Cloaking by Change of Variables

Robert V. Kohn Courant Institute, NYU

Edinburgh, June 2008

Robert V. Kohn Courant Institute, NYU Cloaking by Change of Variables

Some themes

- blowup for nonlinear heat eqns
- nonlinear elasticity
- quasiconvexity (existence)
- microstructure (nonexistence)
- martensitic phase transformation

Some memories

- MSRI, spring 1983?
- Heriot-Watt, summer 1986?
- Heriot-Watt, EU course with Nick Schryvers, 1990?

Some principles

- Our materials colleagues have interesting insights.
- Getting it right can provide additional insights, and can raise new mathematical issues.

Today's topic – cloaking – involves no elasticity, and no microstructure. But it definitely involves getting it right.

What is cloaking?

cloaked region can have any shape airplane?

- the cloaked region should be invisible
- even the cloak itself should be invisible
- our cloaks will be coatings with heterogeneous, anisotropic dielectric properties

In what sense invisible?

- Most realistic: electromagnetic scattering, using pulses
- Easier to analyze: scattering at fixed frequency
- Easier still: frequency zero (impedance tomography).

What is cloaking?

cloaked region can have any shape airplane?

- the cloaked region should be invisible
- even the cloak itself should be invisible
- our cloaks will be coatings with heterogeneous, anisotropic dielectric properties

In what sense invisible?

- Most realistic: electromagnetic scattering, using pulses
- Easier to analyze: scattering at fixed frequency
- Easier still: frequency zero (impedance tomography).

- 2003 Greenleaf, Lassas, Uhlmann, Math Res Lett. A region can be invisible. No press.
- 2006 Pendry, Schurig, Smith, Science. A region can be cloaked. MSNBC, BBC, and more.
 - sounds like science fiction
 - great press office
 - Harry Potter

Robert V. Kohn

Courant Institute, NYU

Cloaking by Change of Variables

Outline

(1) Cloaking by change of variables at frequency zero

- Electric impedance tomography
- Cloaking by change of variables
- (2) Cloaking by change of variables at finite frequency
 - Finite frequency is similar, but different
 - Recent results, for 2D and 3D Helmholtz

Collaborators:	Onofrei, Shen, Vogelius, Weinstein
	Inv Prob 2008, & in progress.
Explication of:	Greenleaf, Lassas, Uhlmann, Math Res Lett 2003
	Pendry, Schurig, Smith, Science 2006
	Greenleaf, Kurylev, Lassas, Uhlmann, CMP 2008

Change-of-variable scheme is just one approach to cloaking. Others (worth separate talks) include:

- anomalous localized resonance (Milton, Nicorovici)
- optical conformal mapping (Leonhardt)

Impedance tomography

Impedance tomography uses electrostatics rather than scattering.

Sensing mechanism: currents and voltages at the *boundary*. Goal: find conductivity in the *interior*.

$$\sum \frac{\partial}{\partial x_i} \left(\sigma_{ij}(x) \frac{\partial u}{\partial x_j} \right) = 0 \quad \text{in } \Omega,$$

Boundary measurements give us the Dirichlet-to-Neumann map

$$\Lambda_{\sigma}$$
 : $u|_{\partial\Omega} \rightarrow (\sigma \nabla u) \cdot \nu|_{\partial\Omega}$

Cloaking in this setting: $\sigma_c(x)$, defined on $\Omega \setminus D$, cloaks D if resulting bdry measurments "look uniform," regardless of content of *D*.

voltage f implies current flux g

voltage f implies same current flux g

Getting used to the definitions

Impedance tomography seeks knowledge of interior conductivity, given voltage distrn at bdry assoc any applied current.

The measurements amount to Cauchy data for $\nabla \cdot (\sigma \nabla u) = 0$.

We say σ_c (defined in $\Omega \setminus D$) cloaks *D* if the Cauchy data at $\partial\Omega$ are (a) indep of content of *D*, and (b) same as the uniform case $\sigma = 1$.

Name is apt, since extn of σ_c by 1 to larger domain is also a cloak.

Do bdry meas determine the interior conductivity?

