# Abelian integrals, Picard-Vessiot groups and the Schanuel conjecture.

D. Bertrand (Paris VI)

ICMS, Edinburgh, Aug. 2006

#### Schanuel's conjecture

 $x_1, ..., x_n \in \mathbf{C}$ , linearly independent over  $\mathbf{Q}$  $\Rightarrow tr.deg_{\mathbf{Q}}\mathbf{Q}(x_1, ..., x_n, e^{x_1}, ..., e^{x_n}) \ge n$  (?)

Equivalently,

 $x_1, ..., x_n \in \mathbf{C}, y_1, ..., y_n \in \mathbf{C}^*, y_i = e^{x_i}$ . Then,

 $tr.deg_{\mathbf{Q}}\mathbf{Q}(x_i'\mathbf{s}, y_i'\mathbf{s}) \geq rk_{\mathbf{Z}}(\mathbf{Z}x_1 + \dots + \mathbf{Z}x_n)$  (?)

Exponential case (Lindemann-Weierstrass thm) : .  $\forall i, x_i \in \overline{\mathbf{Q}} \Rightarrow$  true (with equality).

Logarithmic case (Schneider's problem) : .  $\forall i, y_i \in \overline{\mathbf{Q}} \Rightarrow$  (?) (with equality)

$$G = (\mathbf{G}_m)^n, \text{ $n$-dim'l split torus over } \mathbf{Q} \subset \mathbf{C}$$
$$TG := T_0 G = Lie(G)$$
$$exp_G : TG(\mathbf{C}) \simeq \mathbf{C}^n \to G(\mathbf{C}) \simeq (\mathbf{C}^*)^n,$$
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \quad y = \begin{pmatrix} e^{x_1} \\ \vdots \\ e^{x_n} \end{pmatrix}.$$

**Lie hull**  $\mathcal{G}_x$  of x := smallest algebraic subgroup H of G such that  $x \in TH(\mathbf{C})$ .

(NB : contains, often strictly, the hull  $G_y$  of y = smallest alg. subgroup H of G such that  $y \in H(\mathbf{C})$ ).

The conjecture then reads :

$$x \in TG(\mathbf{C}), y = exp_G(x) \in G(\mathbf{C})$$
  
 $\Rightarrow tr.deg_{\mathbf{Q}}\mathbf{Q}(x, y) \ge dim\mathcal{G}_x \ (?)$ 

#### **Abelian integrals**

$$k = \overline{k} \subset \mathbf{C}, \ P \in k[X, Y], f \in k(X, Y), p_0, p_1 \in k$$
$$\int_{p_0}^{p_1} f(X, Y) dX \quad , \quad P(X, Y) = 0.$$

More intrinsically, X/k smooth projective algebraic curve,  $\omega \in H^0(X, \Omega^1_{X/k}(D))$  for some  $D \in Div^+(X)$ . By Weil-Rosenlicht, there is :

• a generalized Jacobian G = Jac(X, D) :

 $\mathbf{0} \to L \to G \to A \to \mathbf{0}$ 

where  $L = \mathbf{G}_m^r \times \mathbf{G}_a^s, A = Jac(X);$ 

• a canonical (Abel-Jacobi) map

 $\phi$ : (X, point )  $\rightarrow$  G,

• an invariant differential form  $\omega_G \in T^*G(k)$ on G with  $\phi^*\omega_G = \omega$  mod. exact forms.

Set  $y = \phi(P_1) - \phi(P_0) \in G(k)$ . Up to addition of an element of k, we get

$$\int_{P_0}^{P_1} \omega = \int_0^y \omega_G.$$

More precisely, there exists  $x \in TG(\mathbf{C})$  (depending on the path of integration) such that

$$y = exp_G(x)$$
, and  $\int_0^y \omega_G = \langle \omega_G | x \rangle$ .

$$(x, y) \in (TG \times G)(\mathbf{C}), y = exp_G(x)$$
  
 $\Rightarrow tr.deg_{\mathbf{Q}}\mathbf{Q}(x, y) \ge \mathcal{G}_x \ (??)$ 

 $X = \mathbf{P}_1, D = (0) + (\infty) \rightsquigarrow G = \mathbf{G}_m$ , and  $x = \ell n(y)$ : standard Schanuel problem.

