
THE DISCRETE NONLINEAR SCHRÖDINGER EQUATION
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1. Introduction

The Discrete Nonlinear Schrödinger (DNLS) equation describes a particu-
larly simple model for a lattice of coupled anharmonic oscillators. In one
spatial dimension, the equation in its simplest form is

i
dAj

dt
+ γ|Aj |2Aj + ε(Aj+1 + Aj−1) = 0, (1)

where i =
√−1, the index j ranges over the 1D lattice. The lattice may be

infinite (j = 0,±1,±2, . . .) or finite (j = 1, 2, . . . , f). In the latter case one
usually assumes periodic boundary conditions, Aj+f = Aj . The quantity
Aj = Aj(t) is the complex mode amplitude of the oscillator at site j, and
γ is a anharmonic parameter.

The connection with the continuous Nonlinear Schrödinger (NLS) equa-
tion

iAt + γ|A|2A + Axx = 0 (2)

is more clear if we write (1) in an alternative form

i
dAj

dt
+ γ|Aj |2Aj + ε(Aj+1 − 2Aj + Aj−1) = 0. (3)

1



2

The transformation Aj → Aj exp(−2itε) takes (3) into (1). With ε =
1/(∆x)2, (3) is seen as a standard finite difference approximation to (2).

The DNLS equation (1) is a special case of a more general equation, the
Discrete Self-Trapping (DST) equation34

i
dAj

dt
+ γ|Aj |2Aj + ε

∑
k

mjkAk = 0. (4)

Here M = [mij ] is a f×f coupling matrix. In physical applications M is real
and symmetric, and clearly with M a suitably chosen constant tridiagonal
matrix, we can regain (1) or (3). Physically this corresponds to the choice of
nearest neighbour couplings. A more general choice for the elements of M

introduce longer range couplings or different topologies to the lattice. The
distinction between the DST and the DNLS equation is somewhat blurred
in modern usage.

One interesting limiting special case of the DST equation is the case of
the so-called complete graph model, when

mij = 1− δij ,

corresponding to a lattice with each point connected directly to every other
point on the lattice.

Clearly one can scale t and γ in the DNLS model to fix ε = 1, and this
is often done in the literature. However the more general formulation (1)
is useful when one wishes to consider the case ε → 0, i.e. the limit of zero
coupling, known nowadays as the anti-integrable or anti-continuum limit75.
In this limit, the solution of (1) is trivial:

Aj =
√

ωj

γ
ei(ωjt+αj), (5)

where the frequencies ωj and phases αj can be chosen arbitrarily and in-
dependently at each site.

It is worth pointing out to avoid confusion that there are other possible
discretizations of the NLS equation, one being the eponymous Ablowitz-
Ladik (AL) model3

i
dAj

dt
+

(
1 +

1
2
γ|Aj |2

)
(Aj+1 + Aj−1) = 0. (6)

Another is a model due to Izergin and Korepin52 which is rather lengthy
to write down, see the book by Faddeev and Takhtajan37 for details. Both
the AL model and the Izergin–Korepin models have the advantage of being
integrable equations2, but it can be argued that they are less physically
meaningful. The DST equation has been shown to be non-integrable when
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f > 2 except for the rather unphysical case of a special non-symmetric
interaction matrix M . It should also be mentioned that an often studied
model is the Salerno equation90, which contains a parameter interpolating
between the AL model (6) with pure inter-site nonlinearity and the DNLS
equation (1) with pure on-site nonlinearity. This allows e.g. the use of
soliton perturbation theory98,24 to elucidate the role of the on-site nonlin-
earity as a non-integrable perturbation to the integrable AL equation. The
Salerno equation was extensively analyzed by Hennig and co-workers50 and
is also described in the book by Scott92.

Another possible source of confusion is that the acronym DNLS is some-
times used for the Derivative Nonlinear Schrödinger equation2.

