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Abstract

Numerical predictions of a simple myelinated nerve fiber model are compared with
theoretical results in the continuum and discrete limits, clarifying the nature of the
conduction process on an isolated nerve axon. Since myelinated nerve fibers are often
arranged in bundles, this model is used to study ephaptic (nonsynaptic) interactions
between impulses on parallel fibers, which may play a functional role in neural pro-
cessing.

1 Introduction

Following the quantitative formulation of nerve impulse dynamics for the giant
axon of the squid by Hodgkin and Huxley in 1952 [17], many of the analytic
studies have focused on smooth nerve fibers which are described by nonlinear
partial differential equations (nonlinear reaction diffusion equations). Although
this picture is appropriate for the squid axon, many nerve fibers are discrete,
periodic structures, comprising active nodes separated by sections of nerve that
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are insulated by myelin. In such myelinated nerves, as Rushton showed in 1951
[38], the wave of activity jumps from one node to the next and can be described
by nonlinear difference-differential equations.

Called “saltatory” conduction by the electrophysiologists, impulse propaga-
tion on myelinated nerves is qualitatively similar to a row of falling dominos and
to the signal fires of coastal warning systems during the Middle Ages. Myeli-
nated nerve structures are useful because they allow an increase in the speed of
a nerve impulse while decreasing the diameter of the nerve fiber; thus the mo-
tor nerves of vertebrates—which are about the same diameter as a squid giant
axon—comprise several hundred individual fibers, each serving as an indepen-
dent signaling channel [46]. As an added advantage, myelinated nerves expend
much less energy in transmitting an impulse.

In general, neurons talk to each other through chemical junctions called
“synapses,” across which excitatory or inhibitory substances are released by
incoming nerve impulses, thereby modifying the dendritic membranes of subse-
quent neurons, but there are other possibilities. In this paper, we consider the
dynamics of impulses on myelinated nerve fibers that are parallel and relatively
close together (as in vertebrate motor nerves) so the electrodynamics on one
fiber can influence those on others and vice versa. Such parallel fiber interac-
tions have been known to electrophysiologists since the 1940s [2, 22], and are
termed ephaptic from a Greek word meaning “to touch” [21].

First studied analytically and numerically in the 1960s [3, 13, 14, 15, 19,
20, 26, 27, 28, 33, 34, 36, 37, 39], saltatory conduction on myelinated nerve
models introduces two qualitatively important features. One of these is the
above mentioned increase in speed of conduction, and another is the possibility
of failure when the distance (or electrical resistance) between the active nodes
becomes too large. We show here that both of these phenomena are influenced
by ephaptic coupling.

A simple model for computing the leading edge propagation of an impulse
is developed in Section 2 of this paper, clarifying the nature of conduction on
a real nerve and setting the stage for an exploration of the effects of ephaptic
interactions. In section 3, we discuss the phenomena of impulse synchronization
due to ephaptic interactions in the saltatory and continuum limits from theoret-
ical perspectives, and in Section 4 numerical results on three effects of ephaptic
coupling are presented: (i) the formation of synchronized pulses on neighboring
fibers, (ii) the ratio of the conduction velocity of such coupled impulses to the
corresponding velocity of an uncoupled (free) impulse, and (iii) changes in the
onset of failure.

2 An isolated myelinated fiber

Our aim in this section is to develop a simple yet physically reasonable model for
impulse propagation on a myelinated nerve fiber, and demonstrate its ability to
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Figure 1: A single myelinated nerve fiber. (not to scale.)

describe theoretical results and experimental observations. (See reference [44]
for an up-to-date information on many aspects of real myelinated axons.)

2.1 An electric circuit model

In Figure 1 is sketched a single myelinated nerve fiber, showing active nodes
which are separated by regions of the fiber that are insulated by myelin. This
structure can be modeled by the following system of difference-differential equa-
tions [31].

Vn − Vn+1 = (Ri +Ro) In (1)

and

In−1 − In = C
dVn
dt

+ Iion,n . (2)

The index n indicates successive active nodes, each of which is characterized by
a transverse (inside to outside) voltage across the membrane (Vn). A second
dynamic variable is the current (In) flowing longitudinally through the fiber
from node n to node n+1. Thus Equation (1) is merely Ohm’s law, relating the
voltage difference between two adjacent nodes of the current flowing between
them times the sum of the inside and outside resistances: Ri and Ro.

