Hyperelliptic, Trigonal and Tetragonal Reductions of Benney's Equations

Sadie Baldwin, Matthew England* and John Gibbons

Imperial College London

* Glasgow University

Abstract

Reductions of Benney's equations are described by conformal mappings from the upper half p-plane to the slit upper half λ-plane. The slits are on prescribed non-intersecting curves, and their moving end points are the Riemann invariants. If the slits are straight lines, the mapping may be given in Schwartz-Christoffel form. In the case where the slits are all vertical, the mapping is given explicitly in terms of Kleinian σ functions of a hyperelliptic curve; a similar formula is found for a trigonal or tetragonal curve, when the slits make angles of $\pi / 3$ or $\pi / 4$ with the real λ-axis and one another.

Dispersionless PDE

The prototype of this class of system is the kinematic wave equation

$$
\begin{equation*}
u_{t}+u u_{x}=0 \tag{1}
\end{equation*}
$$

which is a dispersionless bi-Hamiltonian integrable system. It can be considered as the singular limit of the $K d V$ as the dispersion term tends to zero. Until shocks form, its solution with initial data $u(x, 0)=f(x)$ is given implicitly by the hodograph form:

$$
\begin{equation*}
x-u t=f^{(-1)}(u) \tag{2}
\end{equation*}
$$

Tsarev showed that this result can be generalised to a much wider class - if a system

$$
\begin{equation*}
\mathbf{u}_{t}+V \mathbf{u}_{x}=0 \tag{3}
\end{equation*}
$$

with an N component vector \mathbf{u} and an $N \times N$ matrix V, can be transformed to diagonal form,

$$
\begin{equation*}
r_{t}^{i}+v^{i}(\mathbf{r}) r_{x}^{i}=0 \tag{4}
\end{equation*}
$$

where the r^{i} are called the Riemann invariants, and the v^{i} the eigenvalues of V are the characteristic speeds, assumed real and distinct; and if it is Hamiltonian, its solutions may again be written in hodograph form

$$
\begin{equation*}
x-v^{i} t=w^{i} \tag{5}
\end{equation*}
$$

Here the w^{i} satisfy an over-determined (but consistent) set of linear equations.

I will be talking about the problem of a dispersionless Hamiltonian pde with infinitely many dependent variables, and the problem of how, for some classes of its solutions it may be reduced to an $N \times N$ system of this type. In particular I will look at the problem of constructing such classes of solutions - called reductions of the system.

Benney's Equations

Many of the most important examples of dispersionless integrable systems are included in the Benney hierarchy. These equations were first derived as a description of long waves on a shallow perfect fluid, but they can be written as Vlasov equations:

$$
\begin{equation*}
\frac{\partial f}{\partial t_{2}}+p \frac{\partial f}{\partial x}-\frac{\partial A_{0}}{\partial x} \frac{\partial f}{\partial p}=0 \tag{6}
\end{equation*}
$$

where the moments A_{n} are defined by

$$
\begin{equation*}
A_{n}=\int_{-\infty}^{\infty} p^{n} f \mathrm{~d} p \tag{7}
\end{equation*}
$$

These moments satisfy the Benney moment equations:

$$
\begin{equation*}
\left(A_{n}\right)_{t}+\left(A_{n+1}\right)_{x}+n A_{n-1}\left(A_{0}\right)_{x}=0 . \tag{8}
\end{equation*}
$$

