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Physical problem

Very strong magnetic fields could :

– destabilize matter, distorting atoms and molecules and forming polymer-like chains,

– facilitate the massive spontaneous appearance of positron-electron pairs,
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Physical problem

Very strong magnetic fields could :

– destabilize matter, distorting atoms and molecules and forming polymer-like chains,

– facilitate the massive spontaneous appearance of positron-electron pairs,

– the best candidate for this to happen are the magnetars (neutron stars), in which huge
gravitational collapses would facilitate the appearance of huge magnetic fields,

– magnetars appear today as the most possible hypothesis for the so called “gamma ray
outbursts"

Earth’s magnetic field = 1 Gauss

Maximal field on Earth (MRI) = 1 Tesla = 104 Gauss

Deatly field strength = 105 Tesla = 109 Gauss

In new magnetars one expectes fields of 1011 Tesla. In recent theories, up to 1016 Tesla
in the heart of the magnetars.
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How to find models sustaining those huge magnetic fields?

– relativistic electronic models (Dirac) with homogeneous magnetic fields and abnomal
magnetic moments (V. Canuto, H.-Y. Chiu; R.F. O’Connell),

– hydrogenic atoms in a curved universe (Nowotny),

– intense electrostatic fields.... (..., Brodsky, Mohr,...),

– heterogeneous magnetic fields (P. Achuthan et al),

Excellent presentation in the works of R.C. Duncan and C. Thompson.
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How to find models sustaining those huge magnetic fields?

– relativistic electronic models (Dirac) with homogeneous magnetic fields and abnomal
magnetic moments (V. Canuto, H.-Y. Chiu; R.F. O’Connell),

– hydrogenic atoms in a curved universe (Nowotny),

– intense electrostatic fields.... (..., Brodsky, Mohr,...),

– heterogeneous magnetic fields (P. Achuthan et al),

Excellent presentation in the works of R.C. Duncan and C. Thompson.

– Electrons submitted to an external electromagnetic field with homogeneous magnetic
field.

REMARK. Same problem but very different situation in nonrelativistic quantum mechanics
(with the Schrödinger and the Pauli operators).
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The free Dirac operator

H = −iα · ∇ + β , α1, α2, α3, β ∈ M4×4(CI ) (c = m = ~ = 1)
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H = −iα · ∇ + β , α1, α2, α3, β ∈ M4×4(CI ) (c = m = ~ = 1)

β =

 
I 0

0 −I
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(k = 1, 2, 3)

σ1 =

 
0 1

1 0

!
, σ2 =

 
0 −i
i 0

!
, σ3 =

 
1 0

0 −1

!

The two main properties ofH are:

H
2

= −∆ + 1I , σ(H) = (−∞,−1] ∪ [1,+∞)

REMARK. H acts on functions ψ : IR3 → CI 4

QUESTION : Spectrum of H + V ?
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Eigenvalues of the Dirac operatorwithout magnetic field

Let us first consider the case of Coulomb potentials Vν := − ν
|x|

, ν > 0.
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Eigenvalues of the Dirac operatorwithout magnetic field

Let us first consider the case of Coulomb potentials Vν := − ν
|x|

, ν > 0.

Hν := H0 − ν
|x|

can be defined as a self-adjoint operator if 0 < ν < 1

(actually also (recent result) if ν = 1).

Its spectrum is given by:

σ(Hν) = (−∞,−1] ∪ {λν
1 , λ

ν
2 , . . . } ∪ [1,∞)

0 < λν
1 =

p
1 − ν2 ≤ · · · ≤ λν

k · · · < 1 .

and the fact that λ1(H + Vν) belongs to (−1, 1) is a kind of “stability condition" for the
electron.

John60, Edinburgh, June 2008 – p.5/20



Magnetic case I

When a external magnetic field B is present, one considers a magnetic potential AB s.
t. curlAB = B.
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Magnetic case I

When a external magnetic field B is present, one considers a magnetic potential AB s.
t. curlAB = B.

One has then to replace ∇ with ∇B = ∇− iAB

HB = −iα · ∇B + β

If we consider HB + V , if this operator is self-adjoint, if its essential spectrum is the set

(−∞,−1] ∪ [1,+∞)

plus a discrete number of eigenvalues in the spectral gap (−1, 1),

Does λ1(B, V ) ever leave the spectral gap (−1, 1) ? and if yes, for which values of B ?
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Eigenvaluesbelow / in the middle of the continuous spectrum.

Spectrum of a self-adjoint operator A :
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Eigenvaluesbelow / in the middle of the continuous spectrum.