Equation (2) says that the current flowing into the nth node from the (n−
1)th node (In−1) minus the current flowing out of it to the (n+1)th node (In) is
equal to the following two components of transverse (inside to outside) current
leaving the node: (i) the capacitive current, C dVn/dt, and (ii) the ionic current,
Iion,n, comprising both sodium and potassium components [17].

The time delay for the onset of sodium ion permeability is rather short (in a
frog’s myelinated motor axon it is less than 0.1 millisecond), whereas the time
delay for the onset of potassium ion permeability is several milliseconds [8].
Thus it is appropriate to assume that the sodium ion current begins without
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delay, and the potassium permeability remains equal to its resting value over
the leading edge of the impulse. From the Hodgkin–Huxley formulation, these
assumptions imply that the total ionic current is represented by a nonlinear
conductivity [17].1 To maintain contact with several analytic results that are
available for nonmyelinated nerves [40, 41], we further assume that this ionic
current is given by the cubic expression

Iion,n =
(

G

Vb(Vb − Va)

)
Vn(Vn − Va)(Vn − Vb) . (3)

In this expression, the resting potential of the active membrane is zero, and the
parameters are defined as follows. (i) The threshold voltage at which sodium
current begins to flow into an active node is Va. (ii) The Nernst (diffusion)
potential at which total (primarily sodium) ion current returns to zero is Vb.
(iii) The total (primarily sodium) ionic conductance near Vb is G.

Next we consider how the parameters of this model are related to the exper-
imental description of a real myelinated nerve fiber. To this end, we turn to the
following measurements on a single axon (with a diameter of 14 microns) of a
frog’s motor nerve [18, 8, 43]: (i) Distance between nodes = 2 mm. (ii) Internal
resistance/length = 140–145 megohm/cm. (iii) Capacity of myelin/length = 10
to 16 picofarad/cm. (iv) Capacity of active node = 0.6 to 1.5 picofarad.

From this data

• Ri = 28± 1 megohm, and

• C = 3.7± 1 picofarad,

where it will be noted that the distributed capacitance of the internodal myelin
sheath has been lumped together with nodal membrane capacitance. For an
isolated nerve fiber in an experimental situation, the cross-section for external
current flow is much greater than that for internal resistance; thus

• Ro � Ri,

however larger values of Ro are to be expected in nerve bundles, where many
individual fibers are situated together [44].

Cole has reported the maximum sodium conductance of a frog node as [8]

• G = 0.57 micromhos,

and the Nernst potential for sodium ions as

• Vb = 122 millivolts.

Also the threshold potential for a typical nerve membrane is about [40]
1In the Hodgkin–Huxley notation, the sodium turn-on variable m = m0(Vn), and the

sodium turn-off and potassium turn-on variables are respectively h = h0(0) and n = n0(0).
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• Va ∼ 25 millivolts.

Potassium ion current carries positive charge out of an active node; thus it
is a recovery variable. An exact expression for this current was presented by
Hodgkin and Huxley [17] and a simple representation was proposed by FitzHugh
[12], but here we note that the time delay for the onset of potassium current
is about 4 milliseconds [8]. Since the length of the impulse is about equal
to this time delay times its speed (23 millimeters/millisecond), we expect the
trailing edge of an impulse to lag behind its leading edge by about 9 centimeters
or 45 nodes. Thus—as noted above—it is reasonable to neglect effects of the
trailing edge of the impulse on its leading edge dynamics. We shall employ this
approximation throughout the present paper by assuming that the potassium
ion permeability remains equal to its resting value.

For the experimental parameters that are listed above, we can measure volt-
ages in units of the Nernst potential (Vb) to obtain the dimensionless voltage
variables

vn ≡ Vn/Vb . (4)

Then Equations (1) and (2) become the discrete reaction diffusion system

RC
dvn
dt

= (vn+1 − 2vn + vn−1)−
(
RG

1− a

)
vn(vn − a)(vn − 1) ,

where

a ≡ Va/Vb , and R ≡ (Ri +Ro) .

