both the lattice and the electron-lattice interaction, and corresponds

to the results displayed in the solid line of Fig. 1.

When Einstein oscillators are dominant only in the electron-lattice or only in the lattice

Hamiltonian, there is an imbalance between the tendency for localization and the penalty

for localization. If the lattice is dominated by Einstein phonons and the electron-lattice
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interaction is dominated by Debye phonons, for small v, for which the electron states are

localized and the lattice distortion is sharp, the electron-phonon interaction can compensate

for the penalty, and small polarons form. When v increases and the electron states become

less localized, leading to a broader lattice distortion, the electron-lattice interaction, which

is proportional to the space derivative of the lattice distortion profile, decreases much more

rapidly than the lattice energy. For intermediate values of v, the penalty for a localized state

cannot be matched by the electron-lattice interaction and there is an abrupt transition to a

delocalized state. This is as shown in the dotted line of Fig. 1. On the other hand, when

the lattice is dominated by Debye phonons and the electron-lattice interaction is dominated

by the Einstein phonons, the distortion induced by the latter is opposed by a weak penalty.

In fact, if all the displacements are allowed to vary without bounds, the lower energy state

corresponds to equal and infinite displacements which lead to -∞ for the electron-lattice

interaction and zero for the lattice Hamiltonian. The dash-dotted lines in figures 1-4 were

obtained by setting one of the displacements equal to zero, namely UN = 0. The lattice

distortion induced by the electron-lattice interaction carries only a weak penalty in the

lattice energy, large polarons persist for all values of v, and the transition to completely

delocalized states is eliminated.

A further characterization of the states is achieved by plotting their binding energies and

bandwidths in Figs. 3 and 4. The binding energy, H − 2v, also called activation energy, is

the energy needed to bring an electron to the conduction band. When the binding energy

is zero, the minimum energy states are delocalized. Figure 3 shows that the small polarons

that form when the lattice is dominated by Einstein oscillators and the electron-lattice

by Debye oscillators have larger binding energies than those that arise in the Holstein or

Davydov/Scott model (dotted line versus solid line in Fig. 3). The intermediate size polarons

have comparatively low binding energies. On the other hand, the small and intermediate size

polarons that form when the lattice is dominated by Debye oscillators and the electron-lattice

interaction by Einstein oscillators have comparatively large binding energies (dash-dotted

line in Fig. 3).
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The bandwidth plotted in Fig. 4 can be measured in an intraband Franck-Condon tran-

sition. It is the energy required to transfer an electron from the bottom to the top of the

band associated with the lattice configuration of the minimum energy state. For a bare

exciton, it is 4v. For localized, polaron states this bandwidth is larger than the bare exciton

bandwidth. The small polarons that form when the lattice is dominated by Einstein oscil-

lators and the electron-lattice by Debye oscillators have larger bandwidths than those that

arise in the Holstein or Davydov/Scott model (dotted line versus solid line in Fig. 4). The

intermediate size polarons have bandwidths that are very approximately those of the bare

excitons, even when their size is ten times smaller. The most striking feature is shown by

the small and intermediate size polarons that form when the lattice is dominated by Debye

oscillators and the electron-lattice interaction by Einstein oscillators (dash-dotted line in

Fig. 4). This system shows an enhancement of the bandwidth to two to three times that

of the bare exciton which decreases very slowly with v. Also, in all cases, for v > 1, the

bandwidth varies linearly with v, even when the corresponding states are still localized in a

few sites.

While the scaling argument in [19,20] suggests that abrupt transitions and the suppres-

sion of intermediate size polarons only occur in three dimensional systems, our analysis

shows that, depending on the mixing of phonons, three different types of behaviour can be

found. First, smooth transitions and intermediate size polarons, second, abrupt transitions

and no intermediate size polarons, and, third, only localized states, both small and large

polarons. Although we have considered a one dimensional system, the argument is very

general and can be applied to two and three dimensions as well. Indeed, also in higher

dimensions the space derivative of a pulse is larger the sharper the pulse is, and the penalty

for Einstein oscillators is higher than for Debye oscillators (see above). Furthermore, in

anisotropic systems we can envisage states that are localized in one direction and delocal-

ized in another. Finally, the argument transcends the quantum-classical divide, and while

the quantitative detail may depend on the quantum behaviour of the lattice, the qualitative

trends explored in this article should not. In fact, given that, for the same values of the
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parameters, the lattice distortion profile in the full quantum system is sharper than that of

the mixed quantum-classical system [28], we predict that lattice quantum effects will lead

to a shift of the transition to delocalized states to higher values v than those reported here.

In short, we think these three regimes, which were characterized in terms of the localiza-

tion length, the binding energy and the bandwidth of the electron states, categorize different

situations that arise in real systems and hope that they will be of use for a systematic analysis

of experimental measurements.

These studies refer to the state of electrons at equilibrium at zero or very low temper-

atures. They do not take into account the finite speed of lattice relaxation and cannot

describe the process of localization from an initially free electron state. Also, only one elec-

tron states were considered, and electron correlations were not taken into account. These

will be discussed in forthcoming papers.
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TABLES

TABLE I. Classification of self-trapping transitions.

Hph

Debye both Einstein

Ĥe-ph (κE = 0) (κD = 0)

Debye smooth abrupt abrupt

(χE = 0) transition transition transition

(solid lines) (dotted lines) (dotted lines)

both always smooth smooth

localized transition transition

(dash-dotted) (solid lines) (solid lines)

Einstein always smooth smooth

(χD = 0) localized transition transition

(dash-dotted) (solid lines) (solid lines)
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FIG. 1. Localization length (see text) versus v. The solid line is for κE = χE = 0, the dotted

line is for κD = χE = 0 and the dash-dotted line is for κE = χD = 0.
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FIG. 2. Variation with v (see text) of the probability for an electron in site n when a)

κE = χE = 0, b) κD = χE = 0 and c)κE = χD = 0.
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FIG. 3. Binding energy (see text) versus v. The line types are as in Fig. 1.
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FIG. 4. Bandwidth (see text) versus 4v. The line types are as in Fig. 1.
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