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Defects in Materials

! Defects mediate many important macroscopic properties

! Vacancies: Creep, spall, prismatic loops, radiation ageing

! Dislocations: Metal plasticity

! Domain walls, grain boundaries, free surfaces, interfaces

! Defects give rise to complex interactions

! Typical concentrations are small. Eg. Vacancies: 1 part per million

! Range of interacting scales and physics: Electronic, Atomistic, Elastic …

! Defects break the translational symmetry (periodicity) of the lattice

! Seek a method to describe defects

! Idea: Start with Density Functional Theory and develop a numerical
method that adapts the resolution to the structure of the solution

Crystals are like people - it's the defects in them that make them interesting
Sir F. Charles Frank
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Zinkle, S.J., ORNL

Example: Radiation Damage and Prismatic Loops

Effects of radiation on mechanical properties

! Reduced fracture toughness

! Increased hardness and reduced ductility

! Material swelling

Mechanisms

Vacancy

formation

Vacancy

clustering

Collapse to

form prismatic

loops
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Outline

! Introduction and Motivation

! (Orbital-Free) Density-Functional Theory

! Quasi-Continuum reduction

! Vacancy clustering and prismatic loop nucleation in Aluminum

! Towards Quasi-Continuum Density-Functional Theory

! Concluding Remarks



K. Bhattacharya
John Ball 60th: #5

Quantum mechanics and material properties
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! Born-Oppenheimer approximation: Treat atomic nuclei classically

! Schrödinger equation

Quantum mechanics of crystalline solids

! Computational difficulty:

100 points/variable, 100 electrons means 100
300

~10
600

 degrees of freedom!
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Density Functional Theory

! Ground-state energy depends only on the electron-density

Hohenberg and Kohn, Phys. Rev (1964)

Universal, independent of system!

Kinetic energy of a non-interacting system
Nonlinear eigenvalue problem

Unknown
Model: LDA, LSDA, GGA …

Kohn and Sham, Phys. Rev (1965)
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Orbital-free Kinetic Energy Functional

! Idea: Model Ts

! Thomas-Fermi-von Weizsacker

! Subsequent improvements Teter, Smargiassi, Carter and others.
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Non-local:

Fourier methods, but

require periodicity

Multi-pole methods, but

require structure

Orbital-free density functional theory (OFDFT)

! The ground-state energy functional:
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Real-space formulation

! Observe

! Finally, enforce the constraint !>0 by setting ! = u2

regularization of

! Therefore,
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Real-space formulation of OFDFT

! Minimizers exist

! L is local and can be discretized using a finite element approximation

! Finite element approximation with an approximation of degree k and
numerical quadrature accurate to order n converges if

 n-2k+3>0
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Force on an atom

! Let

! Force on the Ith atom

Appears

non-local
Infact, local

Forces arising due to the

configuration of nodes Physical force on nuclei

! In a finite-element approximation
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Aluminum clusters

! ! = 1/6

! Heine-Abarenkov psuedopotential:

! Simulations are performed on 1x1x1 3x3x3 5x5x5 9x9x9 clusters

! Equilibrium configurations of small clusters are determined
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mid-plane face

Aluminum clusters: electron density

Contours of electron-density in an aluminum cluster of 5x5x5 fcc unit cells
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Example – Aluminum clusters

3.43.673.69Cohesive energy (eV)

74.079.083.1Bulk modulus (Gpa)

7.677.487.42Lattice parameter (a.u.)

ExperimentsbKS-LDAaOFDFT-FEProperty

a/  Goodwin et al. (1990), Gaudion et al. (2002)

b/  Brewer (1997), Gschneider (1964)
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Perspectives

! Real-space formulation and finite-element approximation provides a viable
means of computing with OFDFT

! However, it is expensive:
9x9x9 cluster = 3730 atoms required 10,000 CPU hours!

! Have to coarse-grain away “uninteresting regions”
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Some features of OFDFT

! Large body limit (Catto, Le Bris and Lions, 1998)

L

! Slowly varying deformation
(Blanc, Le Bris and Lions, 2002)

For                           ,

Can approximate energy of a slowly varying deformation by a local
density obtained from a periodic calculation
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Decay of electronic and mechanical fields

! TFW Euler-Lagrange Equation

Consider

Compact support

! But, let us relax the atoms!
Small displacement from perfect lattice
Long-wavelength is deformation is consistent with linear elasticity

Displacements decay slowly (polynomial) away from defects

Kohn: “Near-sightedness of electronic matter”

Then,
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Defects and coarse-graining

! Features:

! Details are important close to the defect

! Displacements suffer polynomial decay consistent with elasticity

! Electronic fields approach periodic far from the defects

! Design a numerical method that exploits this structure
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Coarse-graining around defects: Key idea

! Constrain atomic positions following an
adaptive supra-atomic mesh (Th1)

(Like Quasi-continuum method, Tadmor
 Ortiz, Phillips ….)