At this point, we wish to normalize the model in a manner that: (i) allows the
internode spacing to be an independent parameter, and (ii) maintains contact
with standard notations in studies of discrete nonlinear diffusion by applied
mathematicians. To these ends we take s to be a variable internodal distance
and define a discreteness parameter

D ≡
(

2 mm
s

)
=
Rf

R
,

where it is intended throughout this paper that

Rf = 28 megohms ,

which is the internode resistance of a frog nerve. In other words, 1/D is the
spacing between nodes in units of 2 mm, so D = 1 implies the discreteness of a
standard frog nerve.

In this formulation, the dynamic equation becomes
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D(vn+1 − 2vn + vn−1) = RfC
dvn
dt

+ βvn(vn − a)(vn − 1) , (5)

where

β ≡ RfG

1− a .

Although the experimental values of the parameters upon which Equation
(5) is based are only approximately determined, we believe that they provide
reasonable estimates for numerical studies of myelinated motor nerves of a frog.

2.2 Impulse speed and failure

In Equation (5), we have obtained a discrete reaction diffusion system, modeling
a myelinated nerve. Here we briefly present some numerical calculations of
impulse speeds and compare them with certain theoretical results [1, 10, 28, 36,
37].

Broadly speaking, the nature of the wave propagation on a discrete nerve
model can be characterized by looking at the relative change in voltage between
two adjacent nodes. If this relative change everywhere satisfies the inequality
|(vn+1 − vn)/vn| � 1, then the voltages and currents are smooth functions
of distance and the system can be described by partial differential equations:
the corresponding continuum system. If, on the other hand, max |(vn+1 −
vn)/vn)| � 1, then the conduction process is saltatory, jumping from one active
node to the next in a discontinuous manner. We shall refer to these two cases
as the continuum limit and saltatory limit respectively.

Continuum limit

If the internodal spacing s is small enough so that the continuum limit is
reached, then Equation (5) can be written as the partial differential equation

s2D
∂2v

∂x2
−RfC

∂v

∂t
= βv(v − a)(v − 1) , (6)

where we have let

ns→ x .

Formulated in 1938 as a model for flame front propagation, Equation (6)
has been extensively studied as a simple nerve model since the early 1960s
[41]. In particular, if we measure time in units of RfC/β and distance in units
of s

√
D/β, then a traveling wave front (the leading edge of the impulse) was

shown by Zel’dovich and Frank-Kamenetsky to have shape [47]
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v(x, t) =
1

1 + exp[(x− ut)/
√

2]
(7)

and speed

u = (1− 2a)/
√

2 .

From Equation (6), a condition for the continuum approximation to hold is

D� 1 .

Evidently this is not the case for the frog myelinated nerve because D = 1
by definition, but it is convenient to have an explicit expression for the wave
speed in the continuum limit as a benchmark for numerical calculations. In the
continuum limit, the wave speed u→ uc, where

uc =

(
1− 2a√
2(1− a)

)√
G

RC2
nodes/second . (8)

To get the corresponding impulse speed in (say) meters/second, one multiplies
this expression by s in meters.

Saltatory limit

For D of the order of unity or less, the wave of excitation jumps from node to
node in a discontinuous matter, allowing the speed of conduction to be greatly
increased without a corresponding increase in fiber diameter [41]. Since D = 1
for the frog node, this myelinated nerve fiber lies within the saltatory range.

An additional feature of the saltatory limit is the possibility that the switch-
ing of one node is unable to bring the adjacent node above its threshold. In
this situation—which is called failure—the impulse ceases to propagate [1, 4, 5,
10, 11, 23, 25]. Since failure of impulse conduction is an undesirable property
of a real nerve, we expect the node spacing for a frog nerve to lie comfortably
beyond this range.

If the internode spacing s is increased so that D is reduced to a critical value
D∗, failure of impulse propagation occurs. Erneux and Nicolis have shown that
this critical value of the discreteness parameter is given to lowest order in a by
[10]

D∗ ≈ βa2

4
, (9)

for the cubic form on the sodium conductance indicated in Equation (3). For
D slightly larger than D∗, these same authors show that the impulse velocity
u→ us, where
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us =
√
β

πRfC

√
D −D∗ nodes/second . (10)

Some numerical results and biological observations

Equation (5) has been used to compute the wave front velocity for a nerve
impulse, which is plotted against the discreteness parameter (D) in Figure 2.
From this plot, we draw the following conclusions.

