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Link with number theory, cryptography and coding theory

Diffie-Hellman key exchange

Let (G =< g >,×) be a cyclic group of order N.

Alice Bob
a random kA a random kB
hA = gkA hB = gkB

hA−→
hB←−

secret = hB
kA secret = hA

kB

gkAkB is the common secret

A priori, the difficulty for an adversary is to compute gkAkB knowing gkA et
gkB .
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Link with number theory, cryptography and coding theory

DLP and Jacobians

In many cases, it is known to be equivalent to the Discrete Logarithm
Problem:

giving g and ga find a.

Two constraints:
the operations in G are fast;
the best attack to solve the DLP is the ‘generic attack’ which requires
≈
√

#G operations.

Currently, the best G are the groups of rational points on the Jacobians of
curves over finite fields with prime order.

Problem: how to construct/find such curves ?
No brute force method: the finite field is typically F2127−1 for a genus
2 curve.
Many methods have been developed to get ‘polynomial time’
algorithms: `-adic cohomology, p-adic cohomology, deformation,
CM,. . .
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Link with number theory, cryptography and coding theory

The algorithms

CM method: CM-type + fundamental unit  lattice + polarization  

period matrix  Thetanullwerte  

{
the curve over C
invariants

 curve /Fq.

AGM for point counting: curve /Fq  lift  quotients of Thetanullwerte
 canonical lift + info on Weil polynomial  Weil polynomial.

Important points:
the theory must be developed over any field (however the intuition
comes from C);
the theory must be explicit;
computations should be fast.
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Link with number theory, cryptography and coding theory

Coding theory origin

Context: to construct good error-correcting codes, one needs curves over
finite fields with many rational points.

Problem: find a closed formula for the maximal number of points of a
curve of genus g over a finite field k .
 For g = 1, 2, 3 prove that a certain (A, a)/k is a Jacobian.

Proposition (Precise Torelli theorem)

Let (A, a)/K be a principally polarized abelian variety which is the Jacobian
of a curve C over K̄ , then it is the Jacobian of a curve over L = K (

√
d) for

a unique d ∈ K ∗/(K ∗)2. Moreover if C is hyperelliptic then we can take
L = K.

Serre’s strategy for g = 3: d is the product of the 36 Thetanullwerte
(correctly normalized).
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Period matrices and Thetanullwerte Period matrices

Definitions

Let C be a curve over k ⊂ C of genus g > 0.

The Jacobian of C is a torus Jac(C ) ' Cg/Λ where

the lattice Λ = ΩZ2g ,
the matrix Ω = [Ω1, Ω2] ∈ Mg ,2g (C) is a period matrix and

τ = Ω−1
2 Ω1 ∈ Hg = {M ∈ GLg (C), tM = M, ImM > 0}

is a Riemann matrix.
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Period matrices and Thetanullwerte Period matrices

Construction

v1, . . . , vg be a k-basis of H0(C ,Ω1),
δ1, . . . , δ2g be generators of H1(C ,Z) such that (δi )1...2g form a
symplectic basis for the intersection pairing on C .

Ω := [Ω1, Ω2] =

[∫
δj

vi

]
i = 1, . . . , g
j = 1, . . . , 2g

.

Magma (Vermeulen): can compute Ω for a hyperelliptic curve.
Maple (Deconinck, van Hoeij) can compute Ω for any plane model.

Remark: it would be nice to have a free implementation (in SAGE).
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Period matrices and Thetanullwerte Period matrices

Example

Ex: E : y2 = x3 − 35x − 98 = (x − 7)(x − a)(x − ā) which has complex
multiplication by Z[α] with α = −1−

√
−7

2 and a = −7
2 −

√
−7
2 .

Ω =

[
2
∫ ā

a

dx
2y
, 2
∫ 7

a

dx
2y

]
= c · [α, 1].

(Chowla, Selberg 67) formula gives

c =
1

8π
√
7
· Γ(

1
7

) · Γ(
2
7

) · Γ(
4
7

)

with
Γ(x) =

∫ ∞
0

tz−1 exp(−t) dt.

Christophe Ritzenthaler (IML) Algorithmic number theory and the allied theory of theta functionsEdinburgh 10-10 10 / 37



Period matrices and Thetanullwerte Thetanullwerte

1 Link with number theory, cryptography and coding theory

2 Period matrices and Thetanullwerte
Period matrices
Thetanullwerte
From the Thetanullwerte to the Riemann matrix
From the Riemann matrix to the (quotients of) Thetanullwerte

3 From the curve to its Jacobian
Hyperelliptic case and the first tool: sε
Non hyperelliptic case and the second tool: Jacobian Nullwerte

4 From the Jacobian to its curve
Even characteristics
Odd characteristics

Christophe Ritzenthaler (IML) Algorithmic number theory and the allied theory of theta functionsEdinburgh 10-10 11 / 37



Period matrices and Thetanullwerte Thetanullwerte

Projective embedding

The intersection pairing on C induces a principal polarization j on Jac(C ).
⇐⇒ The map Symg−1 C → Jac(C ) defines an ample divisor D on
Jac(C ) (up to translation).