When can we find solutions $f\left(x, p, t_{2}\right)$, of this system which depend on $\left(x, t_{2}\right)$ through only N Riemann invariants; that is, functions $\widehat{\lambda}_{i}(x, t)$, satisfying

$$
\begin{equation*}
\frac{\partial \widehat{\lambda}_{i}}{\partial t}+\widehat{p}_{i} \frac{\partial \widehat{\lambda}_{i}}{\partial x}=0 \tag{9}
\end{equation*}
$$

for some characteristic speeds $\widehat{p}_{i}(\hat{\lambda})$? Such a solution $f\left(p, \widehat{\lambda}\left(x, t_{2}\right)\right.$ must satisfy

$$
\begin{equation*}
\left(p-\widehat{p}_{i}\right) \frac{\partial f}{\partial \widehat{\lambda}_{i}}-\frac{\partial A_{0}}{\partial \widehat{\lambda}_{i}} \frac{\partial f}{\partial p}=0 \tag{10}
\end{equation*}
$$

and thus, on dividing by $\frac{\partial f}{\partial p}$, we get:

Löwner equations

$$
\begin{equation*}
\frac{\partial p}{\partial \widehat{\lambda}_{i}}=-\frac{\frac{\partial A_{0}}{\partial \bar{\lambda}_{i}}}{p-\widehat{p}_{i}} . \tag{11}
\end{equation*}
$$

Each of these Löwner equations, taken separately, can be used to describe the growth of a slit in the image of a conformal map from the p-plane to the λ-plane. The consistency conditions between these need to be satisfied; geometrically, the growth of one slit should not cause the other slits to move. Such solutions can be described by choosing N non-intersecting curves C_{i} in the upper half λ-plane, with end points $\widehat{\lambda}_{i}$, and bases $\hat{\lambda}_{i}^{0}$ on the real axis. There is a unique conformal mapping from the upper half p-plane to the slit upper half λ-plane, with asymptotics $\lambda=p+\mathrm{O}(1 / p)$ as $p \rightarrow \infty$.

If the curves are chosen $a b$ initio, the consistency conditions are automatically satisfied. The solutions of those conditions are parameterised by N functions - and these slit mappings are parametrised by N curves. The question now arises, can we construct explicit non-trivial examples of these mappings? The obvious class to consider first is where the slits are all straight lines, and the mapping is then of Schwartz-Christoffel type.

Schwartz-Christoffel mappings

If the upper half p-plane is mapped into an N-gonal domain of the λ-plane, with $\lambda \simeq p+\bigcirc(1 / p)$, as $p \rightarrow \infty$, and the points p_{i} are mapped to the vertices λ_{i} with internal angles $\pi \alpha_{i}$, satisfying $\sum_{i=1}^{N} \pi\left(1-\alpha_{i}\right)=0$, the mapping is given by

$$
\begin{equation*}
\lambda=\int^{p}\left(\prod_{i=1}^{N} \frac{1}{\left(p^{\prime}-p_{i}\right)^{\left(1-\alpha_{i}\right)}}\right) \mathrm{d} p^{\prime} \tag{12}
\end{equation*}
$$

for then near $p=p_{i}, \lambda \simeq\left(p-p_{i}\right)^{\alpha_{i}}$.

The integrand is algebraic if the α_{i} are all rational. For instance, with $\alpha_{i}=1 / 2$, if we take the real p-axis, and mark N intervals $I_{i}=\left[p_{i}^{-}, p_{i}^{+}\right]$on it, and a point $\hat{p}_{i} \in I_{i}$, then the mapping

$$
\lambda=p+\int_{-\infty}^{p}\left(\frac{\prod_{i=1}^{N}\left(p^{\prime}-\widehat{p}_{i}\right)}{\sqrt{\prod_{i=1}^{N}\left(p^{\prime}-p_{i}^{-}\right)\left(p^{\prime}-p_{i}^{+}\right)}}-1\right) \mathrm{d} p^{\prime}
$$

takes the upper half p-plane to the upper half λ-plane with N vertical slits in it,
stretching from λ_{i}^{0}, the image of $p_{i}^{ \pm}$, to $\hat{\lambda}_{i}$, the image of \hat{p}_{i}. The conditions

$$
\begin{equation*}
\int_{p_{k}^{-}}^{p_{k}^{+}}\left(\frac{\prod_{i=1}^{N}\left(p^{\prime}-\widehat{p}_{i}\right)}{\sqrt{\prod_{i=1}^{N}\left(p^{\prime}-p_{i}^{-}\right)\left(p^{\prime}-p_{i}^{+}\right)}}-1\right) \mathrm{d} p^{\prime}=0 \tag{14}
\end{equation*}
$$

ensure that the images of $p_{k}^{ \pm}$are the same point λ_{k}^{0} of the real λ axis. These image points λ_{k}^{0} should be independent of (x, t), so the resulting mapping is found to depend on N free parameters, say the end points λ_{k}.

