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Abstract

Reductions of Benney's equations are
described by conformal mappings from the
upper half p-plane to the slit upper half
A-plane. The slits are on prescribed
non-intersecting curves, and their moving
end points are the Riemann invariants. If
the slits are straight lines, the mapping may
be given in Schwartz-Christoffel form. In
the case where the slits are all vertical, the
mapping is given explicitly in terms of
Kleinian o functions of a hyperelliptic curve,
a similar formula is found for a trigonal or
tetragonal curve, when the slits make angles
of w/3 or w/4 with the real \-axis and one
another.



Dispersionless PDE

The prototype of this class of system is the
kinematic wave equation

ut + uugy = 0, (1)

which is a dispersionless bi-Hamiltonian
integrable system. It can be considered as
the singular limit of the KdV as the
dispersion term tends to zero. Until shocks
form, its solution with initial data

u(x,0) = f(x) is given implicitly by the
hodograph form:

x — ut = f(_l)(u). (2)

Tsarev showed that this result can be
generalised to a much wider class - if a
system

u; + Vug, = 0, (3)

with an N component vector u and an
N x N matrix V, can be transformed to
diagonal form,

ri 4+ o' (r)ry, = 0, (4)



where the r* are called the Riemann
invariants, and the v* the eigenvalues of V
are the characteristic speeds, assumed real
and distinct; and if it is Hamiltonian, its
solutions may again be written in
hodograph form

z — o't = w. (5)

Here the w' satisfy an over-determined (but
consistent) set of linear equations.

I will be talking about the problem of a
dispersionless Hamiltonian pde with
infinitely many dependent variables, and the
problem of how, for some classes of its
solutions it may be reduced to an N x N
system of this type. In particular I will look
at the problem of constructing such classes
of solutions - called reductions of the
system.



Benney’'s Equations

Many of the most important examples of
dispersionless integrable systems are
included in the Benney hierarchy. These
equations were first derived as a description
of long waves on a shallow perfect fluid, but

they can be written as VIasov equations:
of of 0ApOf

8—752+p8:13 or Op

where the moments A,, are defined by

Ap = /_O:O p" f dp. (7)

These moments satisfy the Benney moment
equations:

(An)t + (Ap41)z +nA,_1(A0)z = 0.  (8)

0, (6)




When can we find solutions f(z,p,t>), of
this system which depend on (x,t>) through
only N Riemann invariants; that is,
functions X\;(z,t), satisfying

8>\ 8>\
ox
for some characteristic speeds p;(A)? Such
a solution f(p, \(z,t>) must satisfy

of  9Agdf
X, OX; Op

(p — i) =0 (10)

and thus, on dividing by g—g, we get:



LOwner equations
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0N;  p—bi
Each of these Lowner equations, taken
separately, can be used to describe the
growth of a slit in the image of a conformal
map from the p-plane to the A-plane. The
consistency conditions between these need
to be satisfied; geometrically, the growth of
one slit should not cause the other slits to
move. Such solutions can be described by
choosing N non-intersecting curves C; in
the upper half A-plane, with end points \;,
and bases A? on the real axis. There is a
unique conformal mapping from the upper
half p-plane to the slit upper half A-plane,
with asymptotics A=p+ O(1/p) as p — <.



If the curves are chosen ab initio, the
consistency conditions are automatically
satisfied. The solutions of those conditions
are parameterised by N functions - and
these slit mappings are parametrised by N
curves. The question now arises, can we
construct explicit non-trivial examples of
these mappings? The obvious class to
consider first is where the slits are all
straight lines, and the mapping is then of
Schwartz-Christoffel type.



Schwartz-Christoffel mappings

If the upper half p-plane is mapped into an
N-gonal domain of the A-plane, with
A~p—+ O(1l/p), as p — oo, and the points p;
are mapped to the vertices \; with internal
angles may, satisfying Y%V ; n(1 — a;) =0,
the mapping is given by
N
D 1
A =/ dp’.  (12)
(il;ll (' - pz')(lo‘i)>

for then near p =p;, A = (p — p;)™.

The integrand is algebraic if the «; are all
rational. For instance, with o; = 1/2, if we
take the real p-axis, and mark N intervals
I, = [pz._,p;"] on it, and a point p; € I;, then
the mapping

p HN_l(p/ — D;)
A=pt =
/_OO VIIL (0 = p,)) (@ — p})
(13)

takes the upper half p-plane to the upper
half A-plane with N vertical slits in it,

—1|dp




stretching from A0, the image of p, to X,

the image of p;,. The conditions

/p];I- Hg\le(p/ — D;) 1 dp/ —0
e \WVITL, (' — p)) (P —p;")
(14)
ensure that the images of pf are the same
point Ag of the real \ axis. These image
points Ag should be independent of (z,t), so
the resulting mapping is found to depend on

N free parameters, say the end points ;.