Theorem (Lefschetz, Mumford, Kempf)

For n ≥ 3, nD is very ample, i.e. one can embed Jac(C ) in a Png−1 with a
basis of sections of L(nD).

For n = 4, the embedding is given by intersection of quadrics, whose
equations are completely determined by the image of 0.
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Period matrices and Thetanullwerte Thetanullwerte

Thetanullwert

A basis of sections of L(4D) is given by theta functions θ[ε](2z , τ) with
integer characteristics [ε] = (ε, ε′) ∈ {0, 1}2g where

θ

[
ε
ε′

]
(z , τ) =

∑
n∈Zg

exp
(
iπ (n +

ε

2
)τ t(n +

ε

2
) + 2iπ (n +

ε

2
)t(z +

ε′

2
)

)
.

When εtε′ ≡ 0 (mod 2), [ε] is said even and one calls Thetanullwert

θ

[
ε
ε′

]
(0, τ) = θ

[
ε
ε′

]
(τ) = θ[ε](τ) = θab

where the binary representations of a and b are ε, ε′.
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Period matrices and Thetanullwerte Thetanullwerte

Example

Let q = exp(πiτ). There are 3 genus 1 Thetanullwerte:

θ00 = θ

[
0
0

]
(0, τ) =

∑
n∈Z

qn2 ,

θ10 = θ

[
1
0

]
(0, τ) =

∑
n∈Z

q(n+ 1
2)

2

,

θ01 = θ

[
0
1

]
(0, τ) =

∑
n∈Z

(−1)nqn2 .
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Period matrices and Thetanullwerte From the Thetanullwerte to the Riemann matrix

Case g = 1 Gauss, Cox 84, Dupont 07

Let z = θ01(τ)2/θ00(τ)2.
Duplication formulae vs AGM formulae :

θ00(2τ)2 = θ00(τ)2+θ01(τ)2

2 an = an−1+bn−1
2 ,

θ01(2τ)2 = θ00(τ) · θ01(τ) bn =
√

an−1 · bn−1,

θ10(2τ)2 = θ00(τ)2−θ01(τ)2

2 AGM(a0, b0) := lim an = lim bn

⇒ AGM(θ00(τ)2, θ01(τ)2) = lim θ00(2nτ)2 = 1 ⇒ AGM(1, z) = 1
θ00(τ)2

.
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Period matrices and Thetanullwerte From the Thetanullwerte to the Riemann matrix

⇒ θ10(τ)2 =
√
θ00(τ)4 − θ01(τ)4.

Transformation formula :

θ00(τ)2 =
i
τ
· θ00

(
−1
τ

)2

, θ10(τ)2 =
i
τ
· θ01

(
−1
τ

)2

.

⇒ AGM(θ00(τ)2, θ10(τ)2) = i
τ · lim θ00(2n · −1

τ )2 = i
τ · 1

⇒ AGM(1,
√
1− z2) = i

τ ·
1

θ00(τ)2
.

Proposition

i · AGM(1, z)

AGM(1,
√
1− z2)

= τ.

Difficulty: define the correct square root when the values are complex.
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Period matrices and Thetanullwerte From the Thetanullwerte to the Riemann matrix

Case g ≥ 2

Particular case: real Weierstrass points and g = 2 (Bost-Mestre 88).

General case (Dupont 07): under some (experimentally verified)
conjectures.

Proposition

One can compute τ in terms of θ[ε](τ)2/θ[0](τ)2 in time

O(g2 · 2g · n1+ε)

for n digits of precision.

For comparison, integration takes O(n2+ε).
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Period matrices and Thetanullwerte
From the Riemann matrix to the (quotients of)

Thetanullwerte

The work of (Dupont 07)

Naive method: O(n
√
n) for g = 1 and O(n2+ε) for g = 2.

New method: invert the AGM. Complexity for n bits of precision on the
quotients

O(n1+ε) for g = 1,
O(n1+ε) for g = 2 (conjectural algorithm).

Main idea for g = 1: let

f (z) = i · AGM(1, z)− τ · AGM(1,
√

1− z2).

Then f (θ01(τ)2/θ00(τ)2) = 0. Do a Newton algorithm on f .

can we get rid of the conjectures ?
can we generalize to all genera ?
can we compute the Thetanullwerte alone ?
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From the curve to its Jacobian Hyperelliptic case and the first tool: sε

Thomae’s formulae

Let C be a hyperelliptic curve C : y2 =
∏2g+1

i=1 (x − λi ).

