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Intrinsic properties.

Main concepts:

Symmetries,

Conservation laws,

Backlund transformations,

Rucursion operators,

Hamiltonian operators,

Main problem: Nonlocalities.

Technique: Jet calculus.



Our main task is to formulate constructive

necessary integrability conditions for evolu-

tion equations with two independent variables.

Example. Consider equations of the form

ut = u3 + f(u1, u), u1 = ux, u2 = uxx, ...

Then if the equation is integrable then

ρ =
∂f

∂u1

is a local conserved density, i.e. ρt = σx.

For example, for the mKdV-equation ut =

u3 + 3u2u1 we expect that ρ = 3u2 is a con-

served density. Indeed,

(3u2)t =
(
6uu2 − 3u2

1 +
3

2
u4
)
x
.



ODE case.

Suppose we have a dynamical system

d ui
dt

= Fi(u1, . . . , un), i = 1, . . . , n . (1)

Then any function G(u1, . . . , un) can be dif-

ferentiated in time in virtue of the system (1)

as

dG

dt
=

n∑
k=1

Fk(u1, . . . , un)
∂G

∂uk
. (2)

Now we can forget that u1, . . . un are func-

tions of time t and regard them as the set of

independent variables. Denote by F the ring

of ”all” functions of these variables.

We can rewrite (2) as dG
dt = XF (G), where

XF =
n∑

k=1

Fk
∂

∂uk
. (3)



Definition. Linear homogeneous differential

operator of the form

X =
n∑

k=1

Xk(u1, . . . , un)
∂

∂uk
, (4)

is called a vector field.

Remark 1. We have X(fg) = fX(g)+gX(f)

i.e. any vector field defines a derivation of F.

Remark 2. All vector fields form a Lie alge-

bra w.r.t. the Lie bracket

[X,Y ] = X ◦ Y − Y ◦X.



First integrals

First integrals of a dynamical system can be

defined as elements of the kernal space for

the corresponding vector field.

Definition. A function I = I(u1, . . . , un) is a

first integral of the dynamical system (1) if
dI
dt = XF (I) = 0.

Any function of first integrals is a first inte-

gral. Only functionally independent first in-

tegrals are to be counted.



Symmetries.

The next fundamental concept of the local
theory of nonlinear ODEs is the infinitesimal
symmetry.

Definition. A vector field

XG =
n∑

k=1

Gk(u1, u2, . . . , un)
∂

∂uk
, (5)

is called (infinitesimal) symmetry of dynami-
cal system (1) iff

[XF , XG] = 0. (6)

Condition (6) is equivalent to the fact that
the dynamical systems (1) and

d ui
dτ

= Gi(u1, . . . , un), i = 1, . . . , n . (7)

are compatible. It means that for any initial
data u0 there exists a common solution u(t, τ)
of systems (1) and (7) such that u(0,0) = u0.



The symmetry condition (6) can also be writ-

ten in the following two equivalent forms:

dG

dt
= F∗ (G). (8)

or

F∗ (G)−G∗ (F ) = 0. (9)

Here F = (F1, . . . , Fn) and F∗ is a matrix with

entries

F∗i,j =
∂Fi
∂uj

.

The matrix F∗ is called the Fréchet deriva-

tive of the vector–function F = (F1, . . . , Fn).

Relation (8) means that G satisfies the lin-

earization of dynamical system (1).



Hamiltonian structures.

Any Poisson bracket between functions

f(u1, . . . , um) and g(u1, . . . , um) is given by

{f, g} =
∑
i,j

Pi,j(u1, . . . , um)
∂f

∂ui

∂g

∂uj
,

where Pi,j = {ui, uj}. The equivalent form is

{f, g} =< grad f, P (grad g) > .

The entries Pij of the Hamiltonian operator

P are not arbitrary since by definition

{f, g} = −{g, f},

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.



The Hamiltonian dynamics is defined by

dui
dt

= {H,ui},

or
d~u

dt
= P (gradH),

where H is a Hamiltonian function.

If {K, H} = 0, then K is an integral of mo-

tion for the dynamical system. Moreover, the

vector fields corresponding to Hamiltonians H

and K commute each other.

If {J, f} = 0 for any f , then J is called the

Casimir function of the Poisson bracket. The

Casimir functions exist if the bracket is de-

generate (i.e. DetP = 0).



For the symplectic manifold the coordinates
are qi and pi, i = 1, . . . N . The standard Pois-
son bracket is given by

{pi, pj} = {qi, qj} = 0, {pi, qj} = δi,j.

