Abelian integrals, Picard-Vessiot groups and the Schanuel conjecture.

D. Bertrand (Paris VI)

ICMS, Edinburgh, Aug. 2006

Schanuel's conjecture

$x_{1}, \ldots, x_{n} \in \mathbf{C}$, linearly independent over \mathbf{Q}

$$
\Rightarrow \operatorname{tr} \cdot \operatorname{deg}_{\mathbf{Q}}^{\mathbf{Q}}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \geq n(?)
$$

Equivalently,
$x_{1}, \ldots, x_{n} \in \mathbf{C}, y_{1}, \ldots, y_{n} \in \mathbf{C}^{*}, y_{i}=e^{x_{i}}$. Then,
$t r . \operatorname{deg}_{\mathbf{Q}} \mathrm{Q}\left(x_{i}{ }^{\prime} \mathrm{s}, y_{i}{ }^{\prime} \mathrm{s}\right) \geq r k_{\mathrm{Z}}\left(\mathrm{Z} x_{1}+\ldots+\mathbf{Z} x_{n}\right)$

Exponential case (Lindemann-Weierstrass thm) : $\forall i, x_{i} \in \overline{\mathbf{Q}} \Rightarrow$ true (with equality).

Logarithmic case (Schneider's problem) :
$\forall i, y_{i} \in \overline{\mathbf{Q}} \Rightarrow$ (?) (with equality)

$$
\begin{gathered}
G=\left(\mathbf{G}_{m}\right)^{n}, n \text {-dim'l split torus over } \mathbf{Q} \subset \mathbf{C} \\
T G:=T_{0} G=\operatorname{Lie}(G) \\
\exp _{G}: T G(\mathbf{C}) \simeq \mathbf{C}^{n} \rightarrow G(\mathbf{C}) \simeq\left(\mathbf{C}^{*}\right)^{n} \\
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \mapsto \quad y=\left(\begin{array}{c}
e^{x_{1}} \\
\vdots \\
e^{x_{n}}
\end{array}\right)
\end{gathered}
$$

Lie hull \mathcal{G}_{x} of $x:=$ smallest algebraic subgroup H of G such that $x \in T H(\mathbf{C})$.
(NB : contains, often strictly, the hull G_{y} of $y=$ smallest alg. subgroup H of G such that $y \in H(\mathbf{C}))$.

The conjecture then reads :

$$
\begin{align*}
x \in T G(\mathbf{C}), y & =\exp _{G}(x) \in G(\mathbf{C}) \\
& \Rightarrow{\operatorname{tr} \cdot d e g_{\mathbf{Q}}}_{\mathbf{Q}}(x, y) \geq \operatorname{dim} \mathcal{G}_{x} \tag{?}
\end{align*}
$$

Abelian integrals

$$
\begin{gathered}
k=\bar{k} \subset \mathbf{C}, P \in k[X, Y], f \in k(X, Y), p_{0}, p_{1} \in k \\
\int_{p_{0}}^{p_{1}} f(X, Y) d X \quad, \quad P(X, Y)=0 .
\end{gathered}
$$

More intrinsically, X / k smooth projective algebraic curve, $\omega \in H^{0}\left(X, \Omega_{X / k}^{1}(D)\right)$ for some $D \in \operatorname{Div}^{+}(X)$. By Weil-Rosenlicht, there is :

- a generalized Jacobian $G=\operatorname{Jac}(X, D)$:

$$
0 \rightarrow L \rightarrow G \rightarrow A \rightarrow 0
$$

where $L=\mathrm{G}_{m}^{r} \times \mathrm{G}_{a}^{s}, A=\operatorname{Jac}(X)$;

- a canonical (Abel-Jacobi) map

$$
\phi:(X, \text { point }) \rightarrow G,
$$

- an invariant differential form $\omega_{G} \in T^{*} G(k)$ on G with $\phi^{*} \omega_{G}=\omega$ mod. exact forms.

