Integrable equations

A.V.Mikhailov and V.V.Sokolov

1. Introduction
2. Examples of Integrable Equations
3. Examples of Lax pairs
4. Structure of Lax pairs
5. Local Symmetries, conservation laws and the Lax pairs.

- Symmetries and local conservation laws
- Lax representation \Longrightarrow infinite hierarchy of conservation laws
- Lax representation \Longrightarrow infinite hierarchy of symmetries

6. Gelfand Dickey theory
7. Darboux transformations and solitons

Introduction.

1. Integrable ODEs

$$
\frac{d}{d t} \mathbf{U}=\mathbf{F}(\mathbf{U}), \quad \mathbf{U}=\left(U_{1}, \ldots, U_{N}\right)
$$

- First Integrals $I=I(\mathrm{U})$

$$
\frac{d}{d t} I=\sum_{k=0}^{N} \frac{\partial I}{\partial U_{k}} F_{k}(\mathrm{U})=0
$$

- Symmetries G(U)

$$
\frac{d}{d \tau} \mathbf{U}=\mathbf{G}(\mathbf{U}), \quad \frac{d}{d \tau} \mathbf{F}(\mathbf{U})=\frac{d}{d t} \mathbf{G}(\mathbf{U})
$$

2. $1+1$ dimensional systems of PDEs (evolutionary)

$$
u_{t}=f\left(u, u_{1}, \ldots, u_{n}\right), \quad u_{1}=u_{x}, u_{2}=u_{x x}, u_{3}=u_{x x x}, \ldots
$$

- No first Integrals
- Infinite hierarchy of local conservation laws
- Infinite hierarchy of local symmetries
- Multi-Hamiltonian structure
- Recursion operators
- Master symmetry
- Bäclund transformations
- the Lax representation
- Inverse spectral transform and solution of IVP
- Multi-soliton and algebra-geometric solutions
- Darboux transformations
- Bi-linear representations and the τ function
- Connection with the Painlevé theory

3. Non-evolutionary equations, multi-dimensional equations, integro-differential, differential-difference, discrete,

Examples of Integrable Equations
Gardner Green Kruskal and Miura 1967, the KdV equation

$$
u_{t}=u_{x x x}+6 u u_{x}
$$

and the discovery of the inverse scattering method.
Zakharov and Shabat 1971, the NLS equation

$$
i u_{t}=u_{x x} \pm 2|u|^{2} u
$$

1972, the mKdV equation

$$
u_{t}=u_{x x x} \pm 6 u^{2} u_{x}
$$

1973, N-wave equations. For $N=3$

$$
\begin{aligned}
& u_{1 t}+v_{1} u_{1 x}=i u_{2}^{*} u_{3} \\
& u_{2 t}+v_{2} u_{2 x}=i u_{1}^{*} u_{3} \\
& u_{3 t}+v_{3} u_{3 x}=i u_{1} u_{2}
\end{aligned}
$$

1973, the Sine-Gordon equation

$$
u_{t t}-u_{x x}+\sin u=0
$$

1974, the Boussinesq equation

$$
u_{t t}=u_{x x} \pm u_{x x x x}+\left(u^{2}\right)_{x x}
$$

1976, the massive Thirring model

$$
\begin{aligned}
& i u_{t}+v+u|v|^{2}=0 \\
& i v_{x}+u+v|u|^{2}=0
\end{aligned}
$$

1979, the Landau and Lifshitz equation $\mathbf{S}=\left\{S_{1}, S_{2}, S_{3}\right\}, \mathbf{S} \cdot \mathbf{S}$ 1.

$$
\mathbf{S}_{t}=\mathbf{S} \bigwedge \mathbf{S}_{x x}+\mathbf{S} \bigwedge \mathbf{J S}
$$

1979, the 2-d Toda Iattice

$$
u_{n t t}-u_{n x x}=\exp \left(u_{n+1}-u_{n}\right)-\exp \left(u_{n}-u_{n-1}\right)
$$

and the Tzetzeika equation

$$
u_{t t}-u_{x x}+\exp (u)-\exp (-2 u)=0
$$

$2+1$ dimensional equations
1973 ,the Kadomtsev-Petviashvili equation

$$
\left(u_{t}-u_{x x x}-6 u u_{x}\right)_{x}= \pm u_{y y}
$$

Nizhnik 1980, Veselov-Novikov 1984

$$
u_{t}+u_{z z z}+u_{\bar{z} \bar{z} \bar{z}}=3\left(u v_{z}\right)_{z}+3\left(u w_{\bar{z}}\right)_{\bar{z}}, u=v_{\bar{z}}=w_{z}
$$

4-d equations (self-dual Yang Mills) 1973.

$$
\left(g_{z} g^{-1}\right)_{\bar{z}}+\left(g_{y} g^{-1}\right)_{\bar{y}}=0
$$

Differential-difference (Volterra, Toda), discrete, ODEs (N-dim. Euler Top), integro-differential (Benjamin-Ono),

Examples of the Lax representations.