Ignoring "technicalities,"

- yes, if σ(x) is known to be scalar-valued;
 Druskin, Kohn-Vogelius, Sylvester-Uhlmann, others
- no, if σ(x) is allowed to be matrix-valued; Tartar

Latter is elementary: σ is at most determined "up to change of vars."

Invariance under change of variables

Basic observation: boundary measurements determine σ at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial \Omega$ then σ and $F_*\sigma$ produce the same boundary measurements, where

$$F_*\sigma(y) = \frac{1}{\det(DF)(x)} DF(x) \sigma(x) (DF(x))^T \text{ with } y = F(x)$$

Sketch:

- Change of vars: $\int_{\Omega} \langle \sigma(x) \nabla_x u, \nabla_x u \rangle \, dx = \int_{\Omega} \langle F_* \sigma(y) \nabla_y u, \nabla_y u \rangle \, dy$
- Variational principle: $\int_{\partial\Omega} f \Lambda_{\sigma} f = \min_{u=f \text{ at } \partial\Omega} \int_{\Omega} \langle \sigma(x) \nabla_{x} u, \nabla_{x} u \rangle dx.$
- Polarization: lin map Λ_{σ} determined by quadr form $\int_{\partial \Omega} f \Lambda_{\sigma} f$.

Invariance under change of variables

Basic observation: boundary measurements determine σ at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial \Omega$ then σ and $F_*\sigma$ produce the same boundary measurements, where

$$F_*\sigma(y) = \frac{1}{\det(DF)(x)} DF(x)\sigma(x) (DF(x))^T \text{ with } y = F(x)$$

Sketch:

- Change of vars: $\int_{\Omega} \langle \sigma(x) \nabla_x u, \nabla_x u \rangle \, dx = \int_{\Omega} \langle F_* \sigma(y) \nabla_y u, \nabla_y u \rangle \, dy$
- Variational principle: $\int_{\partial\Omega} f \Lambda_{\sigma} f = \min_{u=f \text{ at } \partial\Omega} \int_{\Omega} \langle \sigma(x) \nabla_{x} u, \nabla_{x} u \rangle dx$.
- Polarization: lin map Λ_{σ} determined by quadr form $\int_{\partial \Omega} f \Lambda_{\sigma} f$.

Invariance under change of variables

Basic observation: boundary measurements determine σ at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial \Omega$ then σ and $F_*\sigma$ produce the same boundary measurements, where

$$F_*\sigma(y) = \frac{1}{\det(DF)(x)} DF(x)\sigma(x) (DF(x))^T \text{ with } y = F(x)$$

Sketch:

- Change of vars: $\int_{\Omega} \langle \sigma(x) \nabla_x u, \nabla_x u \rangle \, dx = \int_{\Omega} \langle F_* \sigma(y) \nabla_y u, \nabla_y u \rangle \, dy$
- Variational principle: $\int_{\partial\Omega} f \Lambda_{\sigma} f = \min_{u=f \text{ at } \partial\Omega} \int_{\Omega} \langle \sigma(x) \nabla_{x} u, \nabla_{x} u \rangle dx.$
- Polarization: lin map Λ_{σ} determined by quadr form $\int_{\partial\Omega} f \Lambda_{\sigma} f$.

In 2D we know more

In 2D this is the only invariance Sylvester, Astala-Paivarinta-Lassas. Bdry meas determine $\sigma_{ij}(x)$ up to change of vars. Sketch:

- There's a unique *F* such that $F_*\sigma$ is isotropic.
- An isotropic conductivity is determined by bdry meas.

Main "technicality:" σ should be uniformly elliptic and bounded.

Does this mean cloaking is impossible?

voltage f implies current flux g

voltage f implies same current flux g

No: technicalities can be important.

The change-of-variable-based cloak

Radial version, for simplicity only: domain is B_2 , cloaked region is B_1 .

