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A teaser: Landau theorem, 1902
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Loewy-Ore theory (and other flavours of factorization)
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A teaser: Landau theorem, 1902
Linear ordinary differential (difference) operators:

L = a0(x)Dn + a1(x)Dn−1 + . . . + an(x),

D = d/dx (or D =shift operator),
ai ∈ Q(x) (or ai ∈ k , char k = 0).
Usually a0 ≡ 1 (monic operators)

Example:
D2 = D · D =

(
D + 1

x−c

)
·
(

D − 1
x−c

)
, c = const .

Landau E. (1902): all possible factorizations of a given operator
L into irreducible factors have the same number of factors
L = L1 · · ·Lk = L1 · · ·Lr =⇒ k = r
and the factors Ls, Lp are pairwise “similar”, in particular the
corresponding operators have the same order.

Beke E. (1894) gave an algorithm for factorization for the case
ai ∈ Q(x).
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1890s–1930s: G. Frobenius, L. Fuchs, L. Heffter, A. Loewy,
Ø. Ore . . .

1990s: M. Bronstein, M. van Hoeij, M. Petkovšek (difference
case), F. Schwarz, S. Ts. . . .
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Topics to be (or not to be. . . ) discussed today:

(I) Elementary algebraic theory (Loewy-Ore theory)

(II) Different theoretical flavours / formulations / algorithms
for factorization of LODEs

(III) Classical algorithm of factorization (Beke)

NOT discussed:

factorization (decomposition) of nonlinear algebraic ODEs
P(x , y(x), y ′(x), . . . , y (n)(x)) = 0:
P = Q(x , z, z ′, . . . , z(k)), Q = R(x , y , y ′, . . . , y (n−k)).

Algorithms for decomposition:
M.Sosnin (2001), Gao et. al. (2003).
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Loewy-Ore theory
Loewy, A. Über reduzible lineare homogene
Differentialgleichungen. Math. Annalen (1903-1906).

Ore, O. Theory of non-commutative polynomials. Annals of
Mathematics 34 (1933).

N. Jacobson “The theory of rings” 1943.

Right (left) division:
for any LODOs L, M, there exist unique LODOs Q, R, Q1, R1,
such that:

L = Q ·M + R, L = M ·Q1 + R1.

=⇒ right (left) GCDs and LCMs:
rGCD(L, M) = G ⇐⇒ L = L1 ·G, M = M1 ·G

(the order of G is maximal);
rLCM(L, M) = K ⇐⇒ K = M · L = L ·M

(the order of K is minimal).

Exercise: describe algorithms for GCDs and LCMs.
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Relation to solution spaces:

rGCD(L, M) = G is nontrivial (G 6= 1)
⇐⇒ Sol(L) ∩ Sol(M) 6= {0}

In general, Sol(L) ∩ Sol(M) = Sol(G).

rLCM(L, M) = K
⇐⇒ 〈Sol(L), Sol(M)〉 = {u + v |Lu = 0, Mv = 0} = Sol(K )
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Operator equations:

X · L + Y ·M = B, L · Z + M · T = C

with unknown operators X , Y , Z , T are solvable iff respectively
rGCD(L, M) divides B on the right and lGCD(L, M) divides C
on the left.



Def. LODO L is (right) transformed into L1 by an operator
(B is not necessarily monic), and we’ll write

L B−→ L1

iff rGCD(L, B) = 1 and rLCM(L, B) = L1 · B = B1 · L
for some B1.

=⇒ any solution of Lu = 0 is mapped by B into a solution
v = Bu of L1v = 0.

One may find with rational algebraic & diff. operations an
operator C such that L1

C−→ L, C · B = 1(modL),
B · C = 1(modL1).

Operators L, L1 will be also called similar or of the same kind
(in the given differential field k ). They have equal orders.

=⇒ For similar operators the problem of solution of the
corresponding LODE’s Lu = 0, L1v = 0 are equivalent.

Q.: How one can find out if two given LODOs are similar?
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Ring-theoretic interpretation:

Euclid algorithm =⇒ the ring k [D] of LODOs is left-principal
and right-principal (no nontrivial two-sided ideals!).

=⇒ Landau theorem.