KdV (P.Lax 1968)

$$
u_{t}=u_{x x x}+6 u u_{x} \Longleftrightarrow L_{t}=[L, A]
$$

where

$$
L=D_{x}^{2}+u, \quad A=4 D_{x}^{3}+6 u D_{x}+3 u_{x}
$$

Two linear problems

$$
\phi_{x x}+u \phi-\lambda \phi=0 \quad \text { and } \quad \phi_{t}=A \phi
$$

are compatible if and only if $u(x, t)$ solves the KdV equation. In the basis ϕ, ϕ_{x} we can represent

$$
\begin{gathered}
\hat{L}=D_{x}+\left(\begin{array}{rr}
0 & -1 \\
u-\lambda & 0
\end{array}\right) \\
\hat{A}=\left(\begin{array}{cc}
u_{x} & -2 u-4 \lambda \\
u_{x x}+2 u^{2}+2 \lambda u-4 \lambda^{2} & -u_{x}
\end{array}\right)
\end{gathered}
$$

The condition $\left[\widehat{L}, D_{t}-\widehat{A}\right]=0$ is equivalent to the KdV equation.

We always can consider two linear problems

$$
D_{x} \phi=U \phi \quad D_{t} \phi=V \phi
$$

where U, V are two $n \times n$ matrices which depend on a spectral parameter λ and our dynamical variables (dependent variables and their derivatives).

Example (NLS):

$$
\begin{gathered}
L=D_{x}+\left(\begin{array}{cc}
i \lambda & -q \\
\pm \bar{q} & -i \lambda
\end{array}\right)=D_{x}+i \lambda \sigma_{3}+W \\
A=D_{t}-\left(\begin{array}{rr}
i \lambda^{2} \pm i|q|^{2} & 2 i \lambda q+i q_{x} \\
\mp 2 i \lambda \bar{q} \pm i \bar{q}_{x} & -i \lambda^{2} \mp i|q|^{2}
\end{array}\right)
\end{gathered}
$$

The compatibility condition gives the Nonlinear Schrödinger equation

$$
i q_{t}=q_{x x} \pm|q|^{2} q .
$$

Example: For the Tzetzeika equation

$$
u_{x y}+\exp (u)-\exp (-2 u)=0
$$

the corresponding operator L is of the form

$$
L=D_{x}-i \frac{\sqrt{3}}{3} u_{x}\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)-\lambda\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & \bar{q} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $q=\exp (2 \pi i / 3)$.
Example: The Landau and Lifshitz equation

$$
\begin{gathered}
\mathbf{S}_{t}=\mathbf{S} \bigwedge \mathbf{S}_{x x}+\mathbf{S} \bigwedge \mathbf{J S} \\
L=D_{x}-i \sum_{k=1}^{3} W_{k}(\lambda) S_{k} \sigma_{k}
\end{gathered}
$$

where $W_{n}(\lambda)^{2}-W_{m}(\lambda)^{2}=J_{n}-J_{m}$ and σ_{k} are Pauli matrices.

1. Structure of Lax pairs.

We consider two differential operators

$$
L=D_{x}-U, \quad A=D_{t}-V
$$

where $U=U(x, t), V=V(x, t)$ are two $n \times n$ matrices. The compatibility condition

$$
\begin{equation*}
[L, A]=D_{t}(U)-D_{x}(V)+[U, V]=0 \tag{1}
\end{equation*}
$$

provides the existence of a fundamental solution to the over-determined linear systems

$$
L \Psi=\Psi_{x}-U \Psi=0, \quad A \Psi=\Psi_{t}-V \Psi=0
$$

Equation (1) is a nonlinear PDE, but trivial. Its general solution is given by

$$
U=\Psi_{x} \Psi^{-1}, \quad V=\Psi_{t} \Psi^{-1}
$$

where $\Psi=\Psi(x, t)$ is any nonsingular matrix function.
Equation (1) becomes non-trivial if we assume that matrices U, V also depend on an auxiliary (spectral) parameter λ and are rational functions of λ. We also require that equation (1) is satisfied for all values of λ.