Choose conductivity of the cloak to be $\sigma_c = F_* 1$, where F "blows up" the origin to B_1 :

$$F(x) = \left(1 + \frac{1}{2}|x|\right) \frac{x}{|x|}$$

Formally B_1 is cloaked. In fact, if

$$\sigma_{\mathcal{A}}(y) = \left\{ egin{array}{cc} \sigma_{c}(y) & ext{for } y \in B_2 \setminus B_2 \ \mathcal{A}(y) & ext{for } y \in B_1 \end{array}
ight.$$

we have, using F^{-1} as our change of variable,

$$\int_{B_2} \langle \sigma_A(y) \nabla_y u, \nabla_y u \rangle \, dy = \int_{B_2} |\nabla_x u|^2 \, dx$$

since F^{-1} shrinks the region being cloaked to a point.

Is this correct? (*F* and F^{-1} are very singular.)

Analysis of the singular cloak

Argument is correct at frequency 0, using removability of singularities for Laplace's eqn.

 $\sigma_c(y) = F_*1 \text{ on } B_2 \setminus B_1$, where F takes $x \in B_2 \setminus \{0\}$ to $y = F(x) \in B_2 \setminus B_1$. notation: potential is v(y) = u(x)

Outside *B*₁:

- By change of vars, $\nabla \cdot (\sigma_c(y)\nabla_y v) = 0$ in $B_2 \setminus B_1$ iff $\Delta_x u = 0$ in $B_2 \setminus \{0\}$, where u(x) = v(y).
- Potential uniformly bounded \implies sing'y of *u* is removable. Thus v(y) = u(x) where $\Delta u = 0$ in B_2 .
- Bdry meas are invariant under change of vars. So $\Lambda_{\sigma} = \Lambda_1$.

Inside B_1 :

- Potential is const at ∂B_1 , since $v(y) \rightarrow u(0)$ as $|y| \rightarrow 1$.
- So potential is constant throughout B_1 , since $\nabla \cdot (\sigma \nabla_y v) = 0$.

B_1 is cloaked, because $\nabla v = 0$ there, regardless of bdry data.

Analysis of the singular cloak

Argument is correct at frequency 0, using removability of singularities for Laplace's eqn.

 $\sigma_c(y) = F_*1 \text{ on } B_2 \setminus B_1$, where F takes $x \in B_2 \setminus \{0\}$ to $y = F(x) \in B_2 \setminus B_1$. notation: potential is v(y) = u(x)

Outside *B*₁:

- By change of vars, $\nabla \cdot (\sigma_c(y)\nabla_y v) = 0$ in $B_2 \setminus B_1$ iff $\Delta_x u = 0$ in $B_2 \setminus \{0\}$, where u(x) = v(y).
- Potential uniformly bounded \implies sing'y of *u* is removable. Thus v(y) = u(x) where $\Delta u = 0$ in B_2 .
- Bdry meas are invariant under change of vars. So $\Lambda_{\sigma} = \Lambda_1$.

Inside B_1 :

- Potential is const at ∂B_1 , since $v(y) \rightarrow u(0)$ as $|y| \rightarrow 1$.
- So potential is constant throughout B_1 , since $\nabla \cdot (\sigma \nabla_y v) = 0$.

B_1 is cloaked, because $\nabla v = 0$ there, regardless of bdry data.

Remarks on the singular cloak

• This scheme requires exotic materials. Recall that

$$\sigma_c(y) = F_* 1$$

at $y = F(x)$

where *F* blows up a point to the region being cloaked. In 2D, σ_c is both singular and degenerate; in 3D and higher it is just degenerate: as $|y| \downarrow 1$, $\sigma_c(y)$ has

- radial eigenvector with eigenvalue $\sim (|y| 1)^{n-1}$
- tangential eigenspace with eigenvalue $\sim (|y| 1)^{n-3}$.
- The PDE holds weakly, i.e. $\nabla \cdot (\sigma \nabla u) = 0$ even across |y| = 1, since $(\sigma_c \nabla u) \cdot \nu = 0$ at ∂B_1
- The singular cloak makes me uncomfortable. We usually deal with singularities by smoothing them. Why not here?

A regular near-cloak

Same idea, with more regular F. Domain still B_2 , cloaked region still B_1 .

