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The tradition to which this work belongs is that of: Buchstaber, Enolskii &
Leykin [3]; Cassels & Flynn [5]; Eilbeck, England, Matsutani, Onishi & Previato
[6, 7]; Gibbons & Baldwin [4, 8]; Baker [2].

The author’s work has appeared most recently in [1].

The motivation is to use simple representation theory to:

• understand the structure of the identities satisfied by the ℘-functions on
Jacobians of general plane curves;

• to provide tools which significantly reduce the computational costs of ob-
taining such identities.

We will discuss hyperelliptic curves specifically under the following headings:

• transformation theory;
• the hyperelliptic curves of genus one, two and three;
• a conjecture for hyperelliptic curves of arbitrary genus.

2

C - a nonsingular curve of genus g over C. Riemann-Roch tells us the dimensions
of the divisor spaces, L(D), of divisors D on C,

L(0) ⊆ L(D) ⊆ L(2D) ⊆ L(3D) . . .

with equality at the Weierstraß gaps for special divisors.
x ∈ L(nD), y ∈ L(mD) ⇒ xy ∈ L((n + m)D). For some least p there exists at

least one linear relation, say φ = 0, amongst the elements we so construct because
the dimension of L(pD) is restricted by Riemann-Roch.

There are C-linear maps between the L(nD):

Λi : L(nD) → L((n + i)D).

In particular (in the case that the linear relation φ = 0 is unique)

Λ−1φ = 0, Λ0φ = cφ, Λ1φ = zφ

for some c ∈ L(0) and z ∈ L(D).
1
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2.1. g=1.

• D = P , a single point. x ∈ L(2D), y ∈ L(3D), φ = y2+[x]y+[x3] ∈ L(6D).
(Here we use the notation [xn] to denote an arbitrary polynomial of degree
n in x.)

• D = Q + R. x ∈ L(D), y ∈ L(2D), φ = y2 + [x2]y + [x4] ∈ L(4D).
• D = Q + R + S. x, y ∈ L(D), φ = y3 + [x]y2 + [x2]y + [x3] ∈ L(3D).

Each of these is a model of the genus one curve. (The second is singular.) There
are maps between the models and linear maps between the L(nD). (For example, in
the second instance, ∂x : L(nD) → L((n−1)D); x∂x, y∂y : L(nD) → L(nD); x2∂x :
L(nD) → L((n + 1)D).)

2.2. g=2.

• D = P , a Weierstraß point. L(0) = L(D), L(2D) = L(3D), x ∈ L(2D), y ∈
L(5D), φ = y2 + [x2]y + [x5] ∈ L(10D).

• D = Q+R, a special divisor. x ∈ L(D), y ∈ L(3D), φ = y2 +[x3]y +[x6] ∈
L(6D).

3

In what follows we are interested in the general case of the hyperelliptic curve
of genus g and its (singular) model,

y2 =
2g+2∑

0

(
2g + 2

i

)
aix

i.

There exist amongst all the Λi the following three, particular maps

Λ−1 = ∂x −
2g+1∑

0

(2g + 2− i)ai+1∂ai

Λ0 = −2x∂x − (g + 1)y∂y −
2g+2∑

0

(2g + 2− 2i)ai∂ai

Λ1 = −x2∂x − (g + 1)xy∂y −
2g+2∑

1

iai−1∂ai

One may verify these satisfy sl2(C) commutation relations: [e, f ] = h, [h, e] =
2e, [h, f ] = −2f . So it is appropriate to relabel them

Λ−1 ≡ e, Λ0 ≡ h, Λ1 ≡ f .

The eigenvalue of the operator h applied to any monomial in x, y and the a′is,
assigns to it a weight, which may be negative. These weights are, in this approach,
logically equivalent to the Sato weights in the standard approach.

One also sees that these linear operators are the infinitesimal form of the rational
map:

x 7→ αx + β

γx + δ
, y 7→ y

(γx + δ)g+1
.
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A (quite) general curve of genus g may be written

φ = yn + [xp]yn−1 + [x2p]yn−2 + . . . + [xnp] = 0.

Under the transformations

x 7→ αx + β

γx + δ

y 7→ y

(γx + δ)p

the holomorphic differentials, H, transform as a g-dimensional sl2(C) module which
is not in general irreducible. One may verify by analysis of the transformation
theory of 1-forms of the kind x2iyjdx

φ,y
that in this (quite) general case

H =
g⊕

i=1

Hi

is the decomposition into irreducibles and

dim H =
g⊕

i=1

dim Hi.

Thus the cotangent space to the Jacobian variety of the curve has some inter-
esting structure. This is simplest in the hyperelliptic case where H is isomorphic
to the standard irreducible Vg of dimension g. The r index ℘-functions which we
write for conciseness as (ij) ≡ ℘ij , (ijk) ≡ ℘ijk etc. belong to the (not irreducible
in general) modules, SymrV ∗

g . (V ∗ is the dual to V. V ∼= V ∗.)
Our starting point is the Buchstaber et al. formulation of the inverse problem,

deriving from Baker and ultimately Klein.
It is however first necessary to “tweak” the definition of the ℘-functions covari-

antly, that is in such a way that all objects are (co)variant but without altering
their analytic properties. We deal with the genus one, two and three hyperelliptic
curves.