A Hyperelliptic Curve

The integral

$$
\begin{align*}
\lambda & =p+\int_{-\infty}^{p}\left(\frac{\prod_{i=1}^{N}\left(p^{\prime}-\widehat{p}_{i}\right)}{\sqrt{\prod_{i=1}^{N}\left(p^{\prime}-p_{i}^{-}\right)\left(p^{\prime}-p_{i}^{+}\right)}}-1\right) \mathrm{d} p^{\prime} \\
& =p+\int_{-\infty}^{p} \varphi\left(p^{\prime}\right) \mathrm{d} p^{\prime} \tag{15}
\end{align*}
$$

is an integral of a second kind differential on a hyperelliptic Riemann surface (elliptic for $N=2$). It helps to move one branch point to infinity; we take:

$$
\begin{align*}
p & =p_{N}^{+}-1 / t, \\
p_{i}^{ \pm} & =p_{N}^{+}-1 / t_{i}^{ \pm}, \tag{16}
\end{align*}
$$

and the integrand becomes:

$$
\begin{align*}
\varphi(p) \mathrm{d} p= & k\left(\frac{\sum_{i=0}^{g+1} a_{i} t^{i}}{s}\right) \frac{\mathrm{d} t}{t^{2}} \\
= & k\left(\sum_{i=2}^{g+1} a_{i} t^{i-2}\right) \frac{\mathrm{d} t}{s} \\
& +k\left(\frac{a_{1}}{t}+\frac{a_{0}}{t^{2}}\right) \frac{\mathrm{d} t}{s} \tag{17}
\end{align*}
$$

for some coefficients a_{i}, k.

The terms in positive powers of t are holomorphic differentials, and those in negative powers, meromorphic, on the genus $g=N-1$ hyperelliptic Riemann surface

$$
\begin{align*}
s^{2} & =\mu_{0}+\mu_{1} t+\ldots+\mu_{2 g} t^{2 g}+4 t^{2 g+1} \\
& =4\left(t-t_{N}^{-}\right) \prod_{i=1}^{N-1}\left(t-t_{i}^{+}\right)\left(t-t_{i}^{-}\right) \tag{18}
\end{align*}
$$

Since

$$
\sum_{i=1}^{n}\left(p_{i}^{-}+p_{i}^{+}-2 \widehat{p}_{i}\right)=0
$$

so that $\lambda(p)$ will have the required asymptotics:

$$
\lambda(p) \simeq p+\bigcirc(1 / p) \quad \text { as } \quad p \rightarrow \infty
$$

the residue at $t=0$ of the meromorphic part is identically zero. To construct the mapping, it is enough to find a function which has the correct principal part at this singularity; this function and the required Schwartz-Christoffel mapping then differ by at most a holomorphic term.

Kleinian σ-functions.

We define the Abel map in the usual way in terms of the holomorphic differentials, fixing the base point at $t=\infty$.

$$
\begin{equation*}
u_{i}=\int_{\infty}^{t} t^{\prime i-1} \frac{\mathrm{~d} t^{\prime}}{s^{\prime}}, \quad i=1, \ldots, g \tag{19}
\end{equation*}
$$

If we define a basis of cycles $\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}, i=1, . ., g$, as in the diagram,
then we define the period matrices

$$
\begin{aligned}
2 \omega & =\left(\int_{\mathfrak{a}_{i}} \mathrm{~d} u_{j}\right) \\
2 \omega^{\prime} & =\left(\int_{\mathfrak{b}_{i}} \mathrm{~d} u_{j}\right)
\end{aligned}
$$

whose $2 g$ columns define a lattice \wedge in \mathbb{C}^{g}, then the Abel map is defined uniquely up to translations by Λ. We write $\mathrm{Jac}=\mathbb{C}^{g} / \wedge$.