Near-cloak uses $\sigma_c = F_* 1$, where $F = F_\rho$ is less singular:

- *F* is cont's and piecewise smooth
- it expands B_ρ to B₁ while preserving B₂
- F(x) = x at the outer bdry |x| = 2.

Impact of contents of B_1 on bndry data becomes, via change of vars, effect of small inclusion with uncontrolled properties. In fact, if

$$\sigma_{\mathcal{A}}(y) = \begin{cases} \sigma_{\mathcal{C}}(y) & \text{for } y \in B_2 \setminus B_1 \\ \mathcal{A}(y) & \text{for } y \in B_1 \end{cases}$$

then, using F^{-1} as change of variable,

$$\int_{B_2} \langle \sigma_A(y) \nabla_y u, \nabla_y u \rangle \, dy = \int_{B_2 \setminus B_\rho} |\nabla_x u|^2 \, dx + \int_{B_\rho} \langle F_*^{-1}(A) \nabla_x u, \nabla_x u \rangle \, dx.$$

Claim: effect of a small inclusion is small, regardless of its contents.

A regular near-cloak

Same idea, with more regular F. Domain still B_2 , cloaked region still B_1 .

Near-cloak uses $\sigma_c = F_* 1$, where $F = F_\rho$ is less singular:

- *F* is cont's and piecewise smooth
- it expands B_{ρ} to B_1 while preserving B_2
- F(x) = x at the outer bdry |x| = 2.

Impact of contents of B_1 on bndry data becomes, via change of vars, effect of small inclusion with uncontrolled properties. In fact, if

$$\sigma_{\mathcal{A}}(y) = \begin{cases} \sigma_{\mathcal{C}}(y) & \text{for } y \in B_2 \setminus B_1 \\ \mathcal{A}(y) & \text{for } y \in B_1 \end{cases}$$

then, using F^{-1} as change of variable,

$$\int_{B_2} \langle \sigma_A(y) \nabla_y u, \nabla_y u \rangle \, dy = \int_{B_2 \setminus B_\rho} |\nabla_x u|^2 \, dx + \int_{B_\rho} \langle F_*^{-1}(A) \nabla_x u, \nabla_x u \rangle \, dx.$$

Claim: effect of a small inclusion is small, regardless of its contents.

A small inclusion is almost invisible

Theorem: If $\sigma \equiv 1$ outside B_{ρ} , then $\|\Lambda_{\sigma} - \Lambda_1\| \leq C\rho^n$ in space dim n.

Sketch:

• Use operator norm, $\Lambda_{\sigma} : H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega)$, where $\|f\|_{H^{1/2}(\partial \Omega)} = \min_{u=f \text{ at } \partial \Omega} \int_{\Omega} |\nabla u|^2.$

Natural choice, since finite-energy solutions of $\nabla \cdot (\sigma \nabla u) = 0$ have Dirichlet data in $H^{1/2}$ and Neumann data in $H^{-1/2}$.

- Estimate is well-known when inclusion has constant conductivity – even for the extreme cases, when $\sigma = 0$ or $\sigma = \infty$ in B_{ρ} .
- Variational principle says effect of any inclusion is bracketed by effect of extreme inclusions:

$$\Lambda_{\operatorname{incl\,cond} = 0} \leq \Lambda_{\sigma} \leq \Lambda_{\operatorname{incl\,cond} = \infty}$$

So: our "regularized near-cloak" almost cloaks B_1 , if ρ is small.

Recall paradox: in 2D (at least), bdry measurements determine $\sigma(x)$ up to change of variables. Doesn't this prohibit cloaking?

Recall argument: for σ uniformly elliptic and bounded,

- (1) there's a unique *G* such that $G_*\sigma$ is isotropic;
- (2) an isotropic conductivity is determined by bdry meas.

Resolution: Theorem applies to our near-cloak (using $F = F_{\rho}$).

- In fact $G = F^{-1}$.
- But as $\rho \rightarrow 0$, *G* loses invertibility.

But thm doesn't apply when $\rho = 0$, since σ_c is degenerate and/or singular near ∂B_1 .