In what follows ℘ is a function at a point u+u1 + . . .+ug on the Jacobian, this
point being the image under the Abel map of the divisor (x1,−y1) + (x2,−y2) +
. . . + (xg,−yg).

5. Quadratics in genus one

(111)2 = −1
4

detH

is the equation for the Weierstraß ℘ function (equivalent to (11) in our present
notation), where

H =




a0 2a1 a2−2(11)
2a1 4a2+4(11) 2a3

a2−2(11) 2a3 a4




The curve:

y2 = xHxt =
4∑
0

(
4
i

)
aix

i



4 CHRIS ATHORNE

where x = (1, x, x2).
The definition of (ij) = (11), for (x1, y1) an arbitrary point on the curve:

yy1 = xHxt
1

= a4x
2x2

1 + 2a3xx1(x + x1) + a2(x2 + 4xx1x
2
1) + 2a2(x + x1) + a0

= −2(x− x1)2(11)

Rearranging

(11) =
1
2

a(x, x1)− yy1

(x− x1)2

where a(x, x1)− yy1 is the covariant polar form of the curve. The polar form can
be thought of as a function on the curve with a double zero at the point (x1, y1) on
the curve. Consequently (11) is regular at that point but has a second order pole
at (x1,−y1).

(11) is invariant under e, h and f .

6. Quadratics in genus two

A(l)A(k) = −1
4

det
[

H kt

l 0

]

are equations quadratic in the (ijk) where

A(l) = [(222),−(122), (112),−(111)] · lt
etc., and

H =




a0 3a1 3a2−2(11) a3−2(11)
3a1 9a2+4(11) 9a3+2(12) 3a4−2(22)

3a2−2(11) 9a3+2(12) 9a4+4(22) 3a5

a3−2(12) 3a4−2(22) 3a5 a6




The curve:

y2 = xHxt =
6∑
0

(
6
i

)
aix

i

where x = (1, x, x2, x3).
The definition of the (ij), for (x1, y1) and (x2, y2) two arbitrary points on the

curve:

yyi = xHxt
i i = 1, 2

(6.1)

Rearranging

(11) + (x + xi)(12) + xxi(22)
x− x1

=
1
2

a(x, x1)− yy1

(x− x1)3

where a(x, x1)− yy1 is the covariant polar form of the sextic curve.
Each side of the above equation is invariant under e, h and f . In particular

(11) e→ −2(12)
e/2→ (22) e→ 0

0 f← (11)
f/2← −2(12) f← (22)
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7. Quadratics in genus three

A(l, l′)A(k,k′) = −1
4

det




H kt k′t

l 0 0
l 0 0




are equations quadratic in the (ijk) where

A(l, l′) = l




0 −(333) (233) (133)− (223) (222)− 2(123)

(333) 0 −(133) (123) (113)− (122)

−(233) (133) 0 −(113) (112)

(223)− (113) −(123) (113) 0 −(111)

2(123)− (222) (122)− (113) −(112) (111) 0




l′t

etc., and

H =




a0 4a1 6a2−2(11) 4a3−2(12) a4−2(13)
4a1 16a2+4(11) 24a3+2(12) 16a4−2(22) + 4(13) 4a5−2(23)

6a2−2(11) 24a3+2(12) 36a4+4(22)− 4(13) 24a5+2(23) 6a6−2(33)
4a3−2(12) 16a4−2(22) + 4(13) 24a5+4(23) 16a6+4(33) 4a7

a4−2(13) 4a5−2(23) 6a6−2(33) 4a7 a8




The curve:

y2 = xHxt =
8∑
0

(
8
i

)
aix

i

where x = (1, x, x2, x3, x4).
The definition of the (ij), for (xi, yi) with i = 1, 2, 3 three arbitrary points on

the curve:

yyi = xHxt
i i = 1, 2, 3

The two index symbols decompose into a five dimensional irreducible,

(11) e→ −2(12)
e/2→ (22) + 2(13)

e/3→ −2(23)
e/4→ (33) e→ 0

0 f← (11)
f/4← −2(12)

f/3← (22) + 2(13)
f/2← −2(23) f← (33),

and a one dimensional irreducible,

(22)− 4(13) e→ 0

0 f← (22)− 4(13)
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These identities are obtained by calculation in the following manner:
• yyi − xHxt

i = 0 has a residue at (x, y) = (∞,∞) leading to identities in
xi, yi and (ij);

• Apply y∂x = x · ∇u to yyi − xHxt
i = 0. Residue at (x, y) = (∞,∞) leads

to identities in xi, yi, (ij) and (ijk);
• Eliminate x′is, y

′
is to obtain highest weight (∈ ker f) identities in (ij) and

(ijk).
• Generate full modules of identities by application of e to highest weight

elements.
Amongst these identities one finds the matrix relation:

HA = 0

where H is the (g +2)× (g +2) matrix entering earlier and A is either the 4-vector
of (ijk) entering in the genus two case or the 5× 5 antisymmetric matrix of (ijk)’s
in the genus three case.