We also need the associated basis of second kind meromorphic differentials:

$$
\begin{gather*}
\mathrm{d} r_{i}=\sum_{k=i}^{2 g+1-i}(1+i-k) \mu_{1+i+k} \frac{t^{k} \mathrm{~d} t}{4 s}, \\
(i=1,2, \ldots, g) \tag{20}
\end{gather*}
$$

with period matrices η and η^{\prime}. These period matrices are used to form the matrix

$$
\mathfrak{M}=\left(\begin{array}{cc}
\omega & \omega^{\prime} \\
\eta & \eta^{\prime}
\end{array}\right) .
$$

Then the σ function is, up to a factor which is irrelevant to our purposes:

$$
\sigma(\mathbf{u} ; \mathfrak{M})=\exp \left(\frac{1}{2} \mathbf{u}^{\top} \eta \omega^{-1} \mathbf{u}\right)
$$

$\times \sum \exp \left(i \pi\left(\mathbf{m}^{T} \tau \mathbf{m}+2 \mathbf{m}^{T}\left((2 \omega)^{-1} \mathbf{u}-\Delta\right)\right)\right.$ $\mathbf{m} \in \mathbb{Z}^{4}$
where Δ is the Riemann constant for the base point $t=\infty$, and $\tau=\omega^{\prime} \omega^{-1}$. Then σ will vanish on the strata Θ_{k} of the Θ-divisor given by:

$$
\Theta_{k}=\left\{\mathbf{u} \in \mathrm{Jac}: \mathbf{u}=\sum_{j=1}^{k} \int_{\infty}^{t_{j}} \mathrm{~d} \mathbf{u}\right\}
$$

and evidently

$$
\{0\} \subset \Theta_{1} \subset \Theta_{2} \subset \ldots \subset \text { Jac. }
$$

Here, as we are interested in a 1-dimensional integral, it makes sense to write it as a path integral on Θ_{1}, the Abel image of the curve.

Jacobi inversion formula on Θ_{1}

Using a result of Jorgenson, we may show that on

$$
\Theta_{g-1}, \quad \sigma=0
$$

and on

$$
\Theta_{g-i}, \quad \sigma=\sigma_{g}=\sigma_{g-1}=\ldots=\sigma_{g-i+2}=0
$$

In particular for a hyperelliptic curve, on Θ_{1} only the two derivatives σ_{1} and σ_{2} are non-vanishing, and it follows that

$$
t=\frac{\mathrm{d} u_{2}}{\mathrm{~d} u_{1}}=-\frac{\sigma_{1}}{\sigma_{2}} .
$$

This result was used by Enolski, Pronine and Richter to find the motion of a double pendulum in the absence of gravity - that problem reduces to the inversion of a 2 nd kind meromorphic differential on Θ_{1} for a genus 2 hyperelliptic curve. Similar problems have been studied elsewhere, e.g. by Abenda and Fedorov.

Our integral, or rather, its meromorphic part, then becomes

$$
\varphi_{2}(\mathbf{u}) \mathrm{d} u_{1}=\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}(\mathbf{u})-\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \frac{\sigma_{2}}{\sigma_{1}}(\mathbf{u})\right) \mathrm{d} u_{1}
$$

This is singular only where $t=0,(p=\infty)$ that is at the 2 points $\pm \mathbf{u}_{0}$ where $\sigma_{1}=0$.