The corresponding dynamical system has the
usual Hamiltonian form

dpi
dt

= −
∂H

∂qi
,

dqi
dt

=
∂H

∂pi
.

For the spinning tops the Hamiltonian struc-
ture is defined by a linear Poisson bracket. In
this case

Pij = Ckijuk.

It is well-known that this formula defines a
Poisson bracket iff Ckij are structure constants
of a Lie algebra.

The class of quadratic Poisson brackets

Pij = Cklij ukul

is of a great importance for the modern math-
ematical physics.



Two Poisson brackets {·, ·}1 and {·, ·}2 are

said to be compatible if

{·, ·}λ = {·, ·}1 + λ{·, ·}2
is a Poisson bracket for any λ.

Theorem. Let

H(λ) = H0 + λH1 + λ2H2 + · · ·

be a Casimir function for the bracket {·, ·}λ.
Then the coefficients Hi commute each other

with respect to both brackets {·, ·}1 and {·, ·}2.

The dynamical equation for any Hamiltonian

Hi can be written in two Hamiltonian forms:

dui
dt

= {Hi, ui}1 = {Hi−1, ui}2.



PDE case. Independent jet variables.

Let x1, ..., xn be independent variables and u

is the dependent variable.

Suppose we have no differential equation at

all. All symbols

u, and uα =
∂α1+···+αn u

∂α1x1 · · · ∂αnxn
(10)

where α = (α1, ..., αn), are regarded as inde-

pendent variables.

In this case, F is the ring of ”all” functions de-

pending on a finite number of variables (10).

We have the total derivative operators

Di =
∑
α
u(α1,...,αi+1,...,αn)

∂

∂ u(α1,...,αi,...,αn)

They are derivations of F such that [Di, Dj] =

0.



If we consider a differential equation, there

are relations between variables (10) and we

must choose a complete set of independent

jet variables. This set plays role of coordi-

nates for the equation.

The procedure looks very simple for the evo-

lutionary equations

ut = F (u, ux, uxx, . . . ,
∂nu

∂xn
) (11)

with one dependent and two independent vari-

ables. All partial derivatives of u, containing

differentiations w.r.t. t, can be eliminated in

virtue of the equation and it’s differential con-

sequences. For example,

uxt =
∂F

∂x
+
∂F

∂u
ux + · · ·+

∂F

∂un
un+1.



So, one can represent any mixed derivative

as a function depending on a finite number

of the following variables

u0 = u, u1 = ux, u2 = uxx, . . . , ui =
∂iu

∂xi
, . . . .

We know how to differentiate all these vari-

ables w.r.t. x:

(u0)x = u1, . . . , (ui)x = ui+1, . . . .

This dynamical system coincides with the to-

tal x-derivative for the jet variables with one

dependent and one independent variables. The

corresponding vector field is given by:

Dx =
∂

∂x
+

∞∑
0

ui+1
∂

∂ui
. (12)



Total t-derivative depends on r.h.s. F of evo-

lution equation:

(u0)t = F (u, u1, . . . , un), . . . , (ui)t = Di
x(F ), . . . .

The corresponding vector field is as follows:

Dt =
∞∑
0

Di
x(F )

∂

∂ui
. (13)



However, for some problems a different choice

of independent jet variables turns out to be

more suitable.

Example. Consider the KdV equation

ut = uxxx + uux

and take

u, u1 = ut, u2 = utt · · ·

v = ux, v1 = vt, v2 = vtt · · ·

w = uxx, w1 = wt, w2 = wtt · · ·

for independent jet variables. Then

Dt =
∞∑
i=0

ui+1
∂

∂ui
+

∞∑
i=0

vi+1
∂

∂vi
+

∞∑
i=0

wi+1
∂

∂wi
,

Dx = v
∂

∂u
+ w

∂

∂v
+ (u1 − uv)

∂

∂w
+ · · ·



Let us consider now the hyperbolical equa-

tions of the form

uxy = G(u, ux, uy).

The most natural choice of independent vari-

ables is

u0 = ū0 = u, u1 = ux, u2 = uxx, . . . ,
ū1 = uy, ū2 = uyy, . . . ,

It is not difficult to prove by induction that

all mixed derivatives of u can be expressed

through them.