In both cases the H matrix has rank three. (So a reduction to quadratic normal
form shows there are 1

2g(g − 1) Kummer relations amongst the (ij)) In genus two
A is a rank one vector; in genus three it is a rank two matrix. In the latter case the
vanishing 3× 3 minors of A are a five dimensional module of (Plücker) relations:

(113)(333)− (123)(233) + (223)(133)− (133)2 = 0
−(113)(233)− (112)(333)− (133)(222) + 2(133)(123) + (233)(122) = 0

(133)(122)− (133)(113)− (223)(122) + (223)(113)
+(111)(333) + (123)(222)− 2(123)2 = 0

−(233)(111)− (112)(133) + (112)(223)− (113)(222) + 2(113)(123) = 0
(133)(111)− (123)(112) + (122)(113)− (113)2 = 0

9. A conjecture for general genus

A(l1, . . . , lg−1)A(k1, . . . ,kg−1) = −1
4

det




H kt
1 . . . kt

g−1

l1 0 . . . 0
...

...
...

lg−1 0 . . . 0




On the right hand side of the conjecture:
• li and ki for i = 1, . . . , g − 1 are (g + 2)-vectors of arbitrary parameters

which are a basis for a Vg+2;
• H is the (g + 2)× (g + 2) matrix in the covariant definition : yyi = xHxt

i

for i = 1, . . . , g;
• The expression can be expanded as a quadratic form (in the Plücker coor-

dinates) on the Grassmannian, Gr(g − 1, g + 2).
On the left hand side of the conjecture:
• Each A is to be linear in the (ijk) which are a basis for the module Sym3Vg;
• Each A is linear in the Plücker coordinates;
• Each A is to be invariant under sl2.
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In order for this to work we require an sl2-module isomorphism,

Sym3Vg
∼=

g−1∧
Vg+2.

We are then able to pair up the irreducible components to create invariants.
For genus two: Sym3V2

∼= V4
∼= ∧1

V4.

For genus three: Sym3V3
∼= V7 ⊕ V3

∼= ∧2
V5.

For our immediate purposes however we require only that the parameters li etc.,
belong to the Rational Normal Curve, the embedding of P1 into Pg+2:

(η, ζ) 7→ (ηg+1, ηgζ, . . . , ζg+1).

More generally, it appears that,

SymmVg
∼=

g−1∧
Vm+g−1.

Representing a basis element in either set as a line of m+g−1 balls, g−1 of which
are white and the remaining m black,

(• . . . • ◦ • . . . • ◦ . . . . . . . . . • ◦ • . . . •)
one sees that each module is

(
m+g−1

g−1

)
dimensional. To exhibit the isomorphism we

restrict to the normal curve, in which case the objects of SymmVg become linear
expressions in the elementary symmetric polynomials, the objects of

∧g−1
Vm+g−1

become, up to an invariant factor, Schur polynomials and the desired isomorphism
is the Giambelli identity.

Here is an explicit example for g = 3, m = 3 (We use square brackets for totally
antisymmetric objects and round brackets for totally symmetric objects):

2∧
V5 3 [14] =

∣∣∣∣
η4
1 η4

2

η1ζ
3
1 η2ζ

3
2

∣∣∣∣
= (η1ζ2 − η2ζ1)η1η2((η1ζ2 + η2ζ1)2 − η1η2ζ1ζ2)

[14] ↔ (223)− (133)

under the association (η1ζ2 − η2ζ1 is sl2-invariant)

ζ1ζ2 ↔ (1)
ζ1η2 + ζ2η1 ↔ (2)

η1η2 ↔ (3)

The one remaining issue is to fix the normalisation constants for each pairing.
This can be done by setting all the ai to zero and using the usual Schur-Weyl limit.
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In conclusion, we have tried to show that even very elementary representation
theory is a powerful aid in the description of spaces of functions on curves and their
Jacobians. It obviates some of the need for computing power. In particular we
have shown that the genus one, two and three quadratic identities for three index
℘-functions of hyperelliptic curves are compactly written using such tools. Further
there is geometrical shape to the identities:

• in genus three the three index ℘-functions give a map from the Jacobian
into the Grassmannian variety, Gr(2, 5);
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• the genus three quadratic identities are parametrised by points in Gr(2, 5)
arising from an embedding of the two-fold antisymmetric product of the
rational normal curve with itself;

• an obvious conjecture exists to hyperelliptic curves of higher genus.
Further progress is being made in the following directions:
• A classical proof of the conjecture;
• The extension of these methods to more general classes of curve - certainly

the “leading order” terms in those identities derived for non-hyperelliptic
curves do obey the correct representation theory;

• Implications for the structure of the Θ-function;
• Covariance of the addition laws.
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