Set $y=\phi\left(P_{1}\right)-\phi\left(P_{0}\right) \in G(k)$. Up to addition of an element of k, we get

$$
\int_{P_{0}}^{P_{1}} \omega=\int_{0}^{y} \omega_{G} .
$$

More precisely, there exists $x \in T G(\mathbf{C})$ (depending on the path of integration) such that

$$
y=\exp _{G}(x), \text { and } \int_{0}^{y} \omega_{G}=<\omega_{G} \mid x>.
$$

$(x, y) \in(T G \times G)(\mathbf{C}), y=\exp _{G}(x)$

$$
\Rightarrow \operatorname{tr} \cdot \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}(x, y) \geq \mathcal{G}_{x}(? ?)
$$

$X=\mathbf{P}_{1}, D=(0)+(\infty) \rightsquigarrow G=\mathbf{G}_{m}$, and $x=\ln (y)$: standard Schanuel problem.

Otherwise, (??) must be modified. One attaches to $\mathcal{M}=\left(X, D,\left(P_{1}\right)-\left(P_{0}\right)\right)$ a "motivic Galois group" $\mathbf{G}_{\mathcal{M}}$, acting on $T G$.

André's conjecture : ${\operatorname{tr} \cdot \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}(x, y) \geq \operatorname{dim} \mathbf{G}_{\mathcal{M}} \cdot x}$
(inspired by, and implying, the Grotendieck conjecture : if $k=\overline{\mathbf{Q}}$, then

$$
t r \cdot d e g_{\mathbf{Q}} \mathbf{Q}(x, y)=\operatorname{dim} \mathbf{G}_{\mathcal{M}} \cdot x ;
$$

see also Kontsevich's conjecture on periods.)

Elliptic integrals

Ref. : Whittaker-Watson.

$$
\begin{gathered}
g_{2}, g_{3} \in k, g_{2}^{3}-27 g_{3}^{2} \neq 0 \\
j(E)=\frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}=j(\tau) ; \Omega \subset \mathbf{C} \\
Y^{2}=4 X^{3}-g_{2} X-g_{3}(E) \\
\omega=\frac{d X}{Y}, \eta=X \frac{d X}{Y} ; \\
Q \in E(k), \xi_{Q}=\frac{1}{2} \frac{Y-Y(Q)}{X-X(Q)} \frac{d X}{Y}, \operatorname{Res}\left(\xi_{Q}\right)=-(0)+(-Q) \\
f(X, Y) d Y=\alpha \omega+\beta \eta+d g+\sum_{i=1}^{r} \gamma_{i} \xi_{Q_{i}}+\sum_{j=1}^{r^{\prime}} \gamma_{i}^{\prime} \frac{d h_{j}}{h_{j}}
\end{gathered}
$$

with Z-linearly independent Q_{i} 's in $E(k)$.

$$
\mathcal{G} \in \operatorname{Ext}\left(E, \mathbf{G}_{m}^{r} \times \mathbf{G}_{a} \times \mathbf{G}_{m}^{r^{\prime}}\right)
$$

$\mathcal{G}=\widetilde{G} \times \mathbf{G}_{m}^{r^{\prime}}$, with

- $G \in \operatorname{Ext}\left(E, \mathbf{G}_{m}^{r}\right)$: an essential extension
- $\widetilde{G}=$ the universal vectorial extension of G.

For $P \in E(k)$, set $u=\int_{0}^{P} \omega$, hence

$$
\begin{gathered}
P=\left(\wp(u), \wp^{\prime}(u)\right)=\exp _{E}(u), \\
\sigma(z)=z \prod_{\omega \in \Omega^{\prime}}\left(1-\frac{z}{\omega}\right) e^{\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}}, \zeta(z)=\frac{\sigma^{\prime}(z)}{\sigma(z)} \\
f_{v}(z)=\frac{\sigma(v+z)}{\sigma(v) \sigma(z)} e^{-\zeta(v) z} \quad(v \notin \Omega) \\
\zeta(z+\omega)=\zeta(z)+\eta(\omega), \eta_{2} \omega_{1}-\eta_{1} \omega_{2}=2 \pi i \\
f_{v}(z+\omega)=f_{v}(z) e^{\lambda_{v}(\omega)}, \lambda_{v}(\omega)=\eta(\omega) v-\zeta(v) \omega \\
(r=1) Q=\exp _{E}(v), \widetilde{G} \simeq \text { birat } E \times \mathbf{G}_{m} \times \mathbf{G}_{a} . \\
\exp _{\widetilde{G}}: \mathbf{C}^{3} \rightarrow \widetilde{G}(\mathbf{C}):\left(\begin{array}{c}
\ell \\
t \\
u
\end{array}\right) \mapsto\left(\begin{array}{c}
f_{v}(u) e^{-\ell} \\
\zeta(u)-t \\
\wp(u)
\end{array}\right) \\
\operatorname{Ker}\left(\exp _{\widetilde{G}}\right)=\mathbf{Z}\left(\begin{array}{c}
2 \pi i \\
0 \\
0
\end{array}\right) \oplus \mathbf{Z}\left(\begin{array}{c}
\lambda_{v}\left(\omega_{1}\right) \\
\eta\left(\omega_{1}\right) \\
\omega_{1}
\end{array}\right) \oplus \mathbf{Z}\left(\begin{array}{c}
\lambda_{v}\left(\omega_{2}\right) \\
\eta\left(\omega_{2}\right) \\
\omega_{2}
\end{array}\right)
\end{gathered}
$$