The corresponding dynamical systems have

the form

(ui)x = ui+1, i ∈ Z+,

(ūi)x = ai(x, y, u, u1, ū1, . . . , ūi), i ∈ N,

and

(ūi)y = ūi+1, i ∈ Z+,

(ui)x = āi(x, y, u, ū1, u1, . . . , ui), i ∈ N,

where the functions ai and āi are defined re-

cursively in the following way:

a1 = ā1 = G(u, u1, ū1),

a2 = (a1)y =
∂G

∂u
ū1 +

∂G

∂ū1
G+

∂G

∂ū1
ū2,

ā2 = (ā1)x =
∂G

∂u
u1 +

∂G

∂u1
u2 +

∂G

∂ū1
G,

a3 = (a2)y, ā3 = (ā2)x, . . . .



The corresponding total derivatives are given
by the formulas

Dx =
∞∑
0

ui+1
∂

∂ui
+

∞∑
1

Di−1
y (G)

∂

∂ūi

and

Dy =
∞∑
0

ūi+1
∂

∂ūi
+

∞∑
1

Di−1
x (G)

∂

∂ui
.

It seems that the definition of Dx is based on
the definition of Dy and vice verse. However,
these vector fields are well-defined.

Example. Consider the Liouville equation
uxy = exp(u). Then

Dx =
∞∑
0

ui+1
∂

∂ui
+

exp(u)

(
∂

∂ū1
+ ū1

∂

∂ū2
+ (ū2 + ū2

1)
∂

∂ū3
+ · · ·

)
.

It is easy to verify that Dx(ū2 − 1
2ū

2
1) = 0.



Scalar evolution equations.

Main notions: Denote by F the ring of ”all”

functions depending on a finite number of in-

dependent jet variables

u, u1 = ux, u2 = uxx, . . . , (14)

In these variables the vector field

Dx = u1
∂

∂u0
+ u2

∂

∂u1
+ u3

∂

∂u2
+ · · · , (15)

represents the total derivative operator with

respect to x.

Remark. Not any function f(u, u1, ..., uk) be-

longs to ImDx. If f ∈ ImDx, then
δf

δu
= 0,

where

δ

δu
=

∂

∂u
−Dx ◦

∂

∂u1
+D2

x ◦
∂

∂u2
− · · ·



Generalized symmetries.

Consider evolution equation

ut = F (u, ux, uxx, . . . , un), ui =
∂iu

∂xi
. (16)

The corresponding total t-derivative is given
by:

Dt =
∞∑
0

Di
x(F )

∂

∂ui
. (17)

The generalized (higher) symmetry is an evo-
lution equation

uτ = G(u, ux, uxx, . . . , um), (18)

that is compatible with (16).

More rigorously, the total τ-derivative is given
by:

Dτ =
∞∑
0

Di
x(G)

∂

∂ui
. (19)



Definition. Equation (18) is called infinites-

imal local symmetry for (16) if

[Dt, Dτ ] = 0.

Calculating the coefficients of ∂
∂u, we find

that

Dt(G) = F∗(G), (20)

or

F∗(G)−G∗(F ) = 0, (21)

where

a∗ =
∑
k

∂a

∂uk
Dk
x

denotes the Fréchet derivative of element a ∈
F.

The left hand side of (21) must be identically

zero w.r.t. jet variables (14).



Cosymmetries.

The dual objects for symmetries are cosym-

metries which satisfy the equation

Dt(g) + F t∗(g) = 0,

where

F t∗ =
∑
k

(−1)kDk
x ◦

∂F

∂uk

is the differential operator adjoint to F∗. The

product g G of any cosymmetry g and sym-

metry G is a total x-derivative.



Example 1. For any m equation uτ = um is

a symmetry for ut = un.

Example 2. The Burgers equation

ut = uxx + 2uux

has the following third order symmetry

uτ = uxxx + 3uuxx + 3u2
x + 3u2ux.

Example 3. The simplest higher symmetry

for the Korteweg-de Vries equation

ut = uxxx + 6uux

has the following form

uτ = u5 + 10uu3 + 20u1u2 + 30u2u1.



Recursion operators.

The simplest symmetry for any equation (16)

is ux. Indeed, the total derivative related to

the equation uτ = ux coincides with Dx.

The usual way to get other symmetries is to

act to ux by a recursion operator R. By defi-

nition, the recursion operator is a ratio of two

differential operators that satisfies the iden-

tity

[Dt − F∗, R] = Rt − [F∗, R] = 0. (22)

It follows from (20) and (22) that for any

symmetry G the expression R(G) is a sym-

metry as well.



