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Points of contact with John

Some themes
blowup for nonlinear heat eqns
nonlinear elasticity
quasiconvexity (existence)
microstructure (nonexistence)
martensitic phase transformation

Some memories
MSRI, spring 1983?
Heriot-Watt, summer 1986?
Heriot-Watt, EU course with Nick Schryvers, 1990?

Some principles
Our materials colleagues have interesting insights.
Getting it right can provide additional insights, and can raise new
mathematical issues.

Today’s topic – cloaking – involves no elasticity, and no
microstructure. But it definitely involves getting it right.
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What is cloaking?

cloaked region can
have any shape

airplane?

the cloaked region should be invisible

even the cloak itself should be invisible

our cloaks will be coatings with heterogeneous, anisotropic
dielectric properties

In what sense invisible?

Most realistic: electromagnetic scattering, using pulses

Easier to analyze: scattering at fixed frequency

Easier still: frequency zero (impedance tomography).
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In the news

2003 Greenleaf, Lassas, Uhlmann, Math Res Lett. A region can
be invisible. No press.

2006 Pendry, Schurig, Smith, Science. A region can be cloaked.
MSNBC, BBC, and more.

- sounds like science fiction
- great press office

- Harry Potter
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Outline

(1) Cloaking by change of variables at frequency zero

Electric impedance tomography
Cloaking by change of variables

(2) Cloaking by change of variables at finite frequency

Finite frequency is similar, but different
Recent results, for 2D and 3D Helmholtz

Collaborators: Onofrei, Shen, Vogelius, Weinstein
Inv Prob 2008, & in progress.

Explication of: Greenleaf, Lassas, Uhlmann, Math Res Lett 2003
Pendry, Schurig, Smith, Science 2006
Greenleaf, Kurylev, Lassas, Uhlmann, CMP 2008

Change-of-variable scheme is just one approach to cloaking. Others
(worth separate talks) include:

anomalous localized resonance (Milton, Nicorovici)
optical conformal mapping (Leonhardt)

Robert V. Kohn Courant Institute, NYU Cloaking by Change of Variables



Impedance tomography

Impedance tomography uses electrostatics rather than scattering.

Sensing mechanism: currents and voltages at the boundary.
Goal: find conductivity in the interior.

X ∂

∂xi

�
σij(x)

∂u
∂xj

�
= 0 in Ω,

Boundary measurements give us the Dirichlet-to-Neumann map

Λσ : u|∂Ω → (σ∇u) · ν|∂Ω

Cloaking in this setting: σc(x), defined on Ω \ D, cloaks D if resulting
bdry measurments “look uniform,” regardless of content of D.

voltage f implies current flux g

= 1σ σA(x) =

�
σc(x) for x ∈ Ω \ D
A(x) for x ∈ D

A
=A(x)

σ
A

= σ
c
(x)

voltage f implies same current flux g

σ
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Getting used to the definitions

Impedance tomography seeks knowledge of
interior conductivity, given voltage distrn at bdry
assoc any applied current.

The measurements amount to Cauchy data for ∇ · (σ∇u) = 0.

We say σc (defined in Ω \ D) cloaks D if the Cauchy data at ∂Ω are
(a) indep of content of D, and (b) same as the uniform case σ = 1.

Name is apt, since extn of σc by 1 to larger domain is also a cloak.

voltage f implies current flux g

σ 1 σ
A
=A(x)

voltage f implies same current flux g

σ
A

= σ
c
(x)

σ = 1
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Is impedance tomography possible?

Do bdry meas determine the interior conductivity?

Ignoring “technicalities,”

yes, if σ(x) is known to be scalar-valued;
Druskin, Kohn-Vogelius, Sylvester-Uhlmann, others

no, if σ(x) is allowed to be matrix-valued;
Tartar

Latter is elementary: σ is at most determined “up to change of vars.”
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Invariance under change of variables

Basic observation: boundary
measurements determine σ at
most “up to change of variables.”

B
2

B
2

Bρ

1B

F

If F : Ω → Ω is invertible and F (x) = x on ∂Ω then σ and F∗σ produce
the same boundary measurements, where

F∗σ(y) =
1

det(DF )(x)
DF (x)σ(x)(DF (x))T with y = F (x).