In conclusion, if $\tilde{y}=\left\{y_{3}, y_{2}, y_{1}\right\} \in \tilde{G}(k)$ is above $y_{1}=\left(\wp(u), \wp^{\prime}(u)\right) \in E(k)$,

$$
\tilde{x}=\left\{\ln \frac{\sigma(u+v)}{\sigma(u) \sigma(v)}-\zeta(v) u-\ln \left(y_{3}\right), \zeta(u)-y_{2}, u\right\}
$$

Mumford-Tate groups

To $y \in G(k)$, we attach a one-motive M / k, a k-vector space $H_{D R}^{1}(M)$, a \mathbf{Q}-vector space $H_{B}(M)$, and a period matrix

$\left(\begin{array}{cccc}2 \pi i & \lambda_{v}\left(\omega_{1}\right) & \lambda_{v}\left(\omega_{2}\right) & \ln f_{v}(u)+\ell_{0} \\ 0 & \eta\left(\omega_{1}\right) & \eta\left(\omega_{2}\right) & \zeta(u)+t_{0} \\ 0 & \omega_{1} & \omega_{2} & u \\ 0 & 0 & 0 & 1\end{array}\right)$

γ_{0}
γ_{1}
γ_{2}
γ_{x}
$H_{B}(M)$ is endowed with a mixed Hodge structure. In particular, an increasing weight filtration W • with

$$
\begin{gathered}
W_{-2}=H_{B}\left(\mathbf{G}_{m}\right), W_{-1}=H_{B}(G), W_{0}=H_{B}(M) \\
G r_{-1}=H_{B}(E), G r_{0}=\mathrm{Z}
\end{gathered}
$$

and a Hodge filtration F^{\bullet} on $H_{B}(M) \otimes \mathbf{C}$. Similarly with $H_{D R}^{1}(M)$.

The canonical pairing

$$
<\omega \mid \gamma>=\int_{\gamma} \omega
$$

induces an isomorphism

$$
H_{D R}^{1}(M) \otimes_{k} \mathbf{C} \rightarrow H_{B}(M)^{*} \otimes_{\mathbf{Z}} \mathbf{C}
$$

(represented by the period matrix $\Pi(M)$ above), which respects both filtration.

Mixed Hodge structures form a Q-linear tannakian category, with fiber functor H_{B}. The Mumford-Tate group of M is

$$
\mathbf{M T}_{M}=A u t^{\otimes}\left(H_{B}(M)\right)
$$

$\operatorname{Isom}^{\otimes}\left(H_{D R}^{1}(M), H_{B}(M)^{*} \otimes k\right)$ is represented by a scheme Z / k, which is a $\mathbf{M T}_{M} \otimes k$-torsor.
\rightsquigarrow Alternative rephrasings of the conjectures:

$$
\begin{equation*}
\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbf{Q} \mathbf{Q}(\tilde{x}, \tilde{y}) \geq \operatorname{dim}\left(\mathbf{M T}_{M} \cdot \gamma_{x}\right) \tag{?}
\end{equation*}
$$

(if $k=\overline{\mathbf{Q}}$) : $\Pi(M)$ is a generic point of Z / k

Function field analogue I

Let (F, ∂), with $F^{\partial}=\mathbf{C}$, be a sufficiently large differential field extension of ($K=\mathrm{C}(t)$, $d / d t$). For $x \in F$, define $y=e^{x} \in F^{*} / \mathbf{C}^{*}$ as a solution of the diff'l equation

$$
\frac{\partial y}{y}=\partial x .
$$

$K(x, y)$ is well-defined (and depends only on the classes of x in F / C).
Ax (1970) : $x_{i} \in F, y_{i}=e^{x_{i}}(i=1, \ldots, n)$. Then
tr.deg $K\left(x_{i}{ }^{\prime} \mathrm{s}, y_{i}{ }^{\prime} \mathrm{s}\right) \geq r k_{\mathbf{Z}}\left(\mathbf{Z} x_{1}+\ldots+\mathbf{Z} x_{n} \bmod \mathbf{C}\right)$.