L ∈ k [D] generates the left ideal |L〉;

L1 divides L on the right ⇔ |L〉 ⊂ |L1〉

Landau theorem: for L = L1 · · ·Lk = L1 · · ·Lr we have two
maximal chains of ascending left principal ideals
|L〉 ⊂ |L2 · · ·Lk 〉 ⊂ |L3 · · ·Lk 〉 ⊂ . . . ⊂ |Lk 〉 ⊂ |1〉 = k [D]
and |L〉 ⊂ |L2 · · ·Lr 〉 ⊂ |L3 · · ·Lr 〉 ⊂ . . . ⊂ |Lr 〉 ⊂ |1〉 = k [D]
=⇒ k = r

Jordan-Hölder theorem
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Lattice-theoretic interpretation:

Partially ordered by inclusion set M (called a poset) of (left)
ideals in k [D] has the following two fundamental properties:

a) for any two elements A, B ∈M (left ideals!) one can find a
unique C = sup(A, B), i.e. such C that C ≥ A, C ≥ B, and C is
“minimal possible”.
Analogously there exist a unique D = inf(A, B), D ≤ A, D ≤ B,
D is “maximal possible”.

Such posets are called lattices. sup(A, B) and inf(A, B)
correspond to the GCD and the LCM.
For simplicity (and following the established tradition) sup(A, B)
will be hereafter denoted as A + B and inf(A, B) as A · B;

b) For any three A, B, C ∈M the following modular identity
holds:

(A · C + B) · C = A · C + B · C

Such lattices are called modular lattices or Dedekind structures.
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Modularity =⇒

(Jordan-Hölder-Dedekind chain condition): any two finite
maximal chains

L > L1 > · · · > Lk > 0

L > M1 > · · · > Mr > 0

for a given L ∈M have equal lengths: k = r
(the same for ascending chains).

There are notions of similarity, direct sums,
Kurosh & Ore theorems on direct sums . . .
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Categorical interpretation:
abelian category of LODEs

Objects are monic operators L = Dn + a1(x)Dn−1 + . . . + an(x),
or, equivalently, their solution spaces (finite-dimensional!)
(. . . but these spaces are not constructive . . . )

Morphisms are mappings of solutions with auxiliary
(non-monic) operators:
P : L → M iff for every u such that Lu = 0, v = Pu gives a
solution of M: Mv = 0.
All operators here have coefficients in some fixed diff. field.

Two operators P1, P2 generate the same morphism
⇐⇒ P1 = P2(mod L).
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(!) This definition is NOT equivalent to the definition of
transformation of operators:

L P−→ M

Why?

Because for morphisms:

1) P and L may have common solutions, i.e. nontrivial
rGCD(P, L). This means that the mapping of the solution space
Sol(L) by P may have a kernel Sol(rGCD(P, L)).
The morphism is not injective in this case.

2) The image of the solution space Sol(L) may be smaller than
Sol(M).
The morphism is not surjective in this case.

Algebraically: M · P = N · L for some N,

M · P = N · L 6= rLCM(L, P).
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Fact: This category of LODO is abelian.

Theorem
Any abelian category with finite ascending chains satisfies the
Jordan-Hölder property (=⇒ Landau theorem).

Again: there are notions of similarity, direct sums,
Kurosh & Ore theorems on direct sums, homological algebra
. . .

Q.: Why do we need this “abstract nonsense”??

A.: this is really needed for the case of LPDEs!
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Jordan-Hölder property (=⇒ Landau theorem).

Again: there are notions of similarity, direct sums,
Kurosh & Ore theorems on direct sums, homological algebra
. . .

Q.: Why do we need this “abstract nonsense”??

A.: this is really needed for the case of LPDEs!



Fact: This category of LODO is abelian.

Theorem
Any abelian category with finite ascending chains satisfies the
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A teaser: Landau theorem, 1902

Topics to be discussed today

Loewy-Ore theory (and other flavours of factorization)

Classical algorithm of factorization (Beke)



Classical algorithm of factorization (Beke)
and its modern rivals

Ideas:

(I) L = L1 · (D− u(x)) ⇐⇒ u = y ′

y , y(x) is a solution of Ly = 0.
For u ∈ k = Q(x) this means y = exp(

∫
u dx)

— a hyperexponential solution of Ly = 0.

(II) L = L1 · L2, ord(L2) = m
=⇒ for some associated LODO L(m),
L(m) = L1 · (D − u(x))
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