For example, for the Korteweg-de Vries equa-

tion ut = uxxx + 6uux the simplest recursion

operator

R = D2
x + 4u+ 2uxD

−1
x (23)

is the ratio of two differential operators

H1 = Dx, H2 = D3
x + 4uDx + 2ux.



Most of known recursion operators have the

following special form

R = R+
k∑
i=1

GiD
−1
x gi, (24)

where R is a differential operator, Gi and gi
are some fixed symmetries and cosymmetries

common for all members of the hierarchy. We

call recursion operators (24) quasilocal.

Applying such operator to any symmetry, we

get a local expression, (i.e. a function of fi-

nite number of variables u, ux, . . . ui, . . .) since

the product of any symmetry and cosymme-

try belongs to ImDx.

Moreover, a different choice of integration

constants gives rise to an additional linear

combination of the symmetries G1, . . . , Gk.



It is possible to prove that for the Korteweg-

de Vries equation the associative algebra A

of all quasilocal recursion operators is gener-

ated by one operator (23). In other words,

this algebra is isomorphic to the algebra of all

polynomials in one variable.

However, it is not true for the Krichever-

Novikov equation

ut1 = uxxx −
3

2

u2
xx

ux
+
P (u)

ux
, P (V ) = 0.

It turns out that there exist two quasilocal

recursion operators R1 and R2 of orders 4

and 6 related by the elliptic curve equation

R2
2 = R3

1 − φR1 − θ.



Conservation laws.

The notion of first integrals, in contrast to

symmetries, cannot be generalized to the case

of PDEs. It is replaced by the concept of lo-

cal conservation laws, which are also related

to constants of motion.

Definition. A function ρ ∈ F is called a den-

sity of a local conservation law for equation

(16) if there exist a function σ ∈ F such that

Dt(ρ) = Dx(σ). (25)

The function σ is called a flux of the conser-

vation law.

We can eliminate function σ applying to (25)

the Euler operator to get

δDt(ρ)

δu
= 0.



Example. Functions

ρ1 = u, ρ2 = u2, ρ3 = −u2
1 + 2u3

are conserved densities of the Korteweg - de
Vries equation ut = u3 + 6uu1. Indeed,

Dt(u) = Dx(u2 + 3u2),

Dt(u
2) = Dx(2uu2 − u2

1 + 4u3),

Dt(ρ3) = Dx(9u
4+6u2u2+u2

2−12uu2
1−2u1u3) .

Function u3 is not a density of a conserva-
tion law for the Korteweg de Vries equation.
Indeed, Dt(u3) = 3u2u3+18u3u1. In order to
check that the right-hand side is not a total
derivative we apply the Euler operator

δ

δu
(3u2u3 + 18u3u1) = −18u1u2 6= 0 .

If u is a function periodic in space with period
L, then Ik =

∫L
0 ρk dx do not depend on time

and are constants of motion.



Relation (25) is evidently satisfied if ρ = Dx(h)

for any h ∈ F. In this case σ = Dt(h). Such

”conservation laws” we call trivial.

Definition. Two conserved densities ρ1, ρ2
are called equivalent ρ1 ∼ ρ2 if the difference

ρ1−ρ2 is a trivial density (i.e. ρ1−ρ2 ∈ ImDx).

Lemma. For any conserved density ρ, func-

tion g =
δρ

δu
is a cosymmetry.



Hamiltonian operators.

Most of known integrable equations can be
written in a Hamiltonian form

ut = H
(
δρ

δu

)
,

where ρ is a conserved density and H is a
Hamiltonian operator. It is known that this
operator satisfies the equation

(Dt − F∗)H = H(Dt + F t∗), (26)

which means that H takes cosymmetries to
symmetries. Besides (26), the Hamiltonian
operator should satisfy relations equivalent to
the skew-symmetricity and the Jacobi identity
for the corresponding Poisson bracket

{f, g} =
δf

δu
H
(
δg

δu

)
.

It is easy to see that the ratio H2H−1
1 of any

two Hamiltonian operators is a recursion op-
erator.



As the rule, the Hamiltonian operators are lo-
cal (i.e. differential) or quasilocal operators.
The latter means that

H = H +
m∑
i=1

GiD
−1
x Ḡi, (27)

where H is a differential operator and Gi, Ḡi
are fixed symmetries. It is clear that acting
by the operator (27) on any cosymmetry, we
get a local symmetry.