We expand in a Laurent series in powers of $w_{1}=u_{1}-\left(\mathbf{u}_{0}\right)_{1}$, getting

$$
\begin{gathered}
\frac{\sigma_{2}}{\sigma_{1}}\left(\mathbf{u}_{0}-\left(\mathbf{u}_{0}-\mathbf{u}\right)\right)= \\
\frac{\left(\sigma_{2}\right)+\left(\sigma_{12}\right) w_{1}+\cdots}{\left(\sigma_{11}\right) w_{1}+\ldots}= \\
\left(\frac{\sigma_{2}}{\sigma_{11}}\right) w_{1}^{-1}+O(1),
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\left(\mathbf{u}_{0}-\left(\mathbf{u}_{0}-\mathbf{u}\right)\right)= \\
\frac{\sigma_{2}^{2}+\left(2 \sigma_{2} \sigma_{12}\right) w_{1}+\ldots}{\sigma_{11}^{2} w_{1}^{2}+\left(\sigma_{11} \sigma_{111}\right) w_{1}^{3}+\left(2 \sigma_{11} \sigma_{12}\right) w_{1} w_{2}+\ldots}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac{\sigma_{2}^{2}}{\sigma_{11}^{2}}\right) w_{1}^{-2}+ \\
\left(2 \frac{\sigma_{2} \sigma_{12}}{\sigma_{11}^{2}}-\frac{\sigma_{2}^{2} \sigma_{111}}{\sigma_{11}^{3}}-\sqrt{\mu_{0}} \frac{\sigma_{2}^{2} \sigma_{12}}{\sigma_{11}^{3}}\right) w_{1}^{-1}+\mathrm{O}(1)
\end{gathered}
$$

Here all the derivatives of σ are evaluated at \mathbf{u}_{0}. At this point one may show (consider the Taylor series of σ near \mathbf{u}_{0}), that

$$
\sigma_{11}\left(\mathbf{u}_{0}\right)=-\sqrt{\mu_{0}} \sigma_{2}\left(\mathbf{u}_{0}\right)
$$

and

$$
\sigma_{111}\left(\mathbf{u}_{0}\right)=-\frac{1}{2} \mu_{1} \sigma_{2}\left(\mathbf{u}_{0}\right)-3 \sqrt{\mu_{0}} \sigma_{12}\left(\mathbf{u}_{0}\right)
$$

It follows, as it must, that $\varphi_{2} \mathrm{~d} u_{1}$ has zero residue here.

We now consider the function

$$
\Psi(\mathbf{u})=-\frac{1}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}(\mathbf{u})
$$

for $\mathbf{u} \in \Theta_{1}$. This has a simple pole at $w_{1}=0$, so its derivative can be compared with our integrand. The (total) derivative of ψ with respect to u_{1} along Θ_{1} is

$$
\psi(\mathbf{u})=\frac{\mathrm{d}}{\mathrm{~d} u_{1}}\left[-\frac{1}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}\right]
$$

$=-\frac{1}{\mu_{0}}\left[\sum_{i=1}^{g}(-1)^{i-1}\left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{i-1}\left(\frac{\sigma_{11 i}}{\sigma_{1}}-\frac{\sigma_{11} \sigma_{1 i}}{\sigma_{1}^{2}}\right)\right]$.
Since only the first three terms in the sum contain negative powers of σ_{1} we can rewrite $\psi(\mathbf{u})$ as

$$
\begin{gathered}
\psi(\mathbf{u})=-\frac{1}{\mu_{0}}\left[\left(-\sigma_{11}^{2} \frac{1}{\sigma_{1}^{2}}\right.\right. \\
\left.+\left(\sigma_{111}+\frac{\sigma_{11} \sigma_{12}}{\sigma_{2}}\right) \frac{1}{\sigma_{1}}+O(1)\right] \quad(\forall g \geq 3)
\end{gathered}
$$

Expanding near $\mathbf{u}=\mathbf{u}_{0}$, we find

$$
\psi(\mathbf{u}) \simeq\left(\frac{1}{\mu_{0}}\right) w_{1}^{-2}+O(1)
$$

This has the same leading terms as φ_{2}.
Neither $\psi \mathrm{d} u_{1}$ nor φ_{2} has any other singularities, so they differ by at most holomorphic differentials.