A Hyperelliptic Curve

The integral

p [N, (' — 5;)
A =p+ [ ( =
/_OO VIIL (0 = p) (0 — p})

= p+ [ oG (15)

is an integral of a second kind differential
on a hyperelliptic Riemann surface (elliptic
for N=2). It helps to move one branch
point to infinity; we take:

— 1)dp’

p = pf\?—l/t,
Py = pk— 1/t (16)
and the integrand becomes:
+1
ST a;th dt
90(19)dp=k<zoZ 5
S (4
= k3( §: aitZQ) —
i=2

ai ag\ dt
+/~c(t +t2) = an

for some coefficients a;, k.



The terms in positive powers of t are

holomorphic differentials, and those in
negative powers, meromorphic, on the
genus g = N — 1 hyperelliptic Riemann
surface

s = M0+M1t+---+,u29t29+4t29+1
N—1
= 4t —ty) [[ ¢-tD@E—t7). (18)
1=1
Since

n
> (p; +pi —2p:) =0,
i=1
so that A(p) will have the required
asymptotics:

Ap) 2p+O(1/p) as p— oo,

the residue at ¢t = 0 of the meromorphic
part is identically zero. To construct the
mapping, it is enough to find a function
which has the correct principal part at this
singularity; this function and the required
Schwartz-Christoffel mapping then differ by
at most a holomorphic term.



Kleinian o-functions.

We define the Abel map in the usual way in
terms of the holomorphic differentials, fixing
the base point at t = .
t . ,dt/
w= | " 1= i=1,....4 (19)

o0 S
If we define a basis of cycles

{a;,0;},i=1,..,g, as in the diagram,

then we define the period matrices

2w = (/aiduj>
2w’ = (/b.du])

whose 2g columns define a lattice A in C9,
then the Abel map is defined uniquely up to
translations by A. We write Jac = CI/A.

We also need the associated basis of second
kind meromorphic differentials:

2g+1—i ey
dri = > A +i—k)piyite 25
k=i 5

(t=1,2,...,9) (20)



with period matrices n and n’. These period
matrices are used to form the matrix

w w’
M = ;-
Then the o function is, up to a factor which

IS irrelevant to our purposes:

o(u; M) = exp (%uTn w_1u>

x 3 exp(in(m?rtm + 2m? ((2w) "tu — A))
meZ4

where A is the Riemann constant for the

base point t = oo, and 7 = w'w™l. Then o

will vanish on the strata ©; of the ©-divisor

given by:

ko .t
©r={ucJac:u= ) /]du}
j=1"°°
and evidently

{0} C©1 COyC...C Jac.

Here, as we are interested in a 1-dimensional
integral, it makes sense to write it as a path
integral on ©1, the Abel image of the curve.



Jacobi inversion formula on ©4

Using a result of Jorgenson, we may show
that on

@g—la o =0,

and on

Oy iy 0=0g=0431=..=043_j42=0.

In particular for a hyperelliptic curve, on ©1
only the two derivatives o1 and o5 are
non-vanishing, and it follows that

duo o1
= —<£ —

duq oo
This result was used by Enolski, Pronine
and Richter to find the motion of a double
pendulum in the absence of gravity - that
problem reduces to the inversion of a 2nd
kind meromorphic differential on ©7 for a
genus 2 hyperelliptic curve. Similar
problems have been studied elsewhere, e.g.

by Abenda and Fedorov.



Our integral, or rather, its meromorphic
part, then becomes

oo (u) duy = ( 2" (u) - lﬂg(u)) duy
2pp01

This is singular only where t =0, (p = o0)
that is at the 2 points +ug where o1 = 0.

We expand in a Laurent series in powers of
w1 = u1 — (ug)1, getting

22(ug — (ug — u)) =
a1

(02) + (o12) wy +--- _
(O-ll)wl—l_...

<2> wit + O(1),

011

and

0'22

0—12(110 —(up —u)) =

092 + (2 02 o12) wy + .

o112 w? + (011 0111) wi + (2011 012) wiwy + ...



2

011

2 2

0> 0 (o2 (o2 o o _

(2 2 122 _ 02 211 — Vi 2 ;2) w7 1—|—O(1).
011 Jg11 011

Here all the derivatives of o are evaluated at

ug. At this point one may show (consider

the Taylor series of o near ug), that

o11(ug) = —+/pg o2(ug)

and
1

c111(ug) = 5 M1 oo(ug) — 3 /o o12(up).
It follows, as it must, that p>duq has zero
residue here.

We now consider the function

W) = -y
po o1

for u € ©41. This has a simple pole at
w1 = 0, so its derivative can be compared
with our integrand. The (total) derivative
of W with respect to uq along ©1 is

Y(u) = [— : "”]

duy | po o1




g 1—1
— _i Z (_1)i—1 (ﬂ) (Ulli o1 012’)
HO |;=1 g2 g1 012

Since only the first three terms in the sum
contain negative powers of o1 we can
rewrite ¥ (u) as

1 1
Pp(u) = ——[(~of1—
HO 07

1
+(o111 + "11"12>01 +0(1)]  (Vg=>3)

g2

Expanding near u = ugp, we find

B(u) = <i> w2 4 O(1)
1220
This has the same leading terms as o».
Neither ¥pduy nor ¢o has any other
singularities, so they differ by at most

holomorphic differentials.