• At larger values of the discreteness parameter (D > 5), the continuum
approximation holds and impulse velocity is given by Equation (8).

• Failure in the model is accurately predicted by Equation (9) to occur at
D∗ = 0.2.

• Near the failure point, impulse velocity is rather well represented by Equa-
tion (10).

• At D = 1 (corresponding to a real frog nerve), neither the continuum
approximation formula nor Equation (10) gives a satisfactory prediction
of the impulse velocity.

In the context of these numerical results, we make the following empirical
observations.

• Tasaki has reported measurements of the conduction velocities of 49 frog
axons with diameters ranging from 4 to 16 microns at 24oC [43]. These
data indicate that the experimental values of velocity (ue) are related to
the outside diameter of the axon (d) by the linear relationship

ue = 2.5d± 40%, (11)

where velocity is in meters per second and the diameter is in microns.
The rather large error bars reflect the experimental difficulties involved in
single axon measurements

From Figure 2, our calculated value for the impulse velocity on a single
axon with a diameter of 14 microns is 29 meters per second, a value that
lies within the bounds of Tasaki’s empirical results.

• It might be objected that our choice of a cubic polynomial to represent
sodium ion current in Equation (3) is not realistic, and we agree. The
cubic polynomial is used because it allows us to make contact with the
limiting forms of the continuum and saltatory limits in Equations (8)
and (10) respectively. We have repeated our calculations of the impulse
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Figure 2: Leading edge impulse velocity on a myelinated axon as a function of
the discreteness parameter D. The dashed line (- - - - ) indicates the saltatory
limit in Equation (10). The dot-dashed line (- · - · - · -) indicates the continuum
limit of Equation (8). The “+” marks indicate numerical calculations.
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velocity with a Hodgkin–Huxley form for the sodium ion current that was
adjusted to match experimental measurements of current at a frog node
[8]. The resulting value of 46 meters per second also lies within the limits
of Equation (11).

• Failure of an impulse is expected to occur at an internode spacing of 1
cm, corresponding to D = 0.2, whereas the normal nerve is designed for
D = 1, corresponding to a spacing of .2 cm. Thus the design of the axon
provides a comfortable margin of safety against accidental failure on the
frog’s motor nerve.

• At D = 1, Figure 2 shows that the impulse velocity of a normal frog nerve
is close to the maximum possible value, suggesting an optimal design.

• Near D = 1, the impulse velocity reaches its maximum value. This obser-
vation provides an explanation for the “surprising” fact—noted by Moore
et al. [31]—that the conduction velocity of a frog’s myelinated motor
nerve is rather insensitive to the internode spacing. From an engineering
perspective, operating in this insensitive region of parameter space makes
the system more robust.

3 Theoretical studies of ephaptic coupling

In the parallel nerve interactions observed experimentally in the early 1940s
by Katz and Schmitt [22] and by Arvanitaki [2], the mechanism of impulse
coupling was through an electrical linking of the external return currents of
nearby impulses.

An analytic formulation of such an interaction between nonmyelinated im-
pulses was presented by Markin in 1970 [29, 30, 40] and experimentally verified
by Ramón and Moore in 1978 [35]. This coupling effect occurs because the
external current loop (from leading to trailing edge) of one impulse induces a
longitudinal voltage in the external resistance, influencing the dynamics of an
adjacent impulse. As it turns out, it is the second spatial derivative of the im-
pulse on one fiber that perturbs the other impulse, and vice-versa [40]. (We note
that this ephaptic interaction differs from the ohmic interaction through “gap
junctions” to neighboring cells that has been considered by some other authors
[6, 7, 24].)