Spectrum of a self-adjoint operator A :

In the first case, λ1 = min
x6=0

(Ax, x)

||x||2

In the second case, λ1 = min
?

max
?

(Ax, x)

||x||2 , λ1 = max
?

min
?

(Ax, x)

||x||2 , . . .
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Abstract min-max theorem (Dolbeault, E., Séré, 2000)

Let H be a Hilbert space and A : F = D(A) ⊂ H → H a self-adjoint operator defined
on H. Let H+, H− be two orthogonal subspaces of H satisfying: H = H+⊕H−. Define
F± := P±F .
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Abstract min-max theorem (Dolbeault, E., Séré, 2000)

Let H be a Hilbert space and A : F = D(A) ⊂ H → H a self-adjoint operator defined
on H. Let H+, H− be two orthogonal subspaces of H satisfying: H = H+⊕H−. Define
F± := P±F .

(i) a− := sup
x−∈F−\{0}

(x−, Ax−)

‖x−‖2
H

< +∞.

Let ck = inf
V subspace of F+

dim V =k

sup
x∈(V ⊕F−)\{0}

(x,Ax)

||x||2
H

, k ≥ 1.

If (ii) c1 > a− , then ck is the k-th eigenvalue of A in the interval (a−, b), where
b = inf (σess(A) ∩ (a−,+∞)).
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Application to magnetic Dirac operators I

ψ : IR3 → C
4 , ψ =

„
ϕ

χ

«
=
“ϕ

0

”
+

„
0

χ

«
, ϕ, χ : IR3 → CI 2
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Application to magnetic Dirac operators I

ψ : IR3 → C
4 , ψ =

„
ϕ

χ

«
=
“ϕ

0

”
+

„
0

χ

«
, ϕ, χ : IR3 → CI 2

Suppose that V satisfies

lim
|x|→+∞

V (x) = 0 , − ν

|x| ≤ V ≤ 0 ,

Then, for all k ≥ 1,

λk(B, V ) = inf
Y subspace of C∞

o (IR3,CI 2)

dimY=k

sup
ϕ∈Y \{0}

sup
ψ=

“

ϕ
χ

”

χ∈C∞
0 (IR3,C2)

(ψ, (HB + V )ψ)

(ψ,ψ)
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Application to magnetic Dirac operators II

The first eigenvalue of HB + V in the spectral hole (−1, 1) is given by

λ1(B, V ) := inf
ϕ 6=0

sup
χ

(ψ, (HB + V )ψ)

(ψ,ψ)
, ψ =

„
ϕ

χ

«

John60, Edinburgh, June 2008 – p.10/20



Application to magnetic Dirac operators II

The first eigenvalue of HB + V in the spectral hole (−1, 1) is given by

λ1(B, V ) := inf
ϕ 6=0

sup
χ

(ψ, (HB + V )ψ)

(ψ,ψ)
, ψ =

„
ϕ

χ

«

and

λB(ϕ) := sup
ψ=

“

ϕ
χ

”

χ∈C∞
0 (IR3,C2)

(ψ, (HB + V )ψ)

(ψ,ψ)

John60, Edinburgh, June 2008 – p.10/20



Application to magnetic Dirac operators II

The first eigenvalue of HB + V in the spectral hole (−1, 1) is given by

λ1(B, V ) := inf
ϕ 6=0

sup
χ

(ψ, (HB + V )ψ)

(ψ,ψ)
, ψ =

„
ϕ

χ

«

and

λB(ϕ) := sup
ψ=

“

ϕ
χ

”

χ∈C∞
0 (IR3,C2)

(ψ, (HB + V )ψ)

(ψ,ψ)

is the unique real number λ such that

Z

IR3

“ |σ · ∇B ϕ|2
1 − V + λ

+ (1 + V )|ϕ|2
”
dx = λ

Z

IR3
|ϕ|2dx .
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Application to magnetic Dirac operators III

λ1(B, V ) = inf
ϕ∈C∞

0 (IR3,C2)
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Application to magnetic Dirac operators III
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ϕ∈C∞

0 (IR3,C2)

ϕ6=0

λB(ϕ)

Z

IR3

“ |σ · ∇Bϕ|2
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Application to magnetic Dirac operators III

λ1(B, V ) = inf
ϕ∈C∞

0 (IR3,C2)

ϕ6=0

λB(ϕ)

Z

IR3

“ |σ · ∇Bϕ|2
1 − V + λB(ϕ)

+ (V + 1 − λB(ϕ))|ϕ|2
”
dx = 0

Z

IR3

|(σ · ∇B)ϕ|2
1 + λ1(B, Vν) + ν

|x|

dx + (1 − λ1(B, Vν))

Z

IR3
|ϕ|2 dx ≥

Z

IR3

ν

|x|
|ϕ|2 dx

QUESTIONS : When do we have λ1(B, V ) ∈ (−1, 1) ?