Otherwise, (??) must be modified. One attaches to  $\mathcal{M} = (X, D, (P_1) - (P_0))$  a "motivic Galois group"  $G_{\mathcal{M}}$ , acting on TG.

André's conjecture :  $tr.deg_{\mathbf{Q}}\mathbf{Q}(x,y) \geq dim\mathbf{G}_{\mathcal{M}}.x$ 

(inspired by, and implying, the Grotendieck conjecture : if  $k = \overline{\mathbf{Q}}$ , then

$$tr.deg_{\mathbf{Q}}\mathbf{Q}(x,y) = dim\mathbf{G}_{\mathcal{M}}.x;$$

see also Kontsevich's conjecture on periods.)

### **Elliptic integrals**

Ref. : Whittaker-Watson.

$$g_{2}, g_{3} \in k, \ g_{2}^{3} - 27g_{3}^{2} \neq 0,$$

$$j(E) = \frac{g_{2}^{3}}{g_{2}^{3} - 27g_{3}^{2}} = j(\tau) ; \ \Omega \subset C$$

$$Y^{2} = 4X^{3} - g_{2}X - g_{3} (E)$$

$$\omega = \frac{dX}{Y}, \eta = X\frac{dX}{Y};$$

$$Q \in E(k), \xi_{Q} = \frac{1}{2}\frac{Y - Y(Q)}{X - X(Q)}\frac{dX}{Y}, \operatorname{Res}(\xi_{Q}) = -(0) + (-Q)$$

$$f(X, Y)dY = \alpha\omega + \beta\eta + dg + \sum_{i=1}^{r} \gamma_{i}\xi_{Q_{i}} + \sum_{j=1}^{r'} \gamma'_{i}\frac{dh_{j}}{h_{j}}$$
with Z-linearly independent  $Q_{i}$ 's in  $E(k)$ .
$$\mathcal{G} \in \operatorname{Ext}(E, \mathbf{G}_{m}^{r} \times \mathbf{G}_{a} \times \mathbf{G}_{m}^{r'}).$$

 $\mathcal{G} = \tilde{G} imes \mathbf{G}_m^{r'}$ , with

- $G \in Ext(E, \mathbf{G}_m^r)$  : an *essential* extension
- $\tilde{G}$  = the universal vectorial extension of G.

For 
$$P \in E(k)$$
, set  $u = \int_0^P \omega$ , hence  
 $P = (\wp(u), \wp'(u)) = exp_E(u),$   
 $\sigma(z) = z \prod_{\omega \in \Omega'} (1 - \frac{z}{\omega}) e^{\frac{z}{\omega} + \frac{1}{2}(\frac{z}{\omega})^2}, \quad \zeta(z) = \frac{\sigma'(z)}{\sigma(z)}$   
 $f_v(z) = \frac{\sigma(v+z)}{\sigma(v)\sigma(z)} e^{-\zeta(v)z} \quad (v \notin \Omega)$   
 $\zeta(z + \omega) = \zeta(z) + \eta(\omega), \quad \eta_2\omega_1 - \eta_1\omega_2 = 2\pi i,$   
 $f_v(z + \omega) = f_v(z) e^{\lambda_v(\omega)}, \quad \lambda_v(\omega) = \eta(\omega)v - \zeta(v)\omega.$   
 $(r = 1) \ Q = exp_E(v), \quad \widetilde{G} \simeq_{\text{birat}} \quad E \times \mathbf{G}_m \times \mathbf{G}_a.$   
 $exp_{\widetilde{G}} : \mathbf{C}^3 \to \widetilde{G}(\mathbf{C}) : \begin{pmatrix} \ell \\ t \\ u \end{pmatrix} \mapsto \begin{pmatrix} f_v(u)e^{-\ell} \\ \zeta(u) - t \\ \wp(u) \end{pmatrix}$   
 $Ker(exp_{\widetilde{G}}) = \mathbf{Z} \begin{pmatrix} 2\pi i \\ 0 \\ 0 \end{pmatrix} \oplus \mathbf{Z} \begin{pmatrix} \lambda_v(\omega_1) \\ \eta(\omega_1) \\ \omega_1 \end{pmatrix} \oplus \mathbf{Z} \begin{pmatrix} \lambda_v(\omega_2) \\ \eta(\omega_2) \\ \omega_2 \end{pmatrix}$ 