3.1 The continuum limit

One effect of the mutual interaction between two nonmyelinated impulses is to
cause them to propagate with exactly the same speed, an effect that was studied
using a perturbation theory in the late 1970s [9, 41, 42]. In this analysis the
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small parameter is the mutual coupling between the two fibers, which can be
expressed as the ratio

α ≡ Ro/(Ri +Ro) , (12)

relating the (shared) external resistance to the total longitudinal resistance.
To appreciate this result, consider two nonmyelinated nerves (i.e., the con-

tinuum limit) for which the impulse on fiber 2 leads (is ahead of) the impulse
on fiber 1 by a distance δ and denote the impulse velocity on fiber 1 (2) as u1(δ)
(u2(δ)). Following the analysis presented in Section 7.6.2 of reference [41], it
is straightforward to show that for a general class of simple nonlinear diffusion
equations

u1(δ)− u2(δ) =
α

N

∫ ∞
−∞

eu0xf ′(x)[f ′′(x− δ)− f ′′(x+ δ)]dx , (13)

where

N ≡
∫ ∞
−∞

eu0x [f ′(x)]2 dx .

For the cubic representation of the sodium ion conductance that we have
assumed in Equation (3), f(x) = 1/(1 + ex/

√
2) and u0 = (1 − 2a)/

√
2, which

are the shape of the leading edge of an impulse and its speed of conduction,
given in Equation (7). In this case, Equation (13) becomes

u1(δ)− u2(δ) =
3α√

2

(
∆

a(1− a)(∆− 1)3

)
×

2
∆1−2a −∆1+2 a

∆− 1
−∆− 1 +

(
∆1−2a −∆−1+2 a

) (
2 (∆− 1)2 a2 + ∆ (4 a+ 1)

)
(∆− 1) (1− 2 a)


(14)

where ∆ = exp(δ/
√

2).
From Equation (13), it can be seen that [u1(δ) − u2(δ)] is a function of δ

that goes through the origin with positive slope. Since

dδ

dt
= −[u1(δ)− u2(δ)] , (15)

δ decays to zero, indicating a stable locking of pairs of impulses at δ = 0. In
other words, if impulse 2 gets ahead of impulse 1, then impulse 1 will go faster
than impulse 2, thereby closing the gap.

11



3.2 The saltatory limit

Moving slightly away from the continuum limit, the analysis upon which Equa-
tion (13) is based can be repeated with x-derivatives interpreted as differences
and inner products written as sums; thus for 1 � D < ∞, the behavior of
ephaptically coupled myelinated nerves should be similar to that of nonmyeli-
nated nerves. As D is reduced toward the saltatory realm, however, the cor-
responding analysis becomes qualitatively different; a key question being: How
long does it take the (n+ 1)th node to reach a threshold level for ignition after
the nth node fires?

An approximate answer to this question is provided by assuming that each
node switches from 0 to Vb as a Heaviside step function, causing the voltage
across the next node to rise as [41]

V ∼ Vb

1 +RG0

(
1− e−t/τ

)
,

where G0 ≡ VaG/(Vb − Va) is the ionic conductance near zero voltage and

τ = RC/(1 +RG0)

is the relevant time constant for charging the node capacitance. (In these ex-
pressions, we recall that R = 28 megohms, and note that 1/G0 = 7.7 megohms,
so 1 +RG0 = 4.6.)

As the voltage across the next node capacitance rises, the current that flows
through the myelin sheath and returns through the external space relaxes with
the same time constant from Vb/R to VbG0/(1 + RG0), a drop of about 20%.
With these facts in hand, we are in a position to understand why coupled
impulses are also expected in the saltatory limit.

Assuming two parallel fibers with active nodes aligned and sharing an ex-
ternal resistance Ro, the logic proceeds as follows.

• If impulses on the two fibers are exactly synchronized so that nodes n
switch at time zero, the currents flowing through Ro will tend to decrease
the voltage across the (n+1)th nodes. This has the effect of increasing the
time needed to reach threshold at the (n+ 1)th nodes, thereby decreasing
the impulse velocity on both fibers.

• If the nth node on fiber 2 switches shortly before the corresponding node
on fiber 1 (indicating that the impulse on fiber 2 leads the impulse on fiber
1), then the external return current from fiber 1 will be larger when the
(n+ 1)th node of fiber 2 is ready to fire, because the current from node n
to (n+ 1) on fiber 1 has had less time to relax.