For example, the Korteweg-de Vries equation
can be represent in the Hamiltonian form in
two different ways:

ut = H1

(
δρ3
δu

)
= H2

(
δρ2
δu

)
,

where H1 = Dx, H2 = D3
x + 4uDx + 2ux.

For the Krichever-Novikov equation the sim-
plest quasilocal Hamiltonian operator is given
by

H1 = uxD
−1
x ux.



Symmetry approach to
classification of

integrable equations.

1979-2006

Was developed by: A.Shabat, A.Zhiber,

N.Ibragimov, A.Fokas, V.Sokolov, S.Svinolupov,

A.Mikhailov, R.Yamilov, V.Adler, P.Olver,

J.Sanders, J.P.Wang, V.Novikov, A.Meshkov,

D.Demskoy, H.Chen, Y.Lee, C.Liu,

I.Khabibullin, B.Magadeev, R.Heredero,

V.Marikhin ...

Definition. PDE is integrable if it possesses

infinitely many generalized symmetries.



Why integrable equations possess higher

symmetries?

”Explanation”. A linear equation has in-

finitely many higher symmetries. Integrable

nonlinear equation is related to a linear one

by some transformation. The same transfor-

mation produces higher symmetries for non-

linear equation starting from symmetries of

the linear one.

For instance, the Burgers equation is inte-

grable because of the Cole-Hopf substitution

u =
vx

v
,

which relates the equation to vt = vxx. More-

over, the same substitution maps the third

order symmetry of the Burgers equation to

vτ = vxxx,

etc.



The first classification result in frames of the
symmetry approach was:
Theorem. (Shabat-Zhiber 1979)

Nonlinear hyperbolic equation of the form

uxy = F (u)

possesses higher symmetries iff (up to scal-
ings and shifts)

F (u) = eu, F (u) = eu+e−u, or F (u) = eu+e−2u.

The complete classification of integrable hy-
perbolic equations of the form

uxy = F (u, ux, uy)

is an open problem till now.

Example:

uxy = S(u)
√

1− u2
x

√
1− u2

y ,

S′′ − 2S3 + c S = 0;



Integrability conditions for

evolution equations

For further consideration we will need formal

pseudo-differential series, which for simplicity

we shall call formal series

A = amD
m
x +am−1D

m−1
x + · · ·+a0+a−1D

−1
x +

a−2D
−2 + · · · ak ∈ F, m ∈ Z.

The product of two formal series is defined

by

Dk
x ◦ bDm

x = bDm+k
x + C1

kDx(b)D
k+m−1
x +

C2
kD

2
x(b)D

k+m−2
x + · · · ,

where k,m ∈ Z and C
j
n is the binomial coeffi-

cient

C
j
k =

k(k − 1)(k − 2) · · · (k − j + 1)

j!
.

This product is associative.



For any series

A = amD
m
x +am−1D

m−1
x + · · ·+a0+a−1D

−1
x +

we can find uniquely the inverse element

B = b−mD
−m
x + b−m−1D

−m−1
x + · · · , bk ∈ F

such that A ◦B = B ◦A = 1.

Moreover we can find a series

C = c1Dx + c0 + c−1D
−1
x + c−2D

−2
x + · · ·

such that Cm = A. If we know first k coeffi-

cients of the series A we can find the first k

coefficients of the series C.

Example. Let A = D2
x + u. Then

C = A1/2 = Dx +
u

2
D−1
x −

u1

4
D−2
x + · · · .

We can easily find as many coefficients of C

as required.



Definition. The residue of a formal series
A =

∑
k≤n akD

k
x, ak ∈ F is by definition the

coefficient at D−1
x :

res (A) = a−1 .

The logarithmic residue of A is defined as

res logA =
an−1

an
.

We will use the following important Adler’s
Theorem. For any two formal series A,B the
residue of the commutator belongs to ImDx:

res[A,B] = Dx(σ(A,B)),

where

σ(A,B) =
p+q+1>0∑

p≤ord(B), q≤ord(A)

Cp+q+1
q ×

p+q∑
s=0

(−1)sDs
x(aq)D

p+q−s
x (bq) .



Definition. A pseudo-differential symbol

L = l1Dx + l0 + l−1D
−1
x + · · · ,

where lk = lk(usk, . . . , u), is called a formal

recursion operator (or formal symmetry) for

the equation

ut = F (un, un−1, . . . , u)

if

Lt = [F∗, L], where F∗ =
n∑

k=0

∂F

∂uk
Dk
x

Theorem 1 (Ibragimov-Shabat 1980). If

equation ut = F possesses an infinite hierar-

chy of higher symmetries

uτi = Gi(umi, . . . , u), mi →∞

then the equation has a formal recursion op-

erator.