We thus obtain, finally, an explicit expression for the Schwartz-Christoffel integral:

$$
\begin{gathered}
\lambda(p)=p+\int_{\infty}^{p}\left[\varphi\left(p^{\prime}\right)-1\right] \mathrm{d} p^{\prime} \\
=p_{2 g+2}+
\end{gathered}
$$

$\left\{k\left(\mathbf{A}+(-1)^{g-1} \mathbf{B}\right)^{\top} \cdot \mathbf{u}\right\}+\left\{(-1)^{g} \frac{k}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}(\mathbf{u})\right\}+\widetilde{C}$.
Here the coefficients \mathbf{A} are given by

$$
\sum_{i=0}^{g+1} \mathbf{A}_{i} t^{i}=\prod_{i=1}^{g+1}\left[\left(p_{2 g+2}-\hat{p}_{i}\right) t-1\right],
$$

B is known to vanish for the cases $g=2$ and $g=3$, and \tilde{C} is given by

$$
\begin{array}{r}
\tilde{C}=(-1)^{g} \sqrt{\mu_{0}} \mathbf{A}^{\top} \cdot \mathbf{u}_{0}-\sqrt{\mu_{0}} \mathbf{B}^{\top} \cdot \mathbf{u}_{0}+ \\
\frac{2}{\sqrt{\mu_{0}}} \frac{\sigma_{12}}{\sigma_{2}}\left(\mathbf{u}_{0}\right)+\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} .
\end{array}
$$

A Trigonal Reduction

The mapping between the upper half p-plane and the slit upper half λ-plane shown above is given as a
Schwartz-Christoffel mapping

$$
\begin{equation*}
\lambda(p)=p+\int_{\infty}^{p}\left(\varphi\left(p^{\prime}\right)-1\right) \mathrm{d} p^{\prime} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(p)=\frac{\prod_{i=1}^{4}\left(p-\widehat{p}_{i}\right)}{\left[\prod_{i=1}^{6}\left(p-P_{i}\right)\right]^{2 / 3}} \tag{22}
\end{equation*}
$$

The same approach can be used here, although there is much less known in detail about cyclic trigonal curves than hyperelliptic curves.

We found that the Schwartz-Christoffel mapping can be given explicitly. As before, rather than the coordinates (p, y) on the cyclic $(3,6)$ curve

$$
\Gamma=\left\{(p, y): y^{3}=\prod_{i=1}^{6}\left(p-P_{i}\right)\right\}
$$

we define new coordinates (t, s) by:

$$
\begin{array}{r}
p=P_{6}-\frac{1}{t} \\
P_{i}=P_{6}-\frac{1}{T_{i}} \quad i=1 \ldots 5 \\
s=y t^{2} K \\
K^{3}=\prod_{i=1}^{5}\left(P_{6}-P_{i}\right) \tag{26}
\end{array}
$$

Define λ_{i} by the equation

$$
\sum_{i=1}^{6} \lambda_{i} t^{i}=-\frac{\prod_{i=1}^{6}\left[\left(P_{6}-P_{i}\right) t-1\right]}{\prod_{i=1}^{5}\left(P_{6}-P_{1}\right)}
$$

and set $\mathbf{A}^{\mathbf{T}}=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ where the A_{i} are defined by

$$
\sum_{i=1}^{4} A_{i} t^{i}=\prod_{i=1}^{4}\left[\left(P_{6}-\widehat{p}_{i}\right) t-1\right]
$$

The image of Γ, \mathbf{T}_{4}, is then given by the cyclic $(3,5)$ curve

$$
\mathbf{T}_{4}=\left\{(t, s): s^{3}=t^{5}+\sum_{i=0}^{4} \lambda_{i} t^{i}\right\}
$$