In conclusion, if  $\tilde{y} = \{y_3, y_2, y_1\} \in \tilde{G}(k)$  is above  $y_1 = (\wp(u), \wp'(u)) \in E(k)$ ,

$$\tilde{x} = \left\{ \ell n \frac{\sigma(u+v)}{\sigma(u)\sigma(v)} - \zeta(v)u - \ell n(y_3) , \zeta(u) - y_2 , u \right\}$$

#### **Mumford-Tate groups**

To  $y \in G(k)$ , we attach a one-motive M/k, a k-vector space  $H_{DR}^1(M)$ , a Q-vector space  $H_B(M)$ , and a period matrix  $\Pi(M)$ 



 $H_B(M)$  is endowed with a mixed Hodge structure. In particular, an increasing weight filtration  $W_{\bullet}$  with

$$W_{-2} = H_B(\mathbf{G}_m), W_{-1} = H_B(G), W_0 = H_B(M)$$
  
 $Gr_{-1} = H_B(E), Gr_0 = \mathbf{Z}$ 

and a Hodge filtration  $F^{\bullet}$  on  $H_B(M) \otimes \mathbb{C}$ . Similarly with  $H^1_{DR}(M)$ .

7

The canonical pairing

$$<\omega|\gamma>=\int_{\gamma}\omega$$

induces an isomorphism

$$H^{1}_{DR}(M) \otimes_{k} \mathbf{C} \to H_{B}(M)^{*} \otimes_{\mathbf{Z}} \mathbf{C}$$

(represented by the period matrix  $\Pi(M)$  above), which respects both filtrations.

Mixed Hodge structures form a Q-linear tannakian category, with fiber functor  $H_B$ . The Mumford-Tate group of M is

$$\operatorname{MT}_M = \operatorname{Aut}^{\otimes}(H_B(M)).$$

 $Isom^{\otimes}(H_{DR}^{1}(M), H_{B}(M)^{*} \otimes k)$  is represented by a scheme Z/k, which is a  $MT_{M} \otimes k$ -torsor.

 $\rightsquigarrow$  Alternative rephrasings of the conjectures :

 $tr.deg._{\mathbf{Q}}\mathbf{Q}(\tilde{x},\tilde{y}) \ge dim(\mathbf{MT}_{M}.\gamma_{x}) \quad (?)$ (if  $k = \overline{\mathbf{Q}}$ ) :  $\Pi(M)$  is a generic point of Z/k (?)

#### Function field analogue I

Let  $(F, \partial)$ , with  $F^{\partial} = \mathbf{C}$ , be a sufficiently large differential field extension of  $(K = \mathbf{C}(t), d/dt)$ . For  $x \in F$ , define  $y = e^x \in F^*/\mathbf{C}^*$  as a solution of the diff'l equation

$$\frac{\partial y}{y} = \partial x.$$

K(x,y) is well-defined (and depends only on the classes of x in F/C).