Sketch:

Change of vars:
R

Ω
〈σ(x)∇x u,∇x u〉 dx =

R
Ω
〈F∗σ(y)∇y u,∇y u〉 dy

Variational principle:
R

∂Ω
fΛσf = minu=f at ∂Ω

R
Ω
〈σ(x)∇x u,∇x u〉 dx .

Polarization: lin map Λσ determined by quadr form
R

∂Ω
fΛσf .
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In 2D we know more

In 2D this is the only invariance Sylvester, Astala-Paivarinta-Lassas.
Bdry meas determine σij(x) up to change of vars. Sketch:

There’s a unique F such that F∗σ is isotropic.
An isotropic conductivity is determined by bdry meas.

Main “technicality:” σ should be uniformly elliptic and bounded.

Does this mean cloaking is impossible?

voltage f implies current flux g

σ 1 σ
A
=A(x)

voltage f implies same current flux g

σ
A

= σ
c
(x)

σ = 1

No: technicalities can be important.
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The change-of-variable-based cloak

Radial version, for simplicity only:
domain is B2, cloaked region is B1.

B
2

1B

Choose conductivity of the cloak to be σc = F∗1, where F “blows up”
the origin to B1:

F (x) =
�
1 + 1

2 |x |
� x
|x |

B
2

B
2

1B

F

Formally B1 is cloaked. In fact, if

σA(y) =

�
σc(y) for y ∈ B2 \ B1

A(y) for y ∈ B1

we have, using F−1 as our change of variable,Z
B2

〈σA(y)∇y u,∇y u〉 dy =

Z
B2

|∇x u|2 dx

since F−1 shrinks the region being cloaked to a point.

Is this correct? (F and F−1 are very singular.)
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Analysis of the singular cloak
Argument is correct at frequency 0, using removability of singularities
for Laplace’s eqn.

σc(y) = F∗1 on B2 \ B1, where F takes
x ∈ B2 \ {0} to y = F (x) ∈ B2 \ B1.

notation: potential is v(y) = u(x)
*

F  1=

F -1
∆u = 0

σc

Outside B1:

By change of vars, ∇ · (σc(y)∇y v) = 0 in B2 \ B1
iff ∆xu = 0 in B2 \ {0}, where u(x) = v(y).

Potential uniformly bounded =⇒ sing’y of u is removable.
Thus v(y) = u(x) where ∆u = 0 in B2.

Bdry meas are invariant under change of vars. So Λσ = Λ1.

Inside B1:

Potential is const at ∂B1, since v(y) → u(0) as |y | → 1.

So potential is constant throughout B1, since ∇ · (σ∇y v) = 0.

B1 is cloaked, because ∇v = 0 there, regardless of bdry data.
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Remarks on the singular cloak

This scheme requires exotic materials. Recall that

σc(y) = F∗1
at y = F (x)

B
2

B
2

1B

F

where F blows up a point to the region being cloaked. In 2D, σc
is both singular and degenerate; in 3D and higher it is just
degenerate: as |y | ↓ 1, σc(y) has

radial eigenvector with eigenvalue ∼ (|y | − 1)n−1

tangential eigenspace with eigenvalue ∼ (|y | − 1)n−3.

The PDE holds weakly, i.e. ∇ · (σ∇u) = 0 even across |y | = 1,
since (σc∇u) · ν = 0 at ∂B1

The singular cloak makes me uncomfortable. We usually deal
with singularities by smoothing them. Why not here?
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A regular near-cloak

Same idea, with more regular F .
Domain still B2, cloaked region still B1.

B
2

1B

Near-cloak uses σc = F∗1, where F = Fρ is less singular:

F is cont’s and piecewise smooth
it expands Bρ to B1 while preserving B2

F (x) = x at the outer bdry |x | = 2. B
2

B
2

Bρ

1B

F

Impact of contents of B1 on bndry data becomes, via change of vars,
effect of small inclusion with uncontrolled properties. In fact, if

σA(y) =

�
σc(y) for y ∈ B2 \ B1
A(y) for y ∈ B1

then, using F−1 as change of variable,
Z

B2

〈σA(y)∇y u,∇y u〉 dy =

Z
B2\Bρ

|∇x u|2 dx +

Z
Bρ

〈F−1
∗ (A)∇x u,∇x u〉 dx .