We then define the restriction to \mathbf{T}_{4} of the

Abel map \mathbf{u}, with image $\Theta_{1} \subset \operatorname{Jac}\left(\mathbf{T}_{4}\right)$, by

$$
\begin{array}{ll}
u_{1}=\int_{\infty}^{t} \frac{\mathrm{dt}^{\prime}}{3 s^{2}} & u_{2}=\int_{\infty}^{t} \frac{t^{\prime} \mathrm{dt}^{\prime}}{3 s^{2}} \\
u_{3}=\int_{\infty}^{t} \frac{s^{\prime} \mathrm{dt}^{\prime}}{3 s^{2}} & u_{4}=\int_{\infty}^{t} \frac{t^{\prime 2} \mathrm{dt}^{\prime}}{3 s^{\prime 2}}
\end{array}
$$

The inversion of these mappings is given by:

$$
p=P_{6}+\frac{\sigma_{2}}{\sigma_{1}}(\mathbf{u})
$$

Then, with $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \Theta_{1}$ and $\sigma_{1}\left(\mathbf{u}_{0}\right)=0$, we have:

$$
\begin{aligned}
\lambda(p)= & 3 \lambda_{0}^{2 / 3}\left(A_{2}-\frac{1}{3} \frac{\lambda_{2}}{\lambda_{0}}\right)\left(u_{1}-u_{0,1}\right)+ \\
& A_{3}\left(u_{2}-u_{0,2}\right)+A_{4}\left(u_{4}-u_{0,4}\right)- \\
& \frac{1}{3} \frac{1}{\lambda_{0}^{1 / 3}} \frac{\sigma_{13}}{\sigma_{1}}(\mathbf{u})+\frac{9}{\lambda_{0}^{1 / 3}} \frac{\sigma_{23}}{\sigma_{2}}\left(\mathbf{u}_{0}\right)+\frac{1}{3} \frac{\lambda_{1}}{\lambda_{0}}
\end{aligned}
$$

on the sheet of the Riemann surface

$$
\left\{(p, y): y^{3}=\prod_{i=1}^{6}\left(p-P_{i}\right)\right\}
$$

associated with the relation
$p \rightarrow+\infty \Leftrightarrow \mathbf{u} \rightarrow+\mathbf{u}_{0}$.

A Tetragonal Reduction

We may similarly look at a reduction in which the slits are at angles of $\pi / 4$ to each other. The simplest non-trivial example is given by

$$
\begin{equation*}
\lambda(p)=p+\int_{\infty}^{p}\left[\varphi\left(p^{\prime}\right)-1\right] d p^{\prime} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(p)=\frac{\prod_{i=1}^{6}\left(p-\widehat{v}_{i}\right)}{\left[\prod_{i-1}^{8}\left(p-\widehat{p}_{i}\right)\right]^{\frac{3}{4}}}=\frac{\prod_{i=1}^{6}\left(p-\widehat{v}_{i}\right)}{y^{3}} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
y^{4}=\prod_{i=1}^{8}\left(p-\widehat{p}_{i}\right) \tag{29}
\end{equation*}
$$

which, on mapping p_{8} to ∞, we find is associated with the curve

$$
s^{4}=t^{5}+\mu_{4} t^{4}+\mu_{3} t^{3}+\mu_{2} t^{2}+\mu_{1} t+\mu_{0}
$$

This is a cyclic $(4,5)$ tetragonal curve, of genus six. Using a basis of holomorphic differentials

$$
d u_{i}(t, s)=\frac{g_{i}(t, s)}{4 s^{3}} d t
$$

where

$$
\begin{gathered}
g_{1}(t, s)=1, \quad g_{2}(t, s)=t, \quad g_{3}(t, s)=s \\
g_{4}(t, s)=t^{2}, \quad g_{5}(t, s)=t s, \quad g_{6}(t, s)=s^{2}
\end{gathered}
$$

we proceed as before. Jorgenson's formula for Jacobi inversion on Θ_{1} needs to be interpreted carefully - we find that all first derivatives of σ vanish on this stratum.
Taking the limit as we approach this
stratum, we get the inversion formula

$$
\begin{equation*}
t=-\frac{\sigma_{23}}{\sigma_{34}} \tag{30}
\end{equation*}
$$