Ax (1970) : 
$$x_i \in F, y_i = e^{x_i} (i = 1, ..., n)$$
. Then

$$tr.deg_K K(x_i's, y_i's) \ge rk_{\mathbf{Z}} (\mathbf{Z}x_1 + ... + \mathbf{Z}x_n \mod \mathbf{C}).$$

NB : 
$$rk_{\mathbf{Z}}(...) = dim\mathcal{G}_x$$
  
where  $\mathcal{G}_x$  is the smallest algebraic group  $H$  of  
 $G = \mathbf{G}_m^n$  such that  $x \in TH(F) + TG(\mathbf{C})$ .

## (now)

 $\mathcal{G}_x = G_y :=$  smallest algebraic group H of G such that  $y \in H(F) + G(\mathbf{C})$ .

G = an algebraic group **defined over** C. By Kolchin, there is a canonical logarithmic derivative map

$$\partial \ell n_G : G(F) \to \underline{TG}(F) = TG \times_{\mathsf{Ad}} G;$$

e.g. if  $G \subset GL_n : \partial \ell n_G(U) = \partial U.U^{-1}$ .

When G is commutative, " $\ell n_G$  inverts  $exp_G$  modulo the constants".

For  $y \in G(F)$ , define the **relative hull**  $G_y$  of y as the smallest algebraic group  $H/\mathbb{C}$  such that  $y \in H(F)$  mod.  $G(\mathbb{C})$ .

**Theorem 1.a** (Ax, Kirby) : assume that G is a semi-abelian variety (no additive subgroup),  $(x, y) \in (TG \times G)(F), y = exp_G(x)$ . Then,

$$tr.deg._K K(x, y) \ge dim G_y.$$

This *cannot* hold true in general if additive subgroups occur. However

Brownawell-Kubota :  $E/\mathbb{C}$  ell. curve,  $u_1, ..., u_n \in F$ , linearly independent over  $End(E) \mod \mathbb{C}$ . Then

 $tr.deg_K K(u_i, \wp(u_i), \zeta(u_i); i = 1, ..., n) \ge 2n$ 

**Theorem 1.b** : let further  $\tilde{G}$  (resp.  $\tilde{G}_y$ ) be the universal vectorial extension of G (resp.  $G_y$ ). For any  $\tilde{x} \in T\tilde{G}(F)$  s.t.  $exp_{\tilde{G}}(\tilde{x}) = \tilde{y}$ projects to  $y \in G(F)$ ,

$$tr.deg._K K(\tilde{x}, \tilde{y}) \ge dim \tilde{G}_y.$$

E.g., for  $v_i \in \mathbb{C}, Q_i = exp_E(v_i) \in E(\mathbb{C})$ , I.i. /Z

 $tr.deg_K K(u_i, \wp(u_i), \zeta(u_i), \frac{\sigma(v_i+u_i)}{\sigma(u_i)}; i = 1, ..., n) \ge 3n$ 

as well as 
$$..., \ \ell n rac{\sigma(v_i+u_i)}{\sigma(u_i)};... \ge 3n$$

NB : B-K also got : ...,  $\sigma(u_i)$ ; .....  $\geq 3n$ 

Proof : a kind of intersection theory + rigidity of alg. groups.

i) wlog, assume that  $G_y = G$ . Amost by definition,  $\tilde{G}$  is an **essential** extension of G; hence  $\tilde{G}_y = \tilde{G}$ . Must now prove that

# $tr.deg.(\mathbf{C}(\tilde{x}, \tilde{y})/\mathbf{C}) \ge dim(\tilde{G}) + 1.$

ii) reduce by Seidenberg (cf. J. Kirby) to the analytic case  $\rightsquigarrow$ 

- $\mathbf{X} = T\tilde{G} \times \tilde{G}$  (alg. group over C),
- $A = graph of exp_{\tilde{G}}$  (anal. subgroup of X),

•  $\mathbf{K}$  = the analytic curve defined by the image of  $\{\tilde{x}, \tilde{y}\}$  :  $\mathbf{C} \supset U \rightarrow \mathbf{X}(\mathbf{C})$ . Wlog, assume that  $0 \in \mathbf{K}$  and let  $\mathbf{V}$  be its Zariski closure in  $\mathbf{X}/\mathbf{C}$ , so that  $tr.deg.(\mathbf{C}(\tilde{x}, \tilde{y})/\mathbf{C}) = dim\mathbf{V}$ .

iii) Ax's theorem (1972) : there exists an analytic subgroup B of X containing both A and V such that  $dim K \leq dim V + dim A - dim B$ .