The DST equation (4) can be derived from the Hamiltonian:

H =
f∑

j=1

[
ω

(j)
0 |Aj |2 − γ

2
|Aj |4

]
− ε

∑
j 6=k

mjkA∗jAk (7)

with canonical variables: qj ≡ Aj and pj ≡ iA∗j . Here ω
(j)
0 ≡ εmjj are the

harmonic frequencies of each uncoupled oscillator (’on-site energies’); with
mjk = δj,k±1 the DNLS equations (1) and (3) are obtained for ω

(j)
0 = 0 and

ω
(j)
0 = 2ε, respectively. There is a second conserved quantity, the number

(or norm)

N =
f∑

j=1

|Aj |2. (8)

The integrability of the f = 2 (dimer) case follows from these two conserved
quantities, and in this case all the time-dependent solutions Aj(t), j = 1, 2
can be expressed in terms of elliptic functions53. One can always scale Aj

and γ so that N = 1, or alternatively scale Aj and N so that γ = 1.
The DNLS Hamiltonian is the starting point for a study of a quantum

version of the DNLS system, see the paper by Eilbeck in these proceedings.
In particular the quantum analogue of a classical discrete breather can be
derived.

There are now almost 300 papers on the DNLS and DST equations, and
in this short survey we can only hope to cover a small amount of available
material, concentrating on our own interests. Currently a database of pa-
pers in this area is held at http://www.ma.hw.ac.uk/∼chris/dst. For
complementary aspects we recommend the review papers by Hennig and
Tsironis50 (in particular concerning map approaches with applications to
stationary wave transmission) and Kevrekidis et al.63 (in particular con-
cerning different types of localized modes and their stability, bifurcation
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and interaction properties), as well as the pedagogical introduction in the
textbook by Scott92 and the general review of discrete breathers by Flach
and Willis43.

2. Stationary Solutions

Stationary solutions of the DNLS or DST equations are special solutions of
the form

Aj(t) = φj exp(iωt), (9)

where the φj are independent of time. Inserting this ansatz into the equa-
tions give an algebraic set of equations for the φj . For example, for DNLS
(1), we get

−ωφj + γ|φj |2φj + ε(φj+1 + φj−1) = 0. (10)

It is this feature that makes the DNLS a relatively simple model to work
with. For small periodic lattices up to f = 4 it is possible to solve the
resulting equations exactly and obtain all the families of stationary solu-
tions as a function of ω and γ (for fixed N), with a fascinating bifurcation
structure34. The complete graph model can also be solved exactly for any
f34. For a large or infinite lattice the solutions must be found by numerical
methods such as shooting methods or spectral methods. These solutions
can then be investigated as a function of the parameters of the equation
by numerical continuation methods (see e.g. 32 for a complete list of so-
lutions for f = 6). If γ is sufficiently large, localized solutions are found
which decay exponentially for large |j|. Two examples are shown in Fig.1.
Since these solutions have a periodic time behaviour φj exp(iωt), it seems

A
n

n

Figure 1. Example: localized stationary solutions of the DNLS model
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appropriate to call them “breather” solutions. Another motivation is that
the DNLS equation can be derived from the discrete Klein-Gordon equa-
tion, describing a lattice of coupled anharmonic oscillators, via a multiscale
expansion in the limits of small-amplitude oscillations and weak inter-site
coupling68,28,83. The discrete breathers of this lattice are then represented
as stationary solutions to the DNLS equation. The reader should note that
in the early days of DNLS studies, when breathers in discrete systems were
not so well understood, these solutions were often called solitons.

The stability of such solutions in time can be investigated by looking at
general perturbations in the rotating frame of the solutions18

Ãj(t) = (φj + δuj(t)) exp(iωt)

This reduces the linear stability problem to a study of a linear eigenvalue
problem. It is perhaps to be expected that the stability of a branch of
stationary solutions can change at a bifurcation point. What is surpris-
ing is that, since the eigenvalue problem is not self-adjoint, solutions can
also change stability at other points on the branch. Usually the single-site
peaked (’site-centred’) solution shown at the l.h.s. of Fig.1 turns out to be
stable, whereas the two-site peaked (’bond-centred’) solution shown on the
r.h.s. is not.