The meromorphic part of our integrand then becomes

$$
\varphi_{2}(t) d t=\left(\left(\frac{\sigma_{34}}{\sigma_{23}}\right)^{2}-A_{1} \frac{\sigma_{34}}{\sigma_{23}}\right) d u_{1}
$$

where A_{1} is chosen so the residue vanishes.

Expanding everything about points $u_{1}^{(0)}$ where $\sigma_{23}=0$, and using the known
relations between derivatives holding on Θ_{1}, we find that this is (up to holomorphic terms), the derivative of

$$
\Psi=-\frac{1}{4} \frac{1}{\mu_{0}} \frac{\sigma_{236}}{\sigma_{23}}
$$

Hence, after finding the holomorphic and constant terms as well, we obtain our conformal mapping explicitly as:

$$
\begin{gathered}
\lambda(p)=\hat{p}_{8}+\frac{3}{8} \frac{\mu_{1}}{\mu_{0}} \\
+K\left[-\frac{1}{4} \frac{1}{\mu_{0}}\left[\frac{\sigma_{236}}{\sigma_{23}}-\frac{\sigma_{226}\left(u_{0}\right)}{\sigma_{22}\left(u_{0}\right)}\right]\right. \\
-\frac{1}{32} \frac{\mu_{1}}{\mu_{0}^{7 / 4}}+\frac{\mu_{2}+2 A_{2} \mu_{0}}{2 \mu_{0}}\left(u_{1}-u_{1,0}\right) \\
\left.+\frac{4 A_{3} \mu_{0}+\mu_{3}}{4 \mu_{0}}\left(u_{2}-u_{2,0}\right)+A_{4}\left(u_{4}-u_{4,0}\right)\right]
\end{gathered}
$$

where the constants A_{i} and K are known. As with the trigonal and hyperelliptic cases, the key term is the quotient of σ-derivatives.

Further questions

- All examples studied so far in this way yield very similar expressions for the Schwartz-Christoffel mapping. Is there a general result of this form, applicable to much wider families of curves? This problem depends on understanding the order to which σ vanishes on the stratum Θ_{1}; if all the first derivatives vanish, Jorgenson's formula must be used carefully.
- Can these formulae be used to get a more detailed and explicit picture of the differential-geometric structure of these reductions? Andrea Raimondo has looked at the multiple Hamiltonian structures associated with general reductions - calculating these objects explicitly for Schwartz-Christoffel reductions may well yield useful insights.

References

- J Gibbons and S P Tsarev 1999 Conformal maps and reductions of the Benney equations, Phys. Lett. A 258, 263
- L Yu and J Gibbons 2000 The initial value problem for reductions of Lax equations Inverse Problems 16605
- M S Alber and Yu. N. Fedorov, Wave solutions of evolution equations and Hamiltonian flows on nonlinear subvarieties of generalised Jacobians, J. Phys. A, 33 (2000), 8409-8425.
- V Z Enolskii, M Pronine and P H Richter 2003 Double pendulum and Θ-divisor J. Nonlinear Science 13157
- S Baldwin and J Gibbons 2003 Hyperelliptic reduction of the Benney moment equations J.Phys A 368393
- J Jorgenson (1992) On the directional derivatives of the theta function along its divisor. Israel J. of Math. 77, 273-284.
- S Baldwin and J Gibbons 2004 Higher genus hyperelliptic reductions of the Benney equations, J. Phys. A: Math. Gen. 37 5341-5354
- S Baldwin and J Gibbons 2006 Genus 4 trigonal reduction of the Benney equations, J. Phys. A: Math. Gen. 39 3607-3639.