We shall prove that  $\mathbf{B} = \mathbf{X}$ . Consequently :

 $dim \mathbf{V} \geq dim \mathbf{X} - dim \mathbf{A} + dim \mathbf{K},$  $\parallel \qquad \parallel$   $\parallel$   $tr.deg.(\mathbf{C}(\tilde{x}, \tilde{y})/\mathbf{C}) \qquad dim \tilde{G} + 1$  . Since V is a connected algebraic variety  $\ni 0$ , the abstract group it generates in X is an algebraic subgroup g(V) of  $X = T\tilde{G} \times \tilde{G}$ . Since  $K \subset V$ , and since  $G_y = G$ , the image  $G' \subset$  $\tilde{G}$  of g(V) under the 2nd projection projects onto G, and therefore coincides with  $\tilde{G}$ . Let  $T' \subset T\tilde{G}$  be the image of g(V) under the 1st projection.

Now,  $g(\mathbf{V})$  is an algebraic subgroup of  $T' \times \tilde{G}$ with surjective images under the two projections. But any such subgroup induces an isomorphism from a quotient of  $\tilde{G}$  to a quotient of T': setting  $H = g(\mathbf{V}) \cap (0 \times \tilde{G})$ , and  $H' = g(\mathbf{V}) \cap (T' \times 0)$ , we have  $\tilde{G}/H \simeq T'/H'$ . If these quotients were not trivial, the 2nd one would admit  $\mathbf{G}_a$  among its quotients, and ditto for the 1st one, hence for  $\tilde{G}$ ; contradiction. Consequently,  $\tilde{G}/H = 0$ , and  $g(\mathbf{V})$ , hence  $\mathbf{B}$ , contains  $0 \times \tilde{G}$ .

Finally,  $\mathbf{B} \supset \mathbf{A}$  projects onto  $T\tilde{G}$  by the 1st projection. Hence,  $\mathbf{B} = \mathbf{T}\tilde{\mathbf{G}} \times \tilde{\mathbf{G}} = \mathbf{X}$ .

## Where are the Picard-Vessiot groups?

## [French : remboursez !]

(= [Scots.] Gie'e ma' bawbies back.)

This seems to have little to do with differential Galois theory : relatively to  $\partial$ , K(x,y)/Kneed not even be a differential extension !

However, it is a differential extension, and in fact a strongly normal one, in each of the "unmixed" cases  $\tilde{x} \in TG(K)$ , resp.  $\tilde{y} \in G(K)$ , where on recalling that  $\mathcal{G}_x = G_y$ , Theorem 1 amounts to

• (exponential case) : set  $\tilde{b} = \partial \tilde{x} \in T\tilde{\mathcal{G}}_x(K)$ . Then the (Kolchin) differential Galois group of  $\partial \ell n_G(\tilde{y}) = \tilde{b}$  is

$$Aut_{\partial}(K(\tilde{y}))/K) = \tilde{\mathcal{G}}_x.$$

• (logarithmic case) : set  $\tilde{a} = \partial \ell n_{\tilde{G}} \tilde{y} \in T \tilde{G}_y(K)$ . Then the (Picard-Vessiot) differential Galois group of  $\partial \tilde{x} = \tilde{a}$  is

$$Aut_{\partial}(K(\tilde{x}))/K) = T\tilde{G}_y.$$

At least in the split case, the latter result could be deduced from

• the purely differential fact [cf. Bible, I.33] that if connected, the Picard-Vessiot group of any system  $\partial Y = AY, A \in gl_n(K)$  is the C-Lie hull  $\mathcal{G}_A \subset gl_n(C)$  of (a convenient gauge transform of) A,

combined with

• a more geometric observation of the type : logarithmically exact differentials on a curve S which are linearly independent over  $\mathbf{Z}$  remain so over  $\mathbf{C}$  (and even so when taken modulo exact forms on S).