We thus obtain, finally, an explicit
expression for the Schwartz-Christoffel
integral:

Ap)=p+ [ o)~ 1] ap
= pog42t

A+ DB T ujt {( )9 71
po o1

Here the coefficients A are given by

(u)}-l—é’.

g+1 g1
YA =]] [(p2g+2 —Di)t — 1},
i—0 i=1

B is known to vanish for the cases g = 2
and g = 3, and C is given by

C=(-1)9%/mpA" .ug— vaoB' .ug+
2 0192 1

(ug) + =2

VIO 02 20




A Trigonal Reduction

The mapping between the upper half
p-plane and the slit upper half A-plane
shown above is given as a
Schwartz-Christoffel mapping

Ap)=p+ [ (¢() - D, (1)
where
[T~ (p — Pi) |
M6, (o — P)]°
The same approach can be used here,
although there is much less known in detail

about cyclic trigonal curves than
hyperelliptic curves.

(22)

p(p) =

We found that the Schwartz-Christoffel
mapping can be given explicitly. As before,
rather than the coordinates (p,y) on the
cyclic (3,6) curve

6
M= {(p,y) e =] (p—Pz')},
=1



we define new coordinates (¢,s) by:

1
p= Pg — e (23)

1 .
P, = T i=1...5, (24)
s = yt°K, (25)

5

K3 = T[] (Ps — P). (26)

1=1

Define \; by the equation
26: Aiti — _H?:1 [(Ps — P;)t — 1].
=1 H?:l (P6 — Pl)

and set AT = (41, A>, A3, As) where the A;
are defined by

4 . 4
> At = 1] [(Ps —ps)t — 1].
i=1 i=1
The image of I, T4, is then given by the
cyclic (3,5) curve

4
T, = {(t,s) S =24 Y )\Z-ti},

1=0

We then define the restriction to T4 of the



Abel map u, with image ©1 C Jac(Ty), by

t t/dt/
- dt’ -
Ul = foo 342 u2 = | Sn
. t Jdt! . t tlzdt/
uz — 38/2 Ugq = 38/2

T he inversion of these mappings is given by:

p = Pg + 22(u).

01
Then, with u = (u1, us, us, ug) € 1 and
o1(ug) = 0, we have:

2/3
Ap) = 377 (A2 — 352) (u1 —wo1) +
Az(us —ug2) + A4(U4 —uQ 4) —
A
%—01/ F2(uw) + 3/3 22 (ug) + %/\—é

on the sheet of the Riemann surface
3 6
py):vo=1]1] p—P)
i=1

associated with the relation
p — +o00 & u— +ugp.



A Tetragonal Reduction

We may similarly look at a reduction in
which the slits are at angles of n/4 to each
other. The simplest non-trivial example is
given by

) =p+ [ G -1 (27)

where
118 1 (p — 57)]3 y>
where
8
v = 11 (v — B2)- (29)
i=1

which, on mapping pg to oo, we find is
associated with the curve

st =15+ pat* + pztd + pot? + p1t + po,
This is a cyclic (4,5) tetragonal curve, of
genus six. Using a basis of holomorphic
differentials

gi(ta S)

du;(t,s) = 1.3

dt,



where

g1(t,s) =1, go(t,s) =t, g3(t,s)=s,

2
g4(t7 8) — t27 95(t7 S) = ts, g6(t7 8) — S,

we proceed as before. Jorgenson’'s formula
for Jacobi inversion on ©71 needs to be
interpreted carefully - we find that all first
derivatives of o vanish on this stratum.
Taking the limit as we approach this
stratum, we get the inversion formula

p= 223 (30)
034

The meromorphic part of our integrand
then becomes

>
o (t)dt = <<034> — A1034) duy,
023 023

where A1 is chosen so the residue vanishes.



Expanding everything about points u§0)
where o3 = 0, and using the known
relations between derivatives holding on ©4,
we find that this is (up to holomorphic
terms), the derivative of

Hence, after finding the holomorphic and
constant terms as well, we obtain our
conformal mapping explicitly as:

., 3m
Ap) =pg+ o—
8 1o
—I—K[ 11 [0236 B 0226(’“0)}
4ugt oz o22(ug)
1w po+2A2u0 (ug — uq o)
32 Iug/4 2u0 ’
4Azpo + p3
-+ " (up —un o) + Asg(ug — M,o)],

where the constants A; and K are known.
As with the trigonal and hyperelliptic cases,
the key term is the quotient of o-derivatives.



Further questions

e All examples studied so far in this way
yield very similar expressions for the
Schwartz-Christoffel mapping. Is there a
general result of this form, applicable to
much wider families of curves? This
problem depends on understanding the
order to which o vanishes on the
stratum ©-+; if all the first derivatives
vanish, Jorgenson’s formula must be
used carefully.

e Can these formulae be used to get a
more detailed and explicit picture of the
differential-geometric structure of these
reductions? Andrea Raimondo has
looked at the multiple Hamiltonian
structures associated with general
reductions - calculating these objects
explicitly for Schwartz-Christoffel
reductions may well yield useful insights.
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