NB: $\quad r_{\mathrm{Z}}(\ldots)=\operatorname{dim}_{x}$
where \mathcal{G}_{x} is the smallest algebraic group H of $G=\mathrm{G}_{m}^{n}$ such that $x \in T H(F)+T G(\mathbf{C})$.

五 (now)

$\mathcal{G}_{x}=G_{y}:=$ smallest algebraic group H of G such that $y \in H(F)+G(\mathbf{C})$.
$G=$ an algebraic group defined over C. By Kolchin, there is a canonical logarithmic derivative map

$$
\begin{aligned}
& \quad \partial \ell n_{G}: G(F) \rightarrow \underline{T G}(F)=T G \times_{\mathrm{Ad}} G \text {; } \\
& \text { e.g. if } G \subset G L_{n}: \partial \ell n_{G}(U)=\partial U . U^{-1} .
\end{aligned}
$$

When G is commutative, " ℓn_{G} inverts $\exp _{G}$ modulo the constants".

For $y \in G(F)$, define the relative hull G_{y} of y as the smallest algebraic group H / C such that $y \in H(F)$ mod. $G(\mathbf{C})$.

Theorem 1.a (Ax, Kirby) : assume that G is a semi-abelian variety (no additive subgroup $),(x, y) \in(T G \times G)(F), y=\exp _{G}(x)$. Then,

$$
\text { tr.deg. }{ }_{K} K(x, y) \geq \operatorname{dim}_{y} .
$$

This cannot hold true in general if additive subgroups occur. However

Brownawell-Kubota : E / C ell. curve, u_{1}, \ldots, u_{n} $\in F$, linearly independent over $\operatorname{End}(E) \bmod$ C. Then

$$
\operatorname{tr.deg}{ }_{K} K\left(u_{i}, \wp\left(u_{i}\right), \zeta\left(u_{i}\right) ; i=1, \ldots, n\right) \geq 2 n
$$

Theorem 1.b : let further \widetilde{G} (resp. \tilde{G}_{y}) be the universal vectorial extension of G (resp. G_{y}). For any $\tilde{x} \in T \widetilde{G}(F)$ s.t. $\exp _{\tilde{G}}(\tilde{x})=\tilde{y}$ projects to $y \in G(F)$,

$$
\operatorname{tr} \cdot \operatorname{deg} \cdot{ }_{K} K(\tilde{x}, \tilde{y}) \geq \operatorname{dim} \tilde{G}_{y}
$$

E.g., for $v_{i} \in \mathbf{C}, Q_{i}=\exp _{E}\left(v_{i}\right) \in E(\mathbf{C})$, I.i. $/ \mathbf{Z}$ $\operatorname{tr} . \operatorname{de} g_{K} K\left(u_{i}, \wp\left(u_{i}\right), \zeta\left(u_{i}\right), \frac{\sigma\left(v_{i}+u_{i}\right)}{\sigma\left(u_{i}\right)} ; i=1, \ldots, n\right) \geq 3 n$
as well as $\quad . ., \ln \frac{\sigma\left(v_{i}+u_{i}\right)}{\sigma\left(u_{i}\right)} ; \ldots \geq 3 n$
NB: B-K also got: ..., $\sigma\left(u_{i}\right) ; \ldots \ldots . \geq 3 n$

Proof: a kind of intersection theory + rigidity of alg. groups.
i) wlog, assume that $G_{y}=G$. Amost by definition, \widetilde{G} is an essential extension of G; hence $\tilde{G_{y}}=\widetilde{G}$. Must now prove that

$$
\text { tr. } \operatorname{deg} \cdot(\mathbf{C}(\tilde{x}, \tilde{y}) / \mathbf{C}) \geq \operatorname{dim}(\tilde{G})+1
$$