Theorem 2 (Svinolupov-VS 1982). If equa-

tion ut = F possesses an infinite hierarchy of

higher conserved densities

ρi(umi, . . . , u)t ∈ ImDx,
∂2ρi
∂u2

mi

6= 0, mi →∞

then the equation has a formal recursion op-

erator.

Theorem 3 (Svinolupov-VS 1982). If equa-

tion ut = F is related to the linear equation

vt = vn by a differential substitution

v = ϕ(uk, · · · , u)

then the equation has a formal recursion op-

erator.



The formal recursion operator allows us to
construct local conservation laws for the equa-
tion ut = F :

Proposition. The functions

ρi = res(Li), i = −1,1,2, . . . , and ρ0 =
l0
l1

are conserved densities.

Example. For the Korteweg-de Vries equa-
tion ut = u3 + 6uu1 we can take

L =
(
D2
x + 4u+ 2u1D

−1
x

)1/2
and

ρ1 = 2u, ρ2 = 2u1, ρ2 = 2u2 + u2, . . .

Theorem 4 (Svinolupov-VS 1982).
i). Under assumptions of Theorem 2 all even
canonical densities ρ2j are trivial.
ii). Under assumptions of Theorem 3 all
canonical densities are trivial.

We call ρi canonical densities.



Classification of KdV-type equations
(Ibragimov-Shabat, Fokas, 1980)

Consider equations of the form

ut = u3 + f(u1, u). (kdvt)

Let us find the simplest canonical density ρ1.
Equating the coefficients of D3

x, D
2
x, . . . in

Lt − [F∗, L] = 0,

where

L = l1Dx + l0 + l−1D
−1
x + · · · ,

F∗ = D3
x + ∂f

∂u1
Dx + ∂f

∂u,

we get:

D3
x : 3Dx(l1) = 0; D2

x : 3D2
x(l1) + 3Dx(l0) = 0;

Dx : D3
x(l1) + 3D2

x(l0) + 3Dx(l−1) + ∂f
∂u1

Dx(l1) =

(l1)t + l1Dx
(
∂f
∂u1

)
.

If we put l1 = 1 then

ρ1 = l−1 =
1

3

∂f

∂u1



Thus we discovered a very remarkable fact:(
∂f

∂u1

)
t

= Dx(σ1)

for any integrable equation !

Example. For the mKdV-equation ut = u3+

3u2u1 we expect that ρ1 = u2 is a conserved

density. Indeed,

(u2)t = Dx(2uu2 − u2
1 +

1

2
u4).



We can eliminate unknown σ1 applying the

Euler operator

δ

δu
=

∂

∂u
−Dx ◦

∂

∂u1
+D2

x ◦
∂

∂u2
− · · ·

As the result we get the first integrability con-

dition

0 =
δ

δu

(
∂f

∂u1

)
t

= 3u4

(
u2

∂4f

∂u4
1

+ u1
∂4f

∂u3
1∂u

)
+· · ·

It implies

f(u1, u) = µu3
1 +A(u)u2

1 +B(u)u1 + C(u).

For such f the first condition is equivalent to

µA′ = 0, B′′′ + 8µB′ = 0,

(B′C)′ = 0, AB′ + 6µC′ = 0.

It is almost enough to complete the classifi-

cation.



The second integrability condition has the

form (
∂f

∂u

)
t
= Dx(σ2)

Using this fact we derive several more dif-

ferential relations between A(u), B(u), C(u).

Solving them alltogether we obtain the fol-

lowing list of equations

ut = uxxx + (c1u
2 + c2u+ c3)ux

ut = uxxx −
1

2
u3
x + (c1e

2u + c2e
−2u + c3)ux

ut = uxxx + c1u
3
x + c2u

2
x + c3ux + c4



For more general class of equations

ut = u3 + f(u2, u1, u) (28)

several simplest canonical densities have the

form

ρ0 =
∂f

∂u2
,

ρ1 = 3
∂f

∂u1
+

(
∂f

∂u2

)2

,

ρ2 = 9σ0 + 27
∂f

∂u
− 9

∂f

∂u2

∂f

∂u1
+ 2

(
∂f

∂u2

)3

,

. . .