For the case of an infinite lattice, both solutions in Fig.1 can be smoothly
continued versus coupling ε (or, equivalently by rescaling, versus ω) for all
ε, without encountering any bifurcations. For ε → 0, the site-centred solu-
tion will be completely localized at the central site with all other oscillator
amplitudes zero, while the bond-centred solution becomes completely lo-
calized on the two central sites. For ε → ∞ both solutions are smoothly
transformed into the same soliton solution of the continuous NLS (2) (which
explains why they are sometimes also termed ’discrete solitons’). As there
are no bifurcations, the site-centred solution is stable and the bond-centred
unstable for all ε in the infinite chain. Comparing the value of the Hamil-
tonian (’energy’) of the two solutions for a fixed N , one finds that the
site-centred solution always has the lowest energy. This energy difference
has been proposed to act as a sort of Peierls-Nabarro potential barrier65.
Another property of these two solutions in infinite 1D lattices is that they
exist for arbitrarily small γ (or arbitrarily small N for fixed γ)

Historical note. Although the stationary DNLS equation (10) was
derived already by Holstein in 1959 in his pioneering work on polarons in
molecular crystals51, the first systematic study of its single-peak breather
solution as an exact solution to the fully discrete equations was performed
by Scott and MacNeil in 198394, following Scott’s interest in Davydov
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solitons on proteins. They investigated the family of single-peak station-
ary solutions using shooting methods running on a Hewlett-Packard pro-
grammable calculator. Further interest in Davydov solitons on protein
molecules led to a study of a related molecule called acetanilide. A model
of the crystalline state of this molecule was set up which was essentially four
coupled DNLS systems. Techniques to map out the families of stationary
solutions on this system were developed, including path-following from the
anharmonic limit33. It was then realised that the single DNLS system was
of independent interest, which led to the work described in34.

Later and independently, Aubry, MacKay and co-workers developed a
much more general approach along these lines to the breather problem in
arbitrary systems of coupled oscillators75,11. In this context, much new
attention was directed to the DNLS model and its stationary solutions. In
addition, two more large bursts of interest into studies of the DNLS equa-
tion have appeared recently, following the experimental progress in the
fields of nonlinear optical waveguide arrays36 and Bose-Einstein conden-
sates trapped in periodic potentials arising from optical standing waves8.
These applications will be discussed briefly below. Since the DNLS equa-
tion is of general applicability and appears in completely different physical
fields, new researchers drawn to its study have not always been aware of
earlier results. Thus many of its properties have been independently redis-
covered and appeared several times in the literature in different contexts
during the last two decades.

3. Disorder

One natural generalization to the DNLS equation (1) or (3) is to consider
non-constant coupling parameters εjk, equivalent to nontrivial distributions
of the elements mjk of the matrix M in the DST equation (4). One may
also consider site dependent γj as well. An early application, in the large
f case, was to model the dynamics of the energy distribution of modes on
a globular protein. Feddersen38 considered interactions among CO stretch
oscillations in adenylate kinase, which comprises 194 amino acids (f = 194).
Since the structure of this enzyme has been determined by x-ray analysis,
the f(f − 1)/2 = 18721 off-diagonal elements of the dispersion matrix M

were calculated from Maxwell’s equations. Also diagonal elements were
selected from a random distribution, and the degree of localization of a
particular stationary solution of the form (9) with real φ was defined by
evaluating the quotient

∑
φ4

j/
∑

φ2
j .

This numerical study revealed two features. Firstly, at experimentally
reasonable levels of nonlinearity (γ), stable localized solutions were ob-
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served near some but not all of the lattice sites. Secondly, this anharmonic
localization was observed to be distinctly different from “Anderson local-
ization”, a property of randomly interacting linear systems 9. Thus none
of the stationary states that were observed to be highly localized at large
γ remained so as γ was made small. Also, none of the states that were
localized at γ = 0 (i.e., Anderson localized) remained so as γ was increased
to a physically reasonable level.