Theorem (Thomae’s formulae)

θ[ε](τ)4 = ±
(
detΩ2

πg

)2 ∏
(i ,j)∈I

(λi − λj)

with the choice of the basis of differentials x idx/y (the set I depends on
[ε] and on the basis of H1(C ,Z)).
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From the curve to its Jacobian Hyperelliptic case and the first tool: sε

Proof: see (Fay 73) using a variational method.

Proof for the quotients:
study the zeroes of the section

sε(P) = θ[ε](φP0(P))

where P0 ∈ C and φP0(P) = P − P0 ∈ Jac(C ).

c · f (P) = sε(P)2

sε′ (P)2
for an explicit f ∈ C(C ).

c = sε(P1)2

sε′ (P1)2f (P1)
= sε(P2)2

sε′ (P2)2f (P2)
for P1,P2 such that sε(P2)2

sε′ (P2)2
=

sε′ (P1)2

sε(P1)2
.
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From the curve to its Jacobian
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From the curve to its Jacobian
Non hyperelliptic case and the second tool: Jacobian

Nullwerte

Non hyperelliptic case genus 3

Let C be a smooth plane quartic.

Theorem (Weber 1876)(
θ[ε](τ)

θ[ε′](τ)

)4

=
[bi , bj , bij ][bik , bjk , bij ][bj , bjk , bk ][bi , bik , bk ]

[bj , bjk , bij ][bi , bik , bij ][bi , bj , bk ][bik , bjk , bk ]

where the bi , bij are linear equations of certain bitangents of C and
[bi , bj , bk ] is the determinant of the matrix of the coefficients of (once for
all fixed) equations of the bitangents.

Weber’s proof uses sε(P).
Nart, R. unpublished: more natural proof using derivative of theta
functions and a generalization of Jacobi’s derivative formula.

Question: can we find a formula for a Thetanullwert alone like in the
hyperelliptic case ?
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From the curve to its Jacobian
Non hyperelliptic case and the second tool: Jacobian

Nullwerte

Derivative of theta functions

When εtε′ ≡ 1 (mod 2), [ε] is said odd and we write [µ] instead.

Definition
The theta gradient (with odd characteristic [µ]) is the vector

∇θ[µ] :=

(
∂θ[µ](z , τ)

∂z1
(0, τ), . . . ,

∂θ[µ](z , τ)

∂zg
(0, τ)

)
.

The theta hyperplane is the projective hyperplane

∇θ[µ] · (X1, . . . ,Xg ) = 0

of Pg−1 defined by a theta gradient.
We denote the matrix

J[µ1, . . . ,µg ] :=
(
∇θ[µ1], . . . ,∇θ[µg ]

)
and [µ1, . . . ,µg ] its determinant (called Jacobian Nullwerte).
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From the curve to its Jacobian
Non hyperelliptic case and the second tool: Jacobian

Nullwerte

Case of Riemann-Mumford-Kempf singularity theorem

Let C be any curve of genus g > 0 and let κ0 be such that
Symg−1 C − κ0 = {z , θ[0](z , τ) = 0}.

Theorem
Let φ be the canonical map

φ : C → Pg−1, P 7→ (ω1(P), . . . , ωg (P)).

Let D be an effective divisor of degree g − 1 on C such that h0(D) = 1.
Then(

∂θ(z , τ)

∂z1
(D − κ0, τ),

∂θ(z , τ)

∂zg
(D − κ0, τ)

)
Ω−1

2
t(X1, . . . ,Xg ) = 0

is an hyperplane of Pg−1 which contains the divisor φ(D) on the curve
φ(C ).
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From the curve to its Jacobian
Non hyperelliptic case and the second tool: Jacobian

Nullwerte

Remarks

Jacobi’s derivative formula expresses [µ1, . . . ,µg ] as a precise
polynomial in the Thetanullwerte.
For g ≤ 5 it is known that [µ1, . . . ,µg ] is in C[θ].In general, it is not
true but [µ1, . . . ,µg ] can be expresses as a quotient of two
polynomials in the Thetanullwerte. There is also a precise conjectural
formula (Igusa 80).
Could we directly invert the formula, i.e. express a Thetanullwert is
terms of Jacobian Nullwerte (at least for g ≤ 5) ?
(Nakayashili 97, Enolski, Grava 06): Thomae’s formula for
yn =

∏m
i=1(x − λi )

n−1 ·
∏2m

i=m+1(x − λi ).
a general theory exists (Klein vol.3 p.429, Matone-Volpato 07 over C,
Shepherd-Barron preprint 08 over any field). Their expressions involve
determinants of bases of H0(C ,L(2KC + µ)). But no formula or
implementation has been done.
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From the Jacobian to its curve Even characteristics

Torelli theorem: classical versions

Let C/k be a curve of genus g > 0.

Theorem
C is uniquely determined up to k-isomorphism by (Jac(C ), j).