## **Function field analogue II** [in the logarithmic case]

Until now, we considered

$$x(t) = \int_{1}^{y(t)} \frac{dy}{y} , \ x(t) = \int_{0}^{y(t)} f(x, y) dx,$$

i.e. integrals between non-constant points of a constant diff. form on a curve X/C.

In a more natural frame-work, X and  $\omega$  vary with t as well, bringing back the symmetry between objects such that u and v, and, more deeply, allowing for notions of duals in the space of generalized periods.

 $S = \operatorname{curve}/\mathbf{C}, \pi : \mathcal{X} \to S, K = \mathbf{C}(S), X/K$ 

Fix a non constant  $t \in C(S)$ ,  $\partial = d/dt$  and *K*-rational sections  $p_0, p_1$  of  $\pi$ .

 $\int_{p_0(t)}^{p_1(t)} f(t, X, Y) dX \quad , \quad P(t, X, Y) = 0.$ 

All the previous notions from the theory of one-motives admit relative versions over S(variation of mixed Hodge structures). Moreover, the  $O_S$ -module  $H_{DR}^1(\mathcal{M}/S)$  carries a Gauss-Manin (= generalized Picard-Fuchs) connection  $\nabla$ , whose space of horizontal sections is generated over C by the local system  $R^1\pi_*\mathbf{Q} = H_B(\mathcal{M}/S)^*$ .

$$\mathcal{H}(M) := H^1_{DR}(M/K)^* , \ D = \nabla^*_{d/dt}$$

is a K[d/dt]-module, again filtered (in the elliptic case and with r = 1 as above) by the sub-equations

$$W_{-2} = \mathcal{H}(\mathbf{G}_m) \simeq 1; W_{-1} = \mathcal{H}(G), W_0 = \mathcal{H}(M)$$

$$Gr_{-1} = \mathcal{H}(E), Gr_0 = \mathcal{H}(\mathbf{Z}) \simeq 1.$$

Over a sufficiently small domain  $U \subset S(\mathbf{C})$ ,

$$\Pi(M)(t) \mid : U \to GL(H^1_{DR}(\mathcal{M}/U) \otimes O^{an}_U)$$

represents a fundamental matrix of analytic solutions of  $\mathcal{H}(M)$ , and its last vector  $\hat{x} = (\tilde{x}(t), 1)$  satisfies  $exp_{\tilde{G}_t}(\tilde{x}(t)) = \tilde{y}(t) \in \tilde{G}(K)$ .

The field  $K(\tilde{x}) = K(\tilde{x}, \tilde{y})$  depends only on the projection x of  $\tilde{x}$  on TG.

Let  $\mathbf{PV}_M$  be the Picard-Vessiot group of the *D*-module  $\mathcal{H}(M)$ :  $\forall g \in \mathbf{PV}_M$ ,  $g\hat{x} - \hat{x} \in W_{-1}$ also depends only on  $x \in TG$ . Write  $\mathbf{PV}_M$ .  $x \in H_B(\mathcal{G}/U) \otimes \mathbf{C}$  for the corresponding orbit.

**Exercise** :  $tr.deg_K K(\tilde{x}, \tilde{y}) = dim \mathbf{PV}_M \cdot x$ .

i.e. the last columns of the elements of  $\mathbf{PV}_M$  govern Schanuel's problem *in the logarithmic case*. Here is an elliptic illustration.