The transition between Anderson localized modes and breather states
has more recently been extensively analysed in a series of papers by Kop-
idakis and Aubry for general coupled oscillator chains69,71,70 (see also
Archilla et al.10 for a slightly different model), and has to its larger parts
been understood. The generic scenario, valid also for the DNLS model, is
consistent with Feddersen’s observations but too complicated to describe
in detail here. Briefly, there are two kinds of localized breather solutions
in a disordered nonlinear lattice: ‘extraband discrete breathers’ (EDBs)
with frequencies outside the spectrum of linear Anderson modes, and ‘intra-
band discrete breathers’ (IDBs) with frequencies inside the linear spectrum.
EDBs cannot be smoothly continued versus frequency into IDBs but are
lost in cascades of bifurcations. IDBs on the other hand can be continued
outside the linear spectrum, but not into EDBs but only into a certain type
of spatially extended multi-site breathers. The IDBs can only exist as local-
ized solutions inside the linear spectrum provided their frequencies do not
resonate with linear Anderson modes. However, for an infinite system the
linear spectrum becomes dense so that the allowed frequencies for localized
IDBs must constitute a (fat, i.e. of non-zero measure) Cantor set! In fact,
for the DNLS case the latter result had been rigorously obtained already in
1988 by Albanese and Fröhlich5; see also45,6 for other early mathematical
results on the DNLS model with disorder.

It is interesting to remark that the general scenario with two types
of discrete breathers, EDBs and IDBs, where the latter exist as localized
single-peaked solutions only in-between resonances with linear modes, is
not peculiar for random systems, but observed also in other situations when
the linear spectrum is discrete with localized eigenmodes. A very recently
studied example85 is the DNLS model (1) with an added linearly varying
on-site potential ω

(j)
0 = αj. In this case the linear spectrum constitutes a

so-called Wannier-Stark ladder (WSL) of equally spaced eigenfrequencies,
with eigenstates localized around each lattice site, giving rise to Bloch oscil-
lations (recently experimentally observed in waveguide arrays82,84). Then,
resonances were shown to result in ’hybrid discrete solitons’, interpreted
as bound states of single-peaked IDBs and satellite tails corresponding to
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nonlinearly modified Wannier-Stark states localized some distance away
from the main peak. Due to the finite (constant) distance between the lin-
ear eigenfrequencies in the WSL, IDBs remain single-peaked in frequency
intervals of finite length, in contrast to the IDBs in random systems.

The fact that nonlinearity modifies localized linear modes into extended
nonlinear solutions should be of some physical importance, since it provides
a mechanism for transport in random systems. In fact, this aspect was con-
sidered also by Shepelyansky in 199395, who used the well-known Chirikov
criterion of overlapping resonances to argue that, above some critical non-
linearity strength γc, the number of excited linear modes (and thus the
spatial width) for a typical initially localized excitation in the DNLS model
would spread sub-diffusively as (∆n)2 ∼ t2/5 (for linear random systems,
(∆n)2 remains finite under very general conditions).

We also mention that the case with disorder residing purely in the non-
linearity strengths γj was studied by Molina and Tsironis79. In this case
only partial localization of an initially single-site localized excitation could
be found for large nonlinearities (dynamical self-trapping, corresponding to
asymptotic approach to an exact discrete breather), while some portion was
found to always escape ballistically (i.e. spreading as (∆n)2 ∼ t2) leading
to absence of complete localization. The scenario with partial self-trapping
above a critical nonlinearity strength combined with asymptotic spreading
through small-amplitude waves appears very generally for single-site initial
conditions in the DNLS model, with or without disorder78,15,58.

4. Mobile breathers

Since the DNLS equation is an approximation to the equations describing
Davydov solitons, which are thought from numerical studies to be mobile,
it is natural to ask whether the sort of breathers shown in Fig.1 can move
if sufficiently perturbed. The first attempt to model this was made in
a relatively obscure conference proceedings31 in 1986. The key to getting
mobility is to realise that a shape like Fig.1 will move if the figure represents
|Aj |2 but the phase is no longer constant and rotates through 2π as we
traverse the breather. The same paper reported a very preliminary study of
the interaction of the moving breather with an “impurity”, or more precisely
a long-range interaction due to the curved nature of the chain. There is now
a growing literature on trapping of mobile breathers due to curved chains
and long range-coupling (c.f.38,46) and on trapping due to local impurities
in the lattice (c.f.49). Regrettably, due to space considerations, we have
omitted any further discussion of this interesting area.