ii) reduce by Seidenberg (cf. J. Kirby) to the analytic case \rightsquigarrow

- $\mathbf{X}=T \widetilde{G} \times \widetilde{G}$ (alg. group over \mathbf{C}),
- $\mathbf{A}=$ graph of $\exp _{\tilde{G}}$ (anal. subgroup of \mathbf{X}),
- $\mathbf{K}=$ the analytic curve defined by the image of $\{\tilde{x}, \tilde{y}\}: \mathbf{C} \supset U \rightarrow \mathbf{X}(\mathbf{C})$.Wlog, assume that $0 \in \mathbf{K}$ and let \mathbf{V} be its Zariski closure in \mathbf{X} / \mathbf{C}, so that tr.deg. $(\mathbf{C}(\tilde{x}, \tilde{y}) / \mathbf{C})=\operatorname{dim} \mathbf{V}$.
iii) Ax's theorem (1972) : there exists an analytic subgroup \mathbf{B} of \mathbf{X} containing both \mathbf{A} and \mathbf{V} such that $\operatorname{dim} \mathbf{K} \leq \operatorname{dim} \mathbf{V}+\operatorname{dim} \mathbf{A}-\operatorname{dim} \mathbf{B}$.

We shall prove that $\mathbf{B}=\mathbf{X}$. Consequently :

$$
\begin{array}{cc}
\operatorname{dim} \mathbf{V} \geq & \operatorname{dim} \mathbf{X}-\operatorname{dim} \mathbf{A}+\operatorname{dim} \mathbf{K} \\
\text { tr.deg. }(\mathbf{C}(\tilde{x}, \tilde{y}) / \mathbf{C}) & \operatorname{dim} \tilde{G}+1
\end{array}
$$

Since \mathbf{V} is a connected algebraic variety $\ni 0$, the abstract group it generates in \mathbf{X} is an algebraic subgroup $g(\mathbf{V})$ of $\mathbf{X}=T \tilde{G} \times \tilde{G}$. Since $\mathbf{K} \subset \mathbf{V}$, and since $G_{y}=G$, the image $G^{\prime} \subset$ \tilde{G} of $g(\mathrm{~V})$ under the 2 nd projection projects onto G, and therefore coincides with \tilde{G}. Let $T^{\prime} \subset T \tilde{G}$ be the image of $g(\mathbf{V})$ under the 1st projection.

Now, $g(\mathrm{~V})$ is an algebraic subgroup of $T^{\prime} \times \tilde{G}$ with surjective images under the two projections. But any such subgroup induces an isomorphism from a quotient of \tilde{G} to a quotient of T^{\prime} : setting $H=g(\mathbf{V}) \cap(0 \times \tilde{G})$, and $H^{\prime}=g(\mathrm{~V}) \cap\left(T^{\prime} \times 0\right)$, we have $\tilde{G} / H \simeq T^{\prime} / H^{\prime}$. If these quotients were not trivial, the 2nd one would admit G_{a} among its quotients, and ditto for the 1 st one, hence for \widetilde{G}; contradiction. Consequently, $\tilde{G} / H=0$, and $g(\mathrm{~V})$, hence \mathbf{B}, contains $0 \times \tilde{G}$.

Finally, B \supset A projects onto $T \widetilde{G}$ by the 1st projection. Hence, $\mathbf{B}=\mathbf{T} \tilde{\mathrm{G}} \times \tilde{\mathrm{G}}=\mathbf{X}$.

Where are the Picard-Vessiot groups ?

[French : remboursez!]
($=$ [Scots.] Gie'e ma' bawbies back.)
This seems to have little to do with differential Galois theory : relatively to $\partial, K(x, y) / K$ need not even be a differential extension!

However, it is a differential extension, and in fact a strongly normal one, in each of the "unmixed" cases $\tilde{x} \in T G(K)$, resp. $\tilde{y} \in G(K)$, where on recalling that $\mathcal{G}_{x}=G_{y}$, Theorem 1 amounts to