Claim: effect of a small inclusion is small, regardless of its contents.
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A small inclusion is almost invisible

Theorem: If σ ≡ 1 outside Bρ, then

‖Λσ − Λ1‖ ≤ Cρn in space dim n.

Sketch:

Use operator norm, Λσ : H1/2(∂Ω) → H−1/2(∂Ω), where

‖f‖H1/2(∂Ω) = min
u=f at ∂Ω

∫
Ω

|∇u|2.

Natural choice, since finite-energy solutions of ∇ · (σ∇u) = 0
have Dirichlet data in H1/2 and Neumann data in H−1/2.

Estimate is well-known when inclusion has constant conductivity
– even for the extreme cases, when σ = 0 or σ = ∞ in Bρ.

Variational principle says effect of any inclusion is bracketed by
effect of extreme inclusions:

Λincl cond = 0 ≤ Λσ ≤ Λincl cond =∞

So: our “regularized near-cloak” almost cloaks B1, if ρ is small.
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Consistency of cloaking with uniqueness theorem

Recall paradox: in 2D (at least), bdry measurements determine σ(x)
up to change of variables. Doesn’t this prohibit cloaking?

Recall argument: for σ uniformly elliptic and bounded,
(1) there’s a unique G such that G∗σ is isotropic;
(2) an isotropic conductivity is determined by bdry meas.

Resolution: Theorem applies to our near-cloak (using F = Fρ).

In fact G = F−1.
But as ρ→ 0, G loses invertibility.

B
2

B
2

Bρ

1B

F

But thm doesn’t apply when ρ = 0, since σc is degenerate and/or
singular near ∂B1.
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Transition to finite frequency

Cloaking by change-of-variables. Simple idea:

Suppose F : Ω → Ω “blows up” a point
to a region D, with F (x) = x at ∂Ω;

then σc = F∗1 cloaks D.
B

2
B

2

1B

F

Correct for electrostatics. Essence of analysis via regularized
near-cloak: a small inclusion can have little effect on bdry meas
(regardless of its contents).

What about finite frequency? Brief summary:

Change-of-variable scheme works formally at any frequency.

But finite frequency is different. Small inclusions are not
necessarily negligible.

Near-cloaking still possible (sort of).
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Time-harmonic Maxwell

∇× H = (σ − iωε)E , ∇× E = iωµH

σ = conductivity, ε = dielectric permittivity, µ = magnetic permeability

Physical fields <(Ee−iωt) and <(He−iωt); recover electrostatics if ω = 0.

Admittance is analogue of Λσ. It takes Etan|∂Ω to Htan|∂Ω. Same
admittance ⇔ indistinguishable by EM measurements.

Invariance by change of vars extends: If F : Ω → Ω has F (x) = x at
∂Ω then (σ, ε, µ) and (F∗σ,F∗ε,F∗µ) have same admittance.

So change-of-vars-based scheme works formally at any frequency.
But can this be right? Danger sign:

Small inclusions can be important, at
least in geometrical optics limit
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Regularized near-cloak at finite frequency

Recall the construction:

Suppose Fρ : Ω → Ω “blows up” Bρ to D, with Fρ(x) = x at ∂Ω.

Fill Ω \ D by (Fρ)∗ of uniform space. Is D nearly cloaked?

Changing vars by F−1
ρ , effect of D on boundary measurements

becomes effect of small inclusion with uncontrolled contents.

B
2

B
2

Bρ

1B

F

So the essential task is to identify sense in which a small inclusion
with uncontrolled content has small effect on bdry meas.

Our idea (Kohn-Onofrei-Vogelius-Weinstein): include a lossy layer at
the inner edge of the cloak.
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2D scalar version

Consider 2D Helmholtz-type eqn:

∇ · (γ∇u) + ω2qu = 0 in Ω ⊂ R2

Reduction of Maxwell, for TE waves: E = (0,0,u), γ = µ−1,
q = ε+ i σ

ω . Uniform space is γ = 1,q = 1. Lossless if γ,q are real.