The point transformations

u = ψ(û)

preserve this class of equations.



Description of integrable equations (28).
(Svinolupov-VS 1982)
1. Equation of the form

ut = uxxx + f(uxx, ux, u)

is integrable iff it satisfies integrability condi-
tions (ρi)t = D(σi), i = 0,1,2,3.
2. A complete list (up to ”almost invertible”
transformations) of equations with infinite hi-
erarchy of conservation laws can be written
as:

ut = uxxx + uux, KdV

ut = uxxx + u2 ux, mKdV

ut = uxxx −
1

2
u3
x + (αe2u + βe−2u)ux, CD1

ut = uxxx −
1

2
Q′′ ux +

3

8

((Q− u2
x)x)

2

ux (Q− u2
x)

, CD2

ut = uxxx −
3

2

u2
xx +Q(u)

ux
KN ,

where Q′′′′′(u) = 0.
3. Equations KdV and KN form a complete
list up to differential substitutions.



All integrable equations of the form

ut = F (u2, u1, u, x, t)

were listed by Svinolupov 1985 (see also
VS-Svinolupov 1991.)

The answer is:

ut = u2 + 2uux + h(x),

ut = u2u2 − λxu1 + λu

ut = u2u2 + λu2

ut = u2u2 − λx2u1 + 3λxu

This is a complete list up to the contact
transformations

x̂ = ϕ(x, u, u1), û = ψ(x, u, u1),

ûi =
(

1
Dx(ϕ)

Dx
)i

(ψ),

where

Dx(ϕ)
∂ψ

∂u1
= Dx(ψ)

∂ϕ

∂u1
.



All equations of the form

ut = u5 + F (u4, u3, u2, u1, u),

possessing higher conservation laws were found

by Drinfeld-VS-Svinolupov 1985.

Examples: Well-known equations

ut = u5 + 5uu3 + 5u1u2 + 5u2u1,

ut = u5 + 5uu3 + 25
2 u1u2 + 5u2u1

ut = u5 + 5(u1 − u2)u3 + 5u2
2 − 20uu1u2

−5u3
1 + 5u4u1

A new equation

ut = u5 + 5(u2 − u2
1 + λ1e

2u − λ2
2e
−4u)u3

−5u1u
2
2 + 15(λ1e

2u + 4λ2
2e
−4u)u1u2 + u5

1

−90λ2
2e
−4u u3

1 + 5(λ1e
2u − λ2

2e
−4u)2 u1



Classification of systems.

The most significant work has been done by

Mikhailov-Shabat-Yamilov 1987. All sys-

tems of the form

ut = u2 + F (u, v, u1, v1),

vt = −v2 +G(u, v, u1, v1)

possessing higher conservation laws, were listed.

Example 1: Well-known NLS-equation

ut = u2 + u2v,

vt = −v2 − v2u,



Example 2. The Landau-Lifshitz equation

(after stereographic projection)

ut = u2 −
2u2

1

u+ v
−

4( p(u, v)u1 + r(u)v1 )

(u+ v)2

vt = −v2 +
2v21
u+ v

−
4( p(u, v)v1 + r(−v)u1 )

(u+ v)2
,

where

r(y) = c4y
4 + c3y

3 + c2y
2 + c1y+ c0

and

p(u, v) = 2c4u
2v2 + c3(uv

2 − vu2)−

2c2uv+ c1(u− v) + 2c0.



Multi-component systems.

In several papers by Svinolupov 1991-1994
remarkable relations between special types of
polynomial N-component systems and non-
associative algebras were established.

Theorem 1. If Cijk are structural constants
of any left-symmetric algebra then the system

uit = uixx + 2Cijku
kujx +Aijkmu

kujum,

where i, j, k = 1, . . . , N and

Aijkm = 1
3(C

i
jrC

r
km + CikrC

r
mj + CimrC

r
jk

−CirjC
r
km − CirkC

r
mj − CirmC

r
jk),

possesses higher symmetries.

Theorem 2. If Cijk are structural constants
of any Jordan algebra then the KdV-type sys-
tem

uit = uixxx + Cijku
kujx, i, j, k = 1, . . . , N

possesses higher symmetries.



Theorem 3. If Cijkm are structural constants
of any Jordan triple system then the mKdV-
type system

uit = uixxx + Cijkmu
kujumx , i, j, k = 1, . . . , N

possesses higher symmetries.