- (exponential case) : set $\tilde{b}=\partial \tilde{x} \in T \widetilde{\mathcal{G}_{x}}(K)$. Then the (Kolchin) differential Galois group of $\partial \ell n_{G}(\tilde{y})=\tilde{b}$ is

$$
\left.A u t_{\partial}(K(\tilde{y})) / K\right)=\tilde{\mathcal{G}_{x}}
$$

- (logarithmic case) : set $\tilde{a}=\partial \ell n_{\tilde{G}} \tilde{y} \in T \tilde{G}_{y}(K)$. Then the (Picard-Vessiot) differential Galois group of $\partial \tilde{x}=\tilde{a}$ is

$$
\left.A u t_{\partial}(K(\tilde{x})) / K\right)=T \tilde{G_{y}}
$$

At least in the split case, the latter result could be deduced from

- the purely differential fact [cf. Bible, I.33] that if connected, the Picard-Vessiot group of any system $\partial Y=A Y, A \in g l_{n}(K)$ is the \mathbf{C} Lie hull $\mathcal{G}_{A} \subset g l_{n}(\mathbf{C})$ of (a convenient gauge transform of) A,
combined with
- a more geometric observation of the type: logarithmically exact differentials on a curve S which are linearly independent over \mathbf{Z} remain so over \mathbf{C} (and even so when taken modulo exact forms on S).

Function field analogue II

[in the logarithmic case]

Until now, we considered

$$
x(t)=\int_{1}^{y(t)} \frac{d y}{y}, x(t)=\int_{0}^{y(t)} f(x, y) d x,
$$

i.e. integrals between non-constant points of a constant diff. form on a curve X / C.

In a more natural frame-work, X and ω vary with t as well, bringing back the symmetry between objects such that u and v, and, more deeply, allowing for notions of duals in the space of generalized periods.

$$
S=\text { curve } / \mathrm{C}, \pi: \mathcal{X} \rightarrow S, K=\mathbf{C}(S), X / K
$$

Fix a non constant $t \in \mathbf{C}(S), \partial=d / d t$ and K-rational sections p_{0}, p_{1} of π.

$$
\int_{p_{0}(t)}^{p_{1}(t)} f(t, X, Y) d X \quad, \quad P(t, X, Y)=0 .
$$

All the previous notions from the theory of one-motives admit relative versions over S (variation of mixed Hodge structures). Moreover, the O_{S}-module $H_{D R}^{1}(\mathcal{M} / S)$ carries a Gauss-Manin (= generalized Picard-Fuchs) connection ∇, whose space of horizontal sections is generated over \mathbf{C} by the local system $R^{1} \pi_{*} \mathbf{Q}=H_{B}(\mathcal{M} / S)^{*}$.

$$
\mathcal{H}(M):=H_{D R}^{1}(M / K)^{*}, D=\nabla_{d / d t}^{*}
$$

is a $K[d / d t]$-module, again filtered (in the elliptic case and with $r=1$ as above) by the sub-equations

$$
\begin{gathered}
W_{-2}=\mathcal{H}\left(\mathbf{G}_{m}\right) \simeq 1 ; W_{-1}=\mathcal{H}(G), W_{0}=\mathcal{H}(M) \\
G r_{-1}=\mathcal{H}(E), G r_{0}=\mathcal{H}(\mathbf{Z}) \simeq 1 .
\end{gathered}
$$

Over a sufficiently small domain $U \subset S(\mathbf{C})$,

$$
\Pi(M)(t): U \rightarrow G L\left(H_{D R}^{1}(\mathcal{M} / U) \otimes O_{U}^{a n}\right)
$$

represents a fundamental matrix of analytic solutions of $\mathcal{H}(M)$, and its last vector $\widehat{x}=$ $(\tilde{x}(t), 1)$ satisfies $\exp _{\tilde{G}_{t}}(\tilde{x}(t))=\tilde{y}(t) \in \tilde{G}(K)$.

The field $K(\tilde{x})=K(\tilde{x}, \tilde{y})$ depends only on the projection x of \tilde{x} on $T G$.

Let PV_{M} be the Picard-Vessiot group of the D-module $\mathcal{H}(M): \forall g \in \mathbf{P V}_{M}, g \widehat{x}-\widehat{x} \in W_{-1}$ also depends only on $x \in T G$. Write $\mathrm{PV}_{M} \cdot x$ $\subset H_{B}(\mathcal{G} / U) \otimes \mathbf{C}$ for the corresponding orbit.

Exercise : $\operatorname{tr} . \operatorname{deg}_{K} K(\tilde{x}, \tilde{y})=\operatorname{dim} \mathbf{P V}_{M} \cdot x$.
i.e. the last columns of the elements of $\mathbf{P V}_{M}$ govern Schanuel's problem in the logarithmic case. Here is an elliptic illustration.