Example: $U=U_{0}+\lambda U_{1}, V=V_{0}+\lambda^{-1} V_{1}$, then (1) yields
at $\quad \lambda \quad D_{t}\left(U_{1}\right)-\left[V_{0}, U_{1}\right]=0$
at $\quad \lambda^{0} \quad D_{t}\left(U_{0}\right)-D_{x}\left(V_{0}\right)+\left[U_{0}, V_{0}\right]+\left[U_{1}, V_{1}\right]=0$
at $\quad \lambda^{-1} \quad D_{x}\left[V_{1}\right]-\left[U_{0}, V_{1}\right]=0$
Solution of a matrix Riemann-Hilbert problem $\Psi(x, t, \lambda)$

$$
\Psi_{x} \Psi^{-1}=U_{0}+\lambda U_{1}, \quad \Psi_{t} \Psi^{-1}=V_{0}+\lambda^{-1} V_{1}
$$

Gauge freedom, gauge transformations

$$
\begin{gathered}
L \rightarrow \widehat{L}=g^{-1} L g, \quad A \rightarrow \hat{A}=g^{-1} A g . \\
\widehat{L}=D_{x}-\widehat{U}_{0}-\lambda \widehat{U}_{1}, \quad \hat{U}_{0}=g^{-1} U_{0} g-g^{-1} g_{x}, \widehat{U}_{1}=g^{-1} U_{1} g \\
\hat{A}=D_{t}-\widehat{V}_{0}-\lambda^{-1} \widehat{V}_{1}, \quad \hat{V}_{0}=g^{-1} V_{0} g-g^{-1} g_{t}, \quad \hat{V}_{1}=g^{-1} V_{1} g
\end{gathered}
$$

For example

$$
\mathbf{S}_{t}=\mathbf{S} \bigwedge \mathbf{S}_{x x} \text { and } i q_{t}=q_{x x}+2|q|^{2} q
$$

are gauge equivalent.
We can extend the gauge group by external automorphysms

$$
L \rightarrow-h^{-1} L^{\mathrm{A}} h, \quad A \rightarrow-h^{-1} A \mathrm{~A}_{h} .
$$

Matrices g, h may also depend on λ, be differential operators,

Miura transformations are examples of gauge transformations.

Change of the spectral parameter $\lambda \rightarrow \mu=\sigma(\lambda)$
Example: $\lambda=\frac{\mu+1}{\mu-1}$

$$
L \rightarrow D_{x}-\tilde{U}_{0}+\frac{\tilde{U}_{1}}{\mu-1}, \quad A \rightarrow D_{t}-\tilde{V}_{0}+\frac{\tilde{V}_{1}}{\mu+1},
$$

where $\tilde{U}_{0}=U_{0}+U_{1}, \tilde{U}_{1}=2 U_{1}, \tilde{V}_{0}=V_{0}+V_{1}, \tilde{V}_{1}=-2 V_{1}$. By a gauge transformation one can set $\tilde{U}_{0}=\tilde{V}_{0}=0$. Result is a Lax pair for the Principal Chiral field model.

Algebraic structure

$+,[\cdot, \cdot], D_{x}, D_{t}$ - Lie algebra $U, V \in \mathcal{A}$.
Nonlinear coupled equations \Rightarrow the Lie algebra \mathcal{A} is simple.

Solvable $\mathcal{A} \Rightarrow$ linear triangular system of equations.

Reductions, the reduction group

Example: The Tzetzeika equation

$$
L=D_{x}-i \frac{\sqrt{3}}{3} u_{x}\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)-\lambda\left(\begin{array}{lll}
q & 0 & 0 \\
0 & \bar{q} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $q=\exp (2 \pi i / 3)$.
We start with a general operator: $L=D_{x}-i U_{0}-\lambda U_{1}$

$$
g^{-1} L g \rightarrow \hat{U}_{1}=g^{-1} U_{1} g=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right), \quad \operatorname{diag} \widehat{U}_{0}=0
$$

Thus

$$
L=D_{x}-i\left(\begin{array}{ccc}
0 & u_{12} & u_{13} \\
u_{21} & 0 & u_{23} \\
u_{31} & u_{32} & 0
\end{array}\right)-\lambda\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right)
$$

We impose a symmetry Q, s.t. $Q^{3}=i d$:

$$
Q: L(\lambda) \rightarrow J^{-1} L(\bar{q} \lambda) J=L(\lambda), \quad J=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Then $a_{n}=a q^{n}$ and

$$
L=D_{x}-i\left(\begin{array}{ccc}
0 & w & v \\
v & 0 & w \\
w & v & 0
\end{array}\right)-\lambda a\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & \bar{q} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Imposing another symmetry $P,\left(P^{2}=i d\right)$:

$$
P: L(\lambda) \rightarrow-L^{\mathrm{A}}(-\lambda)=L(\lambda)
$$

we find $w=-v$. Transformations P, Q form the S_{3} group.