Theorem 4. If Cijkm are structural constants
of any Jordan triple system then the nonlinear
Schroedinger-type system

uit = uixx + Cijkmu
jvkum, i, j, k = 1, . . . , N

vit = −vixx − Cijkmv
jukvm

possesses higher symmetries.

Theorem 5. If Cijkm are structural constants
of any Jordan triple system then the nonlinear
derivative Schroedinger-type system

uit = uixx + Cijkm(ujvkum)x, i, j, k = 1, . . . , N

vit = −vixx − Cijkm(vjukvm)x

possesses higher symmetries.



Definition of left-symmetric algebra:

As(X,Y, Z) = As(Y,X,Z),

where

As(X,Y, Z) = (X ◦ Y ) ◦ Z −X ◦ (Y ◦ Z).

Definition of Jordan algebra:

X ◦Y = Y ◦X, X2◦(Y ◦X) = (X2◦Y )◦X.

If ∗ is a multiplication in an associative alge-

bra then X ◦ Y = X ∗ Y + Y ∗ X is a Jordan

operation.

Definition of Jordan triple system:

{X,Y, Z} = {Z, Y,X},

{X,Y, {V,W,Z}} − {V,W, {X,Y, Z}} =
{{X,Y, V },W,Z} − {V, {Y,X,W}, Z}.



Example of left-symmetric algebra.
The set of all N-dimensional vectors w.r.t.

X ◦ Y =< X,C > Y+ < X,Y > C,

where C is a fixed (constant) vector.

Examples of simple Jordan algebras.
a) The set of all N ×N matrices w.r.t.

X ◦ Y = XY + Y X

b) The set of all N-dimensional vectors w.r.t.

X◦Y =< X,C > Y+ < Y,C > X− < X,Y > C.

Examples of simple triple Jordan systems.
a) The set of all N ×N matrices w.r.t.

{X,Y, Z} = XY Z + ZY X

b) The set of all N-dimensional vectors w.r.t.

{X,Y, Z} =< X,Y > Z+ < Y,Z > X− < X,Z > Y.

c) The set of all N-dimensional vectors w.r.t.

{X,Y, Z} =< X,Y > Z+ < Y,Z > X.



Examples of corresponding integrable sys-

tems: Svinolupov-VS 1994.

The matrix Burgers equation

ut = u2 + uu1;

the matrix KdV-equation

ut = u1 + uu1 + u1u;

the matrix mKdV equation

ut = u3 + u2u1 + u1u
2;

the vector Burgers equation (new)

ut = u2 + 2 < u, ux > C + 2 < C, u > ux+
< u, u >< C, u > C− < u, u >< C,C > u;

the vector KdV equation (new)

ut = u3+ < C, u > u1+ < C, u1 > u− < u, u1 > C;



the matrix NLS equation

ut = u2 + 2uvu,
vt = −v2 − 2 vuv;

the vector NLS equation 1 (Manakov)

ut = u2+ < u, v > u,
vt = −v2− < u, v > v;

the vector NLS equation 2 (Kulish-Sklyanin)

ut = u2 + 2 < u, v > u− < u, u > v,
vt = −v2 − 2 < u, v > v+ < v, v > u;



Classification of integrable

matrix evolution equations.

Olver and Sokolov 1998 listed integrable

non-abelian polynomial evolution equations hav-

ing higher symmetries. One of the lists:

ut = u3 + 3u2u1 + 3u1u
2,

ut = u3 + 3uu2 − 3u2u− 6uu1u,

ut = u3 + 3u2
1.

Second order non-abelian systems of NLS-

and DNLS-types also were listed and several

new integrable models were found.

Examples.

ut = u2+2(u+v)u1, vt = −v2+2v1(u+v);

ut = u2 + 2u1vu, vt = −v2 + 2vuv1.



Non-abelian Painleve equations:

u2 + 3u2 = xE + C,

u2 + 2u3 + xu = λE,

u2 +
1

x
u1 = u1u

−1u1.



Classification of integrable
matrix ODEs.

Polynomial non-abelian ODEs have been con-
sidered by Mikhailov-VS, 2000 and some
partial classification results have been obtained.

For example the following system

ut = v2, vt = u2

possesses infinitely many symmetries

uτi = Pi(u, v), vτi = Qi(u, v)

and first integrals

ρi = traceRi(u, v).

There exists two interesting integrable non-
abelian equations containing arbitrary con-
stant element C:

ut = Cu2 − u2C

and

ut = uCu2 − u2Cu.
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