Transition to finite frequency

Cloaking by change-of-variables. Simple idea:

- Suppose F : Ω → Ω "blows up" a point to a region D, with F(x) = x at ∂Ω;
- then $\sigma_c = F_* 1$ cloaks *D*.

Correct for electrostatics. Essence of analysis via regularized near-cloak: a small inclusion can have little effect on bdry meas (regardless of its contents).

What about finite frequency? Brief summary:

- Change-of-variable scheme works formally at any frequency.
- But finite frequency is different. Small inclusions are not necessarily negligible.
- Near-cloaking still possible (sort of).

 $\nabla \times H = (\sigma - i\omega\varepsilon)E, \quad \nabla \times E = i\omega\mu H$

 σ = conductivity, ε = dielectric permittivity, μ = magnetic permeability Physical fields $\Re(Ee^{-i\omega t})$ and $\Re(He^{-i\omega t})$; recover electrostatics if ω = 0.

Admittance is analogue of Λ_{σ} . It takes $E_{tan}|_{\partial\Omega}$ to $H_{tan}|_{\partial\Omega}$. Same admittance \Leftrightarrow indistinguishable by EM measurements.

Invariance by change of vars extends: If $F : \Omega \to \Omega$ has F(x) = x at $\partial\Omega$ then $(\sigma, \varepsilon, \mu)$ and $(F_*\sigma, F_*\varepsilon, F_*\mu)$ have same admittance.

So change-of-vars-based scheme works formally at any frequency. But can this be right? Danger sign:

 Small inclusions can be important, at least in geometrical optics limit

Recall the construction:

- Suppose $F_{\rho} : \Omega \to \Omega$ "blows up" B_{ρ} to D, with $F_{\rho}(x) = x$ at $\partial \Omega$.
- Fill Ω \ D by (F_ρ)_{*} of uniform space. Is D nearly cloaked?
- Changing vars by F⁻¹_ρ, effect of D on boundary measurements becomes effect of small inclusion with uncontrolled contents.

So the essential task is to identify sense in which a small inclusion with uncontrolled content has small effect on bdry meas.

Our idea (Kohn-Onofrei-Vogelius-Weinstein): include a lossy layer at the inner edge of the cloak.

Consider 2D Helmholtz-type eqn:

$$abla \cdot (\gamma
abla u) + \omega^2 q u = \mathsf{0} \quad ext{in } \Omega \subset R^2$$

Reduction of Maxwell, for TE waves: E = (0, 0, u), $\gamma = \mu^{-1}$, $q = \varepsilon + i\frac{\sigma}{\omega}$. Uniform space is $\gamma = 1, q = 1$. Lossless if γ, q are real.

Consider small inclusion, with arbitrary core coated by lossy shell:

$$\left\{ \begin{array}{ll} \gamma = 1, q = 1 + i\rho^{-2} & \text{for } \rho < |x| < 2\rho \\ \text{any real, pos values} & \text{for } |x| < \rho. \end{array} \right.$$

<u>Theorem</u>. When embedded in a uniform medium ($\gamma = 1, q = 1$), such inclusions have little effect on bndry meas:

$$\|\Lambda_{\gamma,q} - \Lambda_{1,1}\| \le C_{\omega}/|\log \rho|.$$

Pushing forward by F_{ρ} , we get a finite-frequency near-cloak of B_1 . But note slow decay of $|\log \rho|^{-1}$.

Why is finite frequency different?

In singular (perfect-cloaking) limit we expect weak solution of PDE:

 $abla \cdot (\sigma \nabla u) = 0$ vs $abla \cdot (\gamma \nabla u) + \omega^2 q u = 0.$

For impedance tomography,

perfect cloaking $\Leftrightarrow \nabla u = 0$ in cloaked region

At finite frequency,

perfect cloaking $\Leftrightarrow u = 0$ in cloaked region

Remark: A different treatment of the finite-frequency case was given by Greenleaf, Kurylev, Lassas, Uhlmann (CMP, 2008):