Symmetry $H,\left(H^{2}=i d\right)$:

$$
H: L(\lambda) \rightarrow h^{-1} \bar{L}(\bar{\lambda}) h=L(\lambda), h=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

implies that w and a are real.
These symmetries act on solutions $L \Psi=0$

$$
\begin{array}{ll}
Q: & \Psi(\lambda) \rightarrow J \Psi(q \lambda) \\
P: & \Psi(\lambda) \rightarrow\left(\Psi^{\operatorname{tr}}(-\lambda)\right)^{-1} \\
H: & \Psi(\lambda) \rightarrow h \bar{\Psi}(\bar{\lambda})
\end{array}
$$

Local Symmetries, conservation laws and the Lax pairs

How to find symmetries and local conservation laws for equations having the Lax representations (such as KdV $L=D_{x}^{2}+u$, Nonlinear Schrödinger equation, ...)?

A few general definitions:

1. We define a differential ring $\mathcal{R}[u]$ of polynomials of infinite number of variables u, u_{1}, u_{2}, \ldots over \mathbb{C} with a derivation D defined by

$$
D\left(u_{n}\right)=u_{n+1}, \quad D(\alpha)=0, \alpha \in \mathbb{C}
$$

We assume that $1 \notin \mathcal{R}[u]$. Derivation D represents D_{x}, and u_{n} represents $\partial_{x}^{n} u$.

An evolutionary equation, such as the KdV

$$
u_{t}=u_{3}+6 u u_{1}=f[u] \in \mathcal{R}[u]
$$

defines another derivation D_{t} of the $\mathcal{R}[u]$ by

$$
D_{t}(u)=f[u], D_{t}\left(u_{n}\right)=D^{n}(f[u]), D_{t}(\alpha)=0, \alpha \in \mathbb{C}
$$

which commutes with D. Derivations of $\mathcal{R}[u]$ commuting with D we call evolutionary derivations.
2. A symmetry can be defined as an evolutionary derivation D_{τ} commuting with D_{t}. It is sufficient to define the action of D_{τ} on u, i.e. an element $D_{\tau}(u)=g[u] \in \mathcal{R}[u]$. Element $g[u]$ is usually called a symmetry generator.

For KdV:

$$
\begin{aligned}
& u_{\tau_{1}}=u_{1} \\
& u_{\tau_{3}}=u_{3}+6 u u_{1} \\
& u_{\tau_{5}}=u_{5}+10 u u_{3}+20 u_{1} u_{2}+30 u^{2} u_{1}
\end{aligned}
$$

are symmetries, and there are infinitely many symmetries. All corresponding derivations commute $\left[D_{\tau_{n}}, D_{\tau_{m}}\right]=$ 0 .
3. Local conservation laws. Element $\rho \in \mathcal{R}[u]$ is said to be a density of a local conservation law if

$$
D_{t}(\rho)=D(\sigma), \quad \sigma \in \mathcal{R}[u]
$$

i.e. $D_{t}: \rho \rightarrow D(\mathcal{R}[u])$.
$\rho=D(h), h \in \mathcal{R}[u]$ is a trivial density.
$\rho \in \mathcal{R}[u] / D(\mathcal{R}[u])$. Densities ρ_{1}, ρ_{2} are equivalent, if $\rho_{1}-$ $\rho_{2} \in D(\mathcal{R}[u])$

$$
\begin{gathered}
h \in D(\mathcal{R}[u]) \Longleftrightarrow \frac{\delta h}{\delta u}=0 \\
\frac{\delta h}{\delta u}=\sum_{k=0}(-D)^{k}\left(\frac{\partial h}{\partial u_{k}}\right)
\end{gathered}
$$

For KdV $u, \rho_{0}=u^{2}, \rho_{2}=u_{1}^{2}-2 u^{3}, \ldots$ are densities of local conservation laws.