Corollary
C is uniquely determined up to C-isomorphism by Ω or by the
Thetanullwerte.
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From the Jacobian to its curve Even characteristics

From the Jacobian to its curve: hyperelliptic case

C : y2 =

2g+1∏
i=1

(x − λi ).

Idea: invert quotient Thomae’s formulae (Mumford Tata II p.136, Takase
96, Koizumi 97)

λk − λl

λk − λm
= ic · θ[ε1]2 · θ[ε2]2

θ[ε3]2 · θ[ε4]2
, c ∈ {0, 1, 2, 3}.

For genus 1: λ1 = θ4
1/θ

4
0.

For genus 2 (Rosenhain formula):

λ1 = −θ
2
01θ

2
21

θ2
30θ

2
10
, λ2 = −θ

2
03θ

2
21

θ2
30θ

2
12
, λ3 = −θ

2
03θ

2
01

θ2
10θ

2
12
.

For genus 3 (Weng 01):

λ1 =
(θ15θ3)4 + (θ12θ1)4 − (θ14θ2)4

2(θ15θ3)4
, λ2 =

(θ4θ9)4 + (θ6θ11)4 − (θ13θ8)4

2(θ4θ9)4
, . . .
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From the Jacobian to its curve Even characteristics

From the Jacobian to its curve : non hyperelliptic genus 3

(Weber 1876) shows how to find the Riemann model:

C :
q

x(a1x + a′1y + a′′1 z) +
q

y(a2x + a′2y + a′′2 z) +
q

z(a3x + a′3y + a′′3 z) = 0

with

a1 = i θ41θ05
θ50θ14

, a′1 = i θ05θ66
θ33θ50

, a′′1 = −θ66θ41
θ14θ33

,

a2 = i θ25θ61
θ34θ70

, a′2 = i θ61θ02
θ57θ34

, a′′2 = θ02θ25
θ70θ57

,

a3 = i θ07θ43
θ16θ52

, a′3 = i θ40θ20
θ75θ16

, a′′3 = θ20θ07
θ52θ75

.

Question: can something be done for g ≥ 4 ?
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From the Jacobian to its curve Odd characteristics
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From the Jacobian to its curve Odd characteristics

Torelli theorems: odd versions

Theorem (Grushevsky, Salvati Manni 04)

A generic abelian variety of dimension g ≥ 3 is uniquely determined by its
theta gradients.

Theorem (Caporaso, Sernesi 03)

A general curve C of genus g ≥ 3 is uniquely determined by its theta
hyperplanes.

Rem: the second result is not a corollary of the first.
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From the Jacobian to its curve Odd characteristics

Hyperelliptic case: genus 2 example (Guàrdia 01,07)

Let [µ1], . . . , [µ6] be the odd characteristics. Then C admits a symmetric
model

y2 = x
(
x − [µ1,µ3]

[µ2,µ3]

)(
x − [µ1,µ4]

[µ2,µ4]

)(
x − [µ1,µ5]

[µ2,µ5]

)(
x − [µ1,µ6]

[µ2,µ6]

)
.

Remarks:
his theory of symmetric models has nice invariants, nice reduction
properties.
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From the Jacobian to its curve Odd characteristics

Non hyperelliptic curves of genus 3: Guàrdia 09

Refinement of Riemann model: a smooth plane quartic over k is
k-isomorphic to

vuut [b7b2b3][b7b′
2b′

3]

[b1b2b3][b′
1b′

2b′
3]

X1X ′
1 +

vuut [b1b7b3][b7b′
1b′

3]

[b1b2b3][b′
1b′

2b′
3]

X2X ′
2 +

vuut [b1b2b7][b7b′
1b′

2]

[b1b2b3][b′
1b′

2b′
3]

X3X ′
3 = 0

where Xi ,X ′i are the equations of the bitangents bi , b′i .

Ex: Take A = E 3 where E has CM by
√
−19 + the unique

undecomposable principal polarization. Then A = Jac(C ) where

C : x4 + (1/9)y4 + (2/3)x2y2− 190y2− 570x2 + (152/9)y3− 152x2y − 1083 = 0.
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From the Jacobian to its curve Odd characteristics

Summary

g = 1 g = 2 g ≥ 3 h. g = 3 n.h. g > 3 n.h.
θ → τ fast fast conj. fast conj. fast conj. fast conj.
τ → θ algo algo algo algo algo

fast quotient fast quot.
C → Ω fast (free) algo algo algo plane model
C → θ fast algo algo algo quot. theory
θ → C fast fast fast fast ?
∇θ → C fast fast fast fast ?

algo: there exists an algorithm but slow.
fast (conj.): there exists a fast (conjectural) algorithm.
quot.: for the quotient of Thetanullwerte.
theory: the theory is done but no implementation has been done.
?: nothing is done.
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