- focus is on perfect (singular) cloaks, not approx (regular) cloaks
- they change bc at edge of cloak, rather than lossy layer
- they cloak even active sources, using a "double-coating" constrn

Key steps for 2D Helmholtz

I. Compare Helmholtz in shell $\Omega \setminus B_{2\rho}$ to Helmholtz in Ω . Consider

$$\begin{aligned} \Delta u_0 + \omega^2 u_0 &= 0 \text{ in } \Omega \\ \Delta u_\rho + \omega^2 u_\rho &= 0 \text{ in } \Omega \setminus B_{2\rho} \end{aligned}$$

with same Neumann data ψ at $\partial \Omega$, and Dir data ϕ for u_{ρ} at $\partial B_{2\rho}$. Then

$$\|u_{\rho} - u_{0}\|_{H^{1/2}(\partial\Omega)} \leq \frac{C}{|\log \rho|} \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|\phi(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \right)$$

II. Control u_{ρ} on $\partial B_{2\rho}$, if annulus $\rho < |x| < 2\rho$ is lossy. Let

$$\nabla \cdot (\gamma \nabla u_{\rho}) + \omega^2 q u_{\rho} = 0 \text{ in } \Omega,$$

$$\left\{ \begin{array}{ll} \gamma=1, q=1 & \text{for } x\in \Omega\setminus B_{2\rho} \\ \gamma=1, q=1+i\beta & \text{for } \rho<|x|<2\rho \\ \text{any real, pos values} & \text{for } |x|<\rho. \end{array} \right.$$

using Neumann data ψ at $\partial \Omega$. Then

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \leq \frac{C}{\omega}(1+\omega^{2}(1+\beta)\rho^{2})\frac{1}{\rho\sqrt{\beta}}\left(\|\psi\|_{H^{-1/2}(\partial \Omega)}+\|u_{\rho}\|_{H^{1/2}(\partial \Omega)}\right)$$

Robert V. Kohn Courant Institute, NYU Cloaking by Change of Variables

3D is better

For 2D Helmholtz, cloaking error was $C/|\log \rho|$. Linked to fund soln of Laplacian.

For 3D Helmholtz, obvious guess is $C\rho$. But our method gives only $C\sqrt{\rho}$: for

$$abla \cdot (\gamma
abla u_
ho) + \omega^2 q u_
ho = \mathsf{0} ext{ in } \Omega \subset R^3$$

with

$$\begin{cases} \gamma = 1, q = 1 & \text{in } \Omega \setminus B_{2\rho} \\ \gamma = 1, q = 1 + i\rho^{-2} & \text{in } B_{2\rho} \setminus B_{\rho} \\ \text{arbitrary real, positive} & \text{in } B_{\rho}. \end{cases}$$

we have

$$\|\Lambda_{\gamma,q} - \Lambda_{1,1}\| \leq C_{\omega}\sqrt{\rho}.$$

Stepping back

Is cloaking possible using the change-of-variable-based scheme?

- Yes, at frequency zero (impedance tomography).
- Yes, in geometrical optics limit (Pendry-Schurig-Smith)
- Somewhat, at finite frequency (there's much more to do).
- Radial geometry was not important. Method works for any region. Cloak can be as thin as desired.

Stepping back

Is cloaking practical using the change-of-variable-based scheme?

- Major problem in 2D: slow decay of 1/|log ρ|. (Comes from fund'l soln. So 3D is better.)
- Another problem: scheme requires highly anisotropic dielectrics, degenerate and/or singular at edge of cloak. Perhaps achievable at particular frequencies using metamaterials.
- Construction is not frequency dependent. But dielectric properties of materials *are* frequency-dependent. So cloaking from pulses is not so easy.

VIEWPOINT MATTERS

- Greenleaf-Lassas-Uhlmann '03: a region can be invisible
- Pendry-Schurig-Smith '06: a region can be made invisible

FREQUENCY MATTERS

 Change-of-variable-based scheme works well at frequency 0, but not nearly as well at finite frequency

HAPPY BIRTHDAY, JOHN!

Robert V. Kohn Courant Institute, NYU Cloaking by Change of Variables