If the eigenvalue λ1(B, V ) leaves the interval (−1, 1) , when ?
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For a potential V = Vν , ν ∈ (0, 1), 0 < B1 < B2 < B(ν) :

1-1

B=0

B=B1

B=B2

-1                                                             1

B=B(ν)
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-1                                                             1
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DEFINITION: B(ν) := inf
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B > 0 : lim infbրB λ1(B, ν) = −1
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For a potential V = Vν , ν ∈ (0, 1), 0 < B1 < B2 < B(ν) :

1-1

B=0

B=B1

B=B2

-1                                                             1

B=B(ν)

DEFINITION: B(ν) := inf
˘
B > 0 : lim infbրB λ1(B, ν) = −1

¯
.

TOOL TO ESTIMATE IT :

Z

IR3

|(σ · ∇B)ϕ|2
1 + λ1(B, V ) − V

dx + (1 − λ1(B, V ))

Z

IR3
|ϕ|2 dx ≥

Z

IR3
V |ϕ|2 dx
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First results to estimate λ1(B,V )

For a given C , we have λ1(B, V ) < C if we can find a function ϕ̄ s. t.

(∗)
Z

IR3

|(σ · ∇B)ϕ̄|2
1 + C − V

dx + (1 − C)

Z

IR3
|ϕ̄|2 dx+

Z

IR3
V |ϕ̄|2 dx < 0
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First results to estimate λ1(B,V )

For a given C , we have λ1(B, V ) < C if we can find a function ϕ̄ s. t.

(∗)
Z

IR3

|(σ · ∇B)ϕ̄|2
1 + C − V

dx + (1 − C)

Z

IR3
|ϕ̄|2 dx+

Z

IR3
V |ϕ̄|2 dx < 0

And to verify that λ1(B, V ) > C it is enough to prove that for all ϕ

(∗∗)
Z

IR3

|(σ · ∇B)ϕ|2
1 + C − V

dx + (1 − C)

Z

IR3
|ϕ|2 dx+

Z

IR3
V |ϕ|2 dx > 0

and of course we are intersted in the case C = 1 in (*), and C = −1 in (**).
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Some results (with J. Dolbeault and M. Loss)

Vν = − ν
|x|

, AB(x) := B
2

0
@
−x2
x1

0

1
A, B(x) :=

0
@

0
0

B

1
A ; ν ∈ (0, 1), B ≥ 0
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@

0
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A ; ν ∈ (0, 1), B ≥ 0

• For B = 0, λ1(0, Vν) =
√

1 − ν2 ∈ (−1, 1)

• For all B ≥ 0, λ1(B, Vν) < 1

• For all ν ∈ (0, 1) there exists a critical field strength B(ν) such that

λ1(B, Vν) ≤ −1 if B ≥ B(ν)

• limν→1B(ν) > 0 , lim
ν→0

ν logB(ν) = π

• For ν small, the asymptotics of B(ν) can be calculated by an approximation in the first
relativistic “Landau level".
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A better method to determine B(ν)

Z

IR3

|(σ · ∇B)ϕ|2
1 + λ1(B, Vν) + ν

|x|

dx + (1 − λ1(B, Vν))

Z

IR3
|ϕ|2 dx ≥

Z

IR3

ν

|x|
|ϕ|2 dx
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A better method to determine B(ν)

Z

IR3

|(σ · ∇B)ϕ|2
1 + λ1(B, Vν) + ν

|x|

dx + (1 − λ1(B, Vν))

Z

IR3
|ϕ|2 dx ≥

Z

IR3

ν

|x|
|ϕ|2 dx

and we are looking for Bn −→ B(ν) such that λ1(Bn, ν) −→ −1.

If everything were compact, we would be able to pass to the limit and obtain

Z

IR3

|x| |(σ · ∇B)ϕ|2
ν

−
Z

IR3

ν

|x| |ϕ|
2 dx+ 2

Z

IR3
|ϕ|2 dx ≥ 0
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A better method to determine B(ν)

Z

IR3

|(σ · ∇B)ϕ|2
1 + λ1(B, Vν) + ν

|x|

dx + (1 − λ1(B, Vν))

Z

IR3
|ϕ|2 dx ≥

Z

IR3

ν

|x|
|ϕ|2 dx

and we are looking for Bn −→ B(ν) such that λ1(Bn, ν) −→ −1.