• Since the external current is greater when fiber 2 is ready to fire its subse-
quent node, the time for this firing will increase, implying that the impulse
velocity on fiber 2 is diminished.
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• Similarly if the nth node on fiber 1 is assumed to switch slightly after that
of fiber 2, the external return current from fiber 2 will be smaller when
the (n + 1)th node of fiber 1 is ready to fire, because the current from
node n to (n+ 1) on fiber 2 has had more time to relax.

• Since the external current is less when fiber 1 is ready to fire its subsequent
node, the time for this firing will decrease, implying that the impulse
velocity on fiber 1 is increased.

• Thus the assumption that an impulse on fiber 2 leads an impulse on fiber
1 implies that the speed on the impulse on fiber 2 (fiber 1) decreases
(increases), thereby closing the gap.

In the following section, detailed numerical studies are used to confirm this
qualitative argument and explore the properties of ephaptically coupled myeli-
nated nerves in the parameter range between the continuum and the saltatory
limits.

4 Numerical observations of ephaptic coupling

In describing the interaction between myelinated nerve fibers, it is necessary to
consider the degree to which the locations of the active nodes are aligned. To this
end, we sketch two partially aligned axons in Figure 3(a) and a corresponding
circuit diagram in Figure 3(b).

In this circuit diagram, the V (j)
n are voltages across the active nodes, where

j = 1, 2 indicates a particular fiber. Similarly, the I(j)
n are mesh currents, which

provide the independent variables for an analysis in terms of Kirchhoff’s voltage
law. Equating all of the voltages about the meshes to zero leads directly to the
equations

V (1)
n − V (1)

n+1 = (Ri +Ro)I(1)
n +Ro[AI(2)

n + (1−A)I(2)
n−1]

(16)

V (2)
n − V (2)

n+1 = (Ri +Ro)I(2)
n +Ro[AI(1)

n + (1−A)I(1)
n+1] ,

and the voltages across the active nodes are then related to the mesh currents
by

I
(j)
n−1 − I(j)

n = C
dV

(j)
n

dt
+ I

(j)
ion,n (17)

with

I
(j)
ion,n =

(
G

Vb(Vb − Va)

)
V (j)
n (V (j)

n − Va)(V (j)
n − Vb) .
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Figure 3: (a) Two myelinated nerves that are coupled by a linking (ephaptic
coupling) of their external return currents. (Not to scale.) (b) A circuit diagram
of the coupled myelinated nerves.
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In this formulation, an alignment parameter A is introduced to indicate the
degree of nodal alignment. With A = 1, the active nodes on the two fibers are
exactly aligned, whereas they are evenly staggered for A = 1/2.

In Equations (16) and (17), it is convenient to measure voltages and currents
in units of Vb and Vb/Rf respectively. Thus the general equations for ephaptic
coupling become

D
(
v(1)
n − v

(1)
n+1

)
= i(1)

n + α[Ai(2)
n + (1−A)i(2)

n−1]

D
(
v(2)
n − v

(2)
n+1

)
= i(1)

n + α[Ai(1)
n + (1−A)i(1)

n+1]

i
(j)
n−1 − i(j)n = RfC

dv
(j)
n

dt
+ i

(j)
ion,n (18)

i
(j)
ion,n = βv(i)

n (v(j)
n − a)(v(j)

n − 1) ,

where v(j)
n ≡ V

(j)
n /Vb, i(j)n ≡ RfI

(j)
n /Vb, β ≡ RfG/(1 − a), R ≡ (Ri + Ro),

α ≡ Ro/R, D ≡ Rf/R, and j = 1, 2.
For 1/2 < A < 1, it is difficult to further simplify these equations, but for

A = 1 and with the notation

∆v(j) ≡ (v(j)
n+1 − 2v(j)

n + v
(j)
n−1) ,

Equations (18) can be written to first order in α as

D
[
(1− α)∆v(1) − α∆v(2)

]
= RfC

dv
(1)
n

dt
+ βv(1)

n (v(1)
n − a)(v(1)

n − 1)

D
[
(1− α)∆v(2) − α∆v(1)

]
= RfC

dv
(2)
n

dt
+ βv(2)

n (v(2)
n − a)(v(2)

n − 1) .