! Predictor
Computed element by element
assuming periodicity on a local sub-
atomic mesh (Th2) followed by
L2 -> H1 projection

! Write electron density and electrostatic
potential as a sum of two terms

! Cluster quadrature rules for Th3

! Finally,

! Corrector
Computed on an adaptive mesh
which is sub-atomic near defects and
refines away from it (Th3)
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nuclei

Atomistic

QC/OFDFT – Nested meshes

nucleus

nuclei

Corrector Predictor/Quadrature
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QC-OFDFT: Properties

QC-OFDFT has the following properties:

! adapts the level of spatial resolution to the local structure of the solution

! the coarse-graining is completely unstructured

! the coarse-graining is seamless

! OFDFT is the sole physics input to the calculations, and no spurious physics

or a priori ansatz regarding the behavior of the system is introduced

! fully-resolved OFDFT and finite lattice-elasticity are obtained as extreme

limits
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(100) plane

(111) plane

Vacancy in Aluminum

! Test case

! Simple defect with both electronic core and long-range

! Formation energy is commonly used as benchmark

! TFW + LDA + Heine-Aberenkov pseudopotentials
Dirichlet boundary conditions corresponding to bulk fields

! Sample size: 4, 32, 256, 2048, 16348, 1048576 atoms

! Million atom sample: 1500 atomic nodes and 450,000
electronic nodes

! Mesh gradation h(r) ~ r6/5
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Convergence of QC approximation

Factor 80 smaller
computation with
little loss of accuracy

Vacancy in Al
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<100> di-vacancy complex <110> di-vacancy complex

Electron density along (100) plane

Di-vacancies in Aluminum

! Experimental observations (Ehrhart et al. 1991;  Hehenkamp et al. 1994)
! Vacancies attract with 0.2 to 0.3eV binding energy

! Previous DFT computations
! Vacancies attract along <100> with 0.005-0.05 eV binding energy

! Vacancies repel along <110> with -0.08 binding energy
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Observe the

change in physics

with cell-size!!

Di-vacancy binding energy

Repel

Attract

Binding energy of a di-vacancy (Edi-vacancy-2Evacancy)

! -0.19 eV for <110> di-vacancy complex

! -0.23 eV for <100> di-vacancy complex

! Experimental estimates: -0.2 to -0.3 eV
(Ehrhart et al. 1991;  Hehenkamp et al. 1994)
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The oscillations in electron-density are counterparts of Friedel

oscillations for the TFW kinetic energy functionals

Di-vacancies in Aluminum: Electron density

<100> di-vacancy complex <110> di-vacancy complex

Correction to periodic electron density along (100) plane
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Prismatic loops

Prismatic dislocation loops formed by

condensation of vacancies in 

quenched aluminum
Kulhmann-Wilsdorff and Kuhlmann, 

J. Appl. Phys., 31 (1960) 516.

Prismatic dislocation loops formed by

condensation of vacancies in 

quenched Al-05%Mg
Takamura and Greensfield, 

J. Appl. Phys., 33 (1961) 247.

! What is the nucleation mechanism?

! Loops smaller than 50nm are difficult to observe experimentally

! Vacancy condensation followed by collapse?
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Vacancy Clusters

! Clusters of 4 vacancies  (each vacancy has at least two NN as vacancy)

! Larger clusters
! {110} plane

! 6 vacancy rectangular cluster : Binding energy = -0.81eV
9 vacancy rectangular cluster : Binding energy = -1.16eV

! {111} plane
7 vacancy hexagonal cluster : Binding energy = - 0.88eV

! Each cluster is energetically stable against breakup into smaller clusters
Vacancy condensation is energetically feasible
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Bi-stability of 7-vacancy cluster: prismatic loop nucleation

! 7-vacancy hexagonal cluster on a {111} plane has two stable configurations

! Uncollapsed with binding energy -0.88 eV

! Collapsed prismatic dislocation loop with binding energy -1.55 eV

Prismatic dislocation loops can nucleate and be stable at extremely small sizes!

Electron density on the (100) plane Electron density on the (111) plane
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Kohn-Sham Density Functional Theory

! Recall,

Hohenberg and Kohn, Phys. Rev (1964)

Kohn and Sham, Phys. Rev (1965)

Universal, independent of system!

! Traditionally,

! Introduce Orbitals
Let ! be the Slater determinant of the orbitals
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Mathematical Background

Proposition. E has a minimum in X

X is closed in H1
0

E is lower-semicontinuous in the weak topology of X

E is coercive in the weak topology of X
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Theorem.

Theorem.  Let

Th sequence of triangulations of R3, h -> 0

Xh restriction of X to Th and polynomial of degree k in each triangle

Then,

Finite Element Approximation

Proof.



K. Bhattacharya
John Ball 60th: #34

Simple examples
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Carbon monoxide orbitals

Pi2p Sigma2p

Sigma2s Sigmastar2s
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Charge density in 2x2x2 bcc Sodium clusters

1/2 section Surface

3/4 section
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Convergence
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Computational Effort
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Happy Birthday!