If everything were compact, we would be able to pass to the limit and obtain

Z

IR3

|x| |(σ · ∇B)ϕ|2
ν

−
Z

IR3

ν

|x| |ϕ|
2 dx+ 2

Z

IR3
|ϕ|2 dx ≥ 0

Now define the functional

EB,ν [φ] :=

Z

IR3

|x|
ν

|(σ · ∇B)φ|2 dx−
Z

IR3

ν

|x| |φ|
2 dx ,

If everything were compact and “nice",

µB,ν + 2 = 0 ; µB,ν := inf


EB,ν [φ] ;

Z

IR3
|ϕ|2 dx = 1

ff
.
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PROPOSITION. On the interval (0, 1), the function ν 7→ µ(ν) is continuous, monotone
decreasing and takes only negative real values.
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A very nice property is that the scaling φB := B3/4 φ
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´
preserves the L2 norm

and EB,ν [φB ] =
√
B E1,ν [φ] .

So, if we define µ(ν) := inf06≡φ∈C∞
0 (IR3)

E1,ν [φ]

‖φ‖2
L2(R3)

,

we have µB,ν =
√
B µ(ν) .

THM :
p
B(ν)µ(ν) + 2 = 0 which is equivalent to B(ν) = 4

µ(ν)2
.

PROPOSITION. On the interval (0, 1), the function ν 7→ µ(ν) is continuous, monotone
decreasing and takes only negative real values.

Hence, B(ν) = 4
µ(ν)2

implies that ν 7→ B(ν) is decreasing.

Now we would like to estimate B(ν) . This can be done analytically or/and numerically.

As we said before, analytically we have some estimates for ν close to 0 and to 1.
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The Landau level approximation

Consider the class of functions A(B, ν) :

φℓ :=
B√

2π 2ℓ ℓ!
(x2 + i x1)ℓ e−B s2/4

“1
0

”
, ℓ ∈ N , s2 = x2

1 + x2
2 ,

where the coefficients depend only on x3, i.e.,

φ(x) =
X

ℓ

fℓ(x3)φℓ(x1, x2) , z := x3 .
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Consider the class of functions A(B, ν) :

φℓ :=
B√

2π 2ℓ ℓ!
(x2 + i x1)ℓ e−B s2/4

“1
0

”
, ℓ ∈ N , s2 = x2

1 + x2
2 ,

where the coefficients depend only on x3, i.e.,

φ(x) =
X

ℓ

fℓ(x3)φℓ(x1, x2) , z := x3 .

Now, we shall restrict the functional EB,ν to the first Landau level. In this framework, that
we shall call the Landau level ansatz, we also define a critical field by

BL(ν) := inf


B > 0 : lim inf

bրB
λL1 (b, ν) = −1

ff
,

where
λL1 (b, ν) := inf

φ∈A(B,ν) , Π⊥φ=0
λ[φ, b, ν] .
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THEOREM : BL(ν) = 4
µL(ν)2

, where

µL(ν) := inf
f

Lν [f ]

‖f‖2
L2(R+)

< 0 .
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µL(ν)2

, where
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Lν [f ] = E1,ν [φf ] , φf (x) = f(z)
e−s2/4

√
2π

“1
0

”
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Lν [f ] =
1

ν

Z ∞

0
b(z) f ′

2
dz − ν

Z ∞

0
a(z) f2 dz

b(z) =

Z ∞

0

p
s2 + z2 s e−s2/2 ds and a(z) =

Z ∞

0
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√
s2 + z2
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THEOREM : BL(ν) = 4
µL(ν)2

, where

µL(ν) := inf
f

Lν [f ]

‖f‖2
L2(R+)

< 0 .

Lν [f ] = E1,ν [φf ] , φf (x) = f(z)
e−s2/4

√
2π

“1
0

”
.

Lν [f ] =
1

ν

Z ∞

0
b(z) f ′

2
dz − ν

Z ∞

0
a(z) f2 dz

b(z) =

Z ∞

0

p
s2 + z2 s e−s2/2 ds and a(z) =

Z ∞

0

s e−s2/2

√
s2 + z2

ds .

COROLLARY. µ(ν) ≤ µL(ν) < 0 =⇒ B(ν) ≤ BL(ν) .
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Final results

THEOREM. For ν ∈ (0, ν0), BL(ν + ν3/2) ≤ B(ν) ≤ BL(ν)
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ν logBL(ν) = π .
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ν→0

ν logB(ν) = π .
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NUMERICAL OBSERVATION. For ν near 1, B(ν) is below BL(ν) by 30%.
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