4.1 Speed of coupled impulses

In Figure 4, we show how the speed of two coupled impulses depends upon the
ephaptic coupling constant α. (Note that the curve for α = 0 is identical to
that of Figure 2.) In Figure 4, three cases are of particular interest.

• The continuum limit

For D � 1 and A = 1, we can assume that δ = 0 and all voltages and
currents are identical on the two fibers, whereupon it is straightforward
to show that the speed of two coupled impulses is decreased by a factor
of
√

1 + α, which is observed numerically. For A = 1/2, we also find that
the impulse velocity is decreased by a factor of

√
1 + α in the continuum

limit. This is to be expected because the average values of the currents
and voltages over several nodes is independent of node alignment in the
continuum limit.
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• Failure

For A = 1 and δ = 0 (two coupled impulses), twice the external cur-
rent flows through the external resistance (Ro); thus the effective loop
resistance seen be each fiber is

Ri + 2Ro = R(1 + α) .

Noting from Equation (9) that D∗ is proportional to β, which in turn is
proportional to the effective loop resistance, we expect to find

D∗(α)
D∗(0)

= 1 + α,

and this is confirmed by the numerical plot of Figure 5. More generally,
Equation (10) implies that

us =
√
β

πRfC

(
D√

1 + α
− βa2

4

√
1 + α

)
nodes per second

as D→ D∗, which is confirmed by our numerical computations in Figure
4.

For A = 1/2, the dependence of D∗ on α is more intricate. Referring
to Figure 3, we see that the nodes are evenly staggered for A = 1/2,
implying an external resistance of Ro/2 linking adjacent current loops.
The numerical studies show that in the saltatory limit the jumps alternate,
first on one fiber and then on the other. Thus the effective loop resistance
can be computed for a single fiber as

Ri + 2
(
Ro

2

)
‖ (Ri +Ro/2),

where the symbol “‖” implies evaluating the parallel combination of the
resistors indicated, and contributions of order R3

o have been neglected.
Thus the effective loop resistance in this case is

Ri +Ro −
1
2

R2
o

Ri +Ro
,

which implies that

D∗(α)
D∗(0)

= 1− 1
2
α2 + O(α3) .

Again, this is confirmed by the numerical results of Figure 5.
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Figure 5: The value of the discreteness constant at which failure occurs (D∗) as
functions of α for A = 1 and A = 1/2.
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• Impulse velocity on a nerve bundle

From Figure 4 it is seen that the speed of locked impulses on two coupled
fibers decreases as α is increased. For n coupled fibers, the effective value
of α is [30]

α̃ =
(n− 1)Ro

Ri +Ro
.

Assuming the fibers in a nerve bundle to be hexagonally arranged implies
an α̃ of 6Ro/(Ri +Ro), which might lead to an observable decrease in the
speed of an individual axon.

4.2 Dynamics of impulse coupling

With reference to Equation (15), we recall that the dynamics of coupled impulses
are governed by the function [u1(δ) − u2(δ)], which is expected to be linearly
dependent on α for sufficiently small values of α.

From numerical integration of Equations (18), we have determined dδ/dt as
a function of δ, allowing construction of the three dimensional plots of

u1(δ)− u2(δ)
α

as functions of D and δ for A = 1 and A = 1/2 that are presented in Figure
6. In the continuum limit (D � 1), as expected, these curves approach the
theoretical expression of Equation (14), which was obtained from perturbation
theory.

As D becomes smaller, nearing the saltatory limit, we find that an alignment
of the active nodes (A = 1) leads to a stronger and more localized synchroniza-
tion of impulses than for the staggered case (A = 1/2). From a qualitative
perspective this seems reasonable because it is the external resistance shared by
two fibers that leads to impulse synchronization, and with A = 1 this shared
external resistance is situated between two nodes, whereas with A = 1/2 it is
between three nodes.

The biological significance of coupled impulses may arise from at least three
considerations [42].

• Synchronization on bundles of motor neurons might adjust the timings
among coupled impulses, allowing for coordinated stimulation of muscle
cells.