Consider small inclusion, with arbitrary core coated by lossy shell:
�

γ = 1, q = 1 + iρ−2 for ρ < |x | < 2ρ
any real, pos values for |x | < ρ.
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Theorem. When embedded in a uniform medium (γ = 1, q = 1), such
inclusions have little effect on bndry meas:

‖Λγ,q − Λ1,1‖ ≤ Cω/| log ρ|.

Pushing forward by Fρ, we get a finite-frequency
near-cloak of B1. But note slow decay of | log ρ|−1. ����
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Why is finite frequency different?

In singular (perfect-cloaking) limit we expect weak solution of PDE:

∇ · (σ∇u) = 0 vs ∇ · (γ∇u) + ω2qu = 0.

For impedance tomography,

perfect cloaking ⇔ ∇u = 0 in cloaked region

At finite frequency,

perfect cloaking ⇔ u = 0 in cloaked region

Remark: A different treatment of the finite-frequency case was given
by Greenleaf, Kurylev, Lassas, Uhlmann (CMP, 2008):

focus is on perfect (singular) cloaks, not approx (regular) cloaks
they change bc at edge of cloak, rather than lossy layer
they cloak even active sources, using a “double-coating” constrn
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Key steps for 2D Helmholtz
I. Compare Helmholtz in shell Ω \ B2ρ to Helmholtz in Ω. Consider

∆u0 + ω2u0 = 0 in Ω

∆uρ + ω2uρ = 0 in Ω \ B2ρ

with same Neumann data ψ at ∂Ω, and Dir data φ for uρ at ∂B2ρ. Then

‖uρ − u0‖H1/2(∂Ω) ≤
C

| log ρ|

�
‖ψ‖H−1/2(∂Ω) + ‖φ(2ρ ·)‖H−1/2(∂B1)

�

II. Control uρ on ∂B2ρ, if annulus ρ < |x | < 2ρ is lossy. Let

∇ · (γ∇uρ) + ω2quρ = 0 in Ω,

8<
:

γ = 1, q = 1 for x ∈ Ω \ B2ρ

γ = 1, q = 1 + iβ for ρ < |x | < 2ρ
any real, pos values for |x | < ρ.

using Neumann data ψ at ∂Ω. Then

‖uρ(2ρ ·)‖H−1/2(∂B1) ≤
C
ω

(1+ω2(1+β)ρ2)
1

ρ
√
β

�
‖ψ‖H−1/2(∂Ω) + ‖uρ‖H1/2(∂Ω)

�
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3D is better

For 2D Helmholtz, cloaking error was C/| log ρ|.
Linked to fund soln of Laplacian.

For 3D Helmholtz, obvious guess is Cρ.
But our method gives only C

√
ρ: for

∇ · (γ∇uρ) + ω2quρ = 0 in Ω ⊂ R3

with
γ = 1,q = 1 in Ω \ B2ρ

γ = 1,q = 1 + iρ−2 in B2ρ \ Bρ

arbitrary real, positive in Bρ.

we have

‖Λγ,q − Λ1,1‖ ≤ Cω
√
ρ.
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Stepping back

Is cloaking possible using the change-of-variable-based scheme?

Yes, at frequency zero (impedance tomography).

Yes, in geometrical optics limit (Pendry-Schurig-Smith)

Somewhat, at finite frequency (there’s much more to do).

Radial geometry was not important. Method works for any
region. Cloak can be as thin as desired.
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Stepping back

Is cloaking practical using the change-of-variable-based scheme?

Major problem in 2D: slow decay of 1/| log ρ|. (Comes from
fund’l soln. So 3D is better.)

Another problem: scheme requires highly anisotropic dielectrics,
degenerate and/or singular at edge of cloak. Perhaps achievable
at particular frequencies using metamaterials.

Construction is not frequency dependent. But dielectric
properties of materials are frequency-dependent. So cloaking
from pulses is not so easy.
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Conclusions

VIEWPOINT MATTERS

Greenleaf-Lassas-Uhlmann ’03: a region can be invisible

Pendry-Schurig-Smith ’06: a region can be made invisible

FREQUENCY MATTERS

Change-of-variable-based scheme works well at frequency 0,
but not nearly as well at finite frequency
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HAPPY BIRTHDAY, JOHN!
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