**Theorem 2** :  $g_2(t), g_3(t) \in K, j(t) \notin C; E/K$ the corresponding elliptic curve;  $\{u_i(t); i = 1, ..., n\}$  holomorphic functions on  $U \subset C$ , such that  $P_i = exp_E(u_i), i = 1, ..., n$  are **Z**-linearly independent points in E(K). Then,

 $tr.deg_{K}K(u_{i},\zeta(u_{i}),\ell n\sigma(u_{i}); i = 1,...,n) = 3n.$  $[exp_{E} = exp_{E(t)}, \zeta = \zeta_{t}, \sigma = \sigma_{t}; j \notin \mathbb{C} \Rightarrow \mathsf{no} \ \mathsf{CM}]$ 

The proof combines three ingredients :

• (A) an essentially geometric fact (Manin)

$$G \in Ext_{gr.sch./K}(E, \mathbf{G}_m) \simeq \widehat{E} \simeq E(K) \ni Q$$
  
 $\sim \mathcal{H}(G) = \mathcal{H}^*(Q) \in Ext_{D-mod.}(\mathcal{H}(E), 1)$   
and dually

$$P \in E(K) = Ext_{gr.sch./K}(\mathbf{Z}, E)$$
  
 $\rightsquigarrow \mathcal{H}(P) := W_0/W_{-2} \in Ext_{D-mod.}(1, \mathcal{H}(E)).$   
Manin's **kernel theorem** is that the kernel  
of these maps is generated by the points of  
height 0, i.e. the constant part of  $E$  (here 0)  
and the torsion points of  $E$ .

• (B) pure PV theory (cf. C. Hardouin's talk, in the general framework of a neutral tannakian category), viz. :

Let  $\mathcal{V}$  be an irreducible *D*-module,  $V = \mathcal{V}^{sol}$ , and let  $\mathcal{E}_1, ..., \mathcal{E}_n$  be C-lin. ind. extensions in  $Ext_{D-mod.}(1, \mathcal{V})$ . Then, the unipotent radical of  $PV(\mathcal{E}_1 \oplus ... \oplus \mathcal{E}_n)$  fills up  $V^n$ . • (C) Rigidity of algebraic groups.

 $\mathcal{V} = \mathcal{H}(E)$ , with  $V = H_B(\mathcal{E}/U) \otimes \mathbf{C}$ , has an (antisymmetric) polarization  $\langle | \rangle$ . Let  $\mathbf{H} \in Ext_{gr}(V, \mathbf{C})$  be the **Heisenberg group** on V,

$$\mathbf{H} = \left\{ \begin{pmatrix} \mathbf{1} & v^{\flat} & c \\ \mathbf{0} & \mathbf{I}_{2} & v \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}; v \in V, c \in \mathbf{C} \right\}$$

For n = 1, and P = Q non-torsion, A + B +rigidity force an isomorphism

$$\psi_P : R_u(\mathcal{H}(M)) \simeq \mathbf{H}$$

For i = 1, ..., n and the  $P_i = Q_i$ 's lin. indep. over Z, let  $R_u$  be the unipotent radical of  $\mathbf{PV}(\mathcal{H}(M_1) \oplus ... \oplus \mathcal{H}(M_n)).$ 

$$\Psi = (\psi_{P_1}, ..., \psi_{P_n}) : R_u \hookrightarrow \mathbf{H}^n,$$

and by A + B,  $\Psi(R_u)$  projects onto  $V^n$ . But since  $\langle | \rangle$  is non degenerate, the derived group of any subgroup of  $\mathbf{H}^n$  projecting onto  $V^n$  fills up  $\mathbf{C}^n$ , so that  $\mathbf{H}^n$  is again an essential extension ! Hence,  $R_u = \mathbf{H}^n$ , and

$$tr.deg._K K(u_i, \zeta(u_i), \ell n \sigma(u_i)) = dim \mathbf{H}^n = 3n.$$