• Synchronization on bundles of optical or auditory axons in the central
nervous system may insure the timings necessary for computations in the
dendritic fields of subsequent neurons [41].
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• Synchronization of groups of adjacent neurons in the corpus callosum (pro-
viding channels of communication between the two hemispheres of the
brain) could be a means for the transmission of more intricate messages
between the two hemispheres of the brain.

With such speculations in mind, it is interesting to consider whether an
observation of aligned nodes should be taken to imply the functional importance
of coupled impulses. (This is more than a hypothetical question, because nodal
alignment of small groups of fibers has been observed in the corpus callosum
[45].) Although it might be expected from a qualitative perspective, our data
suggest that this question be approached with caution, for the following reasons.
(i) While the tendency to synchronize is stronger for A = 1, it is spread out over
two internodes for A = 1/2, indicating a more robust coupling, so both of these
limiting cases lead to impulse synchronization at δ = 0. Thus if the fibers are
short (with few nodes), the need for rapid synchronization may require node
alignment, whereas rapid synchronization would be less important for longer
fibers. (ii) The node separation at which failure occurs is insensitive to ephaptic
coupling for staggered nodes, whereas it decreases linearly with the coupling for
aligned nodes.

In any case, Figure 6 indicates that ephaptic coupling is to be expected
on myelinated fibers for every sort of nodal orientation: aligned, unaligned, or
random.

5 Conclusions

For an isolated myelinated nerve axon, we have confirmed previous calculations
of impulse speeds in the continuum and saltatory limits, showing that conduc-
tion velocity lies between these two limits, near its maximum value.

Taking ephaptic coupling of parallel fibers into consideration, we have ob-
tained the following results. (i) Estimates of the effects of impulse coupling in
the saltatory and continuum limits are confirmed and extended to the interme-
diate realm. (ii) The effects of impulse coupling on failure are computed and
found in agreement with theoretical estimates in the saltatory limit. (iii) The
decrease of impulse velocity in motor nerves due to impulse coupling is calcu-
lated and found to be significant. (iv) In the saltatory range, we show that the
coupling of impulses is to be expected for any degree of nodal alignment.
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Appendix – Numerical details

The numerical simulations of the ephaptic coupling are performed using a predictor-
corrector algorithm in which each of the two fibers is made up of N = 200 cells.
The predictor step consists of applying the simple Euler predictor to Equation
(17), then solving the algebraic Equations (16). The corrector step follows the
same strategy, using the trapezoidal rule corrector for Equation (17).

The initial conditions are set as step functions, which evolve into propagating
topological waves.

The next step is to measure the relative speed of two impulses (u1 − u2)/α
as functions of both discreteness parameter D and impulse spacing δ. We define
the position of each wave as the point at which it reaches a particular value of
Vc. This value is chosen to half of the maximum amplitude, i. e. Vc = 1/2. The
corresponding point on the n axis, Nc is found by calculating a linear interpolant
to Vn using the values on either side of of Vc, then solving for Vn = Vc.

This local linear approximation to the profile generates some small high
frequency errors which are removed using a low pass filter, namely a Butterworth
filter of the third order.

The relative speed (u1 − u2) is then determined as a numerical derivative
of the distance (Nc1 − Nc2) between the adjacent waves, leading to the results
plotted on figure 6.
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FIGURE CAPTIONS

Figure 1. A single myelinated nerve fiber. (not to scale.)

Figure 2. Leading edge impulse velocity on a myelinated axon as a function
of the discreteness parameterD. The dashed line (- - - - ) indicates the saltatory
limit in Equation (10). The dot-dashed line (- · - · - · -) indicates the continuum
limit of Equation (8). The “+” marks indicate numerical calculations.

Figure 3. (a) Two myelinated nerves that are coupled by a linking (ephaptic
coupling) of their external return currents. (Not to scale.) (b) A circuit diagram
of the coupled myelinated nerves.

Figure 4. Coupled impulse speed as a function of coupling constant (α) and
discreteness parameter (D). (a) A = 1. (b) A = 1/2.

Figure 5. The value of the discreteness constant at which failure occurs (D∗)
as functions of α for A = 1 and A = 1/2.

Figure 6. Relative speeds of two impulses (u1 − u2)/α as functions of both
discreteness parameter (D) and impulse spacing (δ). (a) A = 1. (b) A = 1/2.

26