Theorem $2: g_{2}(t), g_{3}(t) \in K, j(t) \notin \mathbf{C} ; E / K$ the corresponding elliptic curve; $\left\{u_{i}(t) ; i=\right.$ $1, \ldots, n\}$ holomorphic functions on $U \subset \mathbf{C}$, such that $P_{i}=\exp _{E}\left(u_{i}\right), i=1, \ldots, n$ are Z-linearly independent points in $E(K)$. Then,

$$
\begin{gathered}
\operatorname{tr} . \operatorname{deg} g_{K} K\left(u_{i}, \zeta\left(u_{i}\right), \ln \sigma\left(u_{i}\right) ; i=1, \ldots, n\right)=3 n \\
{\left[\exp _{E}=\exp _{E(t)}, \zeta=\zeta_{t}, \sigma=\sigma_{t} ; j \notin \mathbf{C} \Rightarrow \text { no } C M\right]}
\end{gathered}
$$

The proof combines three ingredients :

- (A) an essentially geometric fact (Manin)

$$
\begin{aligned}
& G \in E x t_{\text {gr.sch./K}}\left(E, \mathbf{G}_{m}\right) \simeq \widehat{E} \simeq E(K) \ni Q \\
& \rightsquigarrow \mathcal{H}(G)=\mathcal{H}^{*}(Q) \in E x t_{D-\text { mod. }}(\mathcal{H}(E), \mathbf{1})
\end{aligned}
$$

and dually

$$
\begin{aligned}
P & \in E(K)=E x t_{\text {gr.sch./K }}(\mathbf{Z}, E) \\
& \rightsquigarrow \mathcal{H}(P):=W_{0} / W_{-2} \in E x t_{D-\bmod .}(1, \mathcal{H}(E)) .
\end{aligned}
$$

Manin's kernel theorem is that the kernel of these maps is generated by the points of height 0 , i.e. the constant part of E (here 0) and the torsion points of E.

- (B) pure PV theory (cf. C. Hardouin's talk, in the general framework of a neutral tannakian category), viz. :

Let \mathcal{V} be an irreducible D-module, $V=\mathcal{V}^{s o l}$, and let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ be C-lin. ind. extensions in $E x t_{D-\text { mod. }}(1, \mathcal{V})$. Then, the unipotent radical of $\operatorname{PV}\left(\mathcal{E}_{1} \oplus \ldots \oplus \mathcal{E}_{n}\right)$ fills up V^{n}.

- (C) Rigidity of algebraic groups.
$\mathcal{V}=\mathcal{H}(E)$, with $V=H_{B}(\mathcal{E} / U) \otimes \mathbf{C}$, has an (antisymmetric) polarization $\langle |>$. Let $\mathbf{H} \in$ $\operatorname{Extgr}_{g r}(V, \mathbf{C})$ be the Heisenberg group on V,

$$
\mathbf{H}=\left\{\left(\begin{array}{ccc}
1 & v^{b} & c \\
0 & \mathbf{I}_{2} & v \\
0 & 0 & 1
\end{array}\right) ; v \in V, c \in \mathbf{C}\right\}
$$

For $n=1$, and $P=Q$ non-torsion, $\mathrm{A}+\mathrm{B}+$ rigidity force an isomorphism

$$
\psi_{P}: R_{u}(\mathcal{H}(M)) \simeq \mathbf{H}
$$

For $i=1, \ldots, n$ and the $P_{i}=Q_{i}$'s lin. indep. over \mathbf{Z}, let R_{u} be the unipotent radical of $\operatorname{PV}\left(\mathcal{H}\left(M_{1}\right) \oplus \ldots \oplus \mathcal{H}\left(M_{n}\right)\right)$.

$$
\psi=\left(\psi_{P_{1}}, \ldots, \psi_{P_{n}}\right): R_{u} \hookrightarrow \mathbf{H}^{n}
$$

and by $\mathrm{A}+\mathrm{B}, \Psi\left(R_{u}\right)$ projects onto V^{n}. But since $\langle |>$ is non degenerate, the derived group of any subgroup of \mathbf{H}^{n} projecting onto V^{n} fills up C^{n}, so that \mathbf{H}^{n} is again an essential extension! Hence, $R_{u}=\mathbf{H}^{n}$, and

$$
\text { tr.deg. }{ }_{K} K\left(u_{i}, \zeta\left(u_{i}\right), \operatorname{\ell n} \sigma\left(u_{i}\right)\right)=\operatorname{dim} \mathbf{H}^{n}=3 n .
$$