Feddersen39,30 used spectral and path-following methods to make a more
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detailed numerical study of travelling breathers in the DNLS system using
the ansatz

Aj(t) = u(z) exp{i(ωt− κj)}, z = j − ct. (11)

Note that c 6= ω/κ, i.e. the solution is regarded as a solitary pulse modu-
lated by a carrier wave moving at a different velocity. His studies show a
solution with this form to a high degree of numerical accuracy for a range of
parameter values. However this numerical evidence cannot be regarded as
a rigorous proof for the existence of moving breathers in the DNLS system,
and this is still an outstanding question.

Much recent attention has been drawn to mobile breathers in general
oscillator chains (see several other contributions to these proceedings), and
many of these results can be transferred also to DNLS chains. Here, we wish
to just mention particularly some results of Flach et al.44 (see also 41) who
used an inverse approach, choosing particular given profiles of travelling
waves and finding equations of motion having these as exact solutions.
Generalizing the DNLS equation (1) by replacing γ|Aj |2 with G(|Aj |2) and
ε with ε + F (|Aj |2), where F and G are functions to be determined, and
choosing Aj of the form (11) with real u, they could determine explicit
expressions for the functions F and G for which the particular solution Aj

exists as an exact travelling wave. In this way, they could e.g. reproduce
the AL-model (6) for G ≡ 0 by choosing Aj to be its well-known soliton
solution. Moreover, they could prove that no such travelling solution with
pulse shaped u could exist for a pure on-site nonlinearity (F ≡ 0), and thus
not for the DNLS equation (1). However, this does not prove the absence of
exact moving localized DNLS breathers, for (at least) two reasons. (i) The
envelope u(z) could contain a non-trivial space-dependent complex phase
not absorbable into the exp{−iκj} factor. In fact, the solutions numerically
found by Feddersen contained such a phase. (ii) Moving breathers could
have a time-varying (e.g. periodic) shape function u(z, t). This could be
possible since the stationary DNLS breathers, in the regime where mobility
is numerically observed, exhibit internal shape modes (’breathing modes’)
which can be found as localized time-periodic solutions to the linearized
equations57,67,56,63.

5. Chaotic Solutions

Since the DNLS equation for f > 2 is not integrable, it might be ex-
pected that it has solutions exhibiting Hamiltonian chaos, and in fact
the first study of the DST equation showed chaotic-looking trajectories
in the f = 3 case34. A more thorough analysis of this case was carried
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out by Cruzeiro-Hansson et al.25, who estimated the region of both clas-
sical and quantum phase space occupied by chaotic states. A number of
other studies have been carried out since then. For example, Hennig and
coworkers48 considered a DST trimer (4) with m11 = m22 = m33 = 0 and
m13 = m23 ¿ m12 = m21, i.e. an (integrable) dimer interacting weakly
with the third oscillator. Then, a Melnikov approach could be used to
show the existence of homoclinic chaos. A similar approach for the case
f = 4 with a dimer interacting weakly with the two other sites also demon-
strated the presence of Arnold diffusion47. In the opposite limit of large
f , homoclinic chaos has also been demonstrated and analyzed through a
Melnikov analysis of a perturbed continuous NLS equation17.

As another example of chaotic behaviour, Eilbeck32,35 showed that on
a f = 6 periodic lattice modelling benzene, a mobile breather could prop-
agate which hopped around the lattice in a random way, even reversing its
direction of motion at unpredictable intervals.

6. 2-dimensional DNLS lattices

As follows from the general theory of MacKay and Aubry75, breathers exist
also in higher dimensions. While we are aware of very few explicit results
for the DNLS model in three dimensions42, the two-dimensional case has
been rather thoroughly studied. Some recent results are described in63.
Instead of attempting to give a complete survey here, we will concentrate
on discussing the main differences to the one-dimensional case.

In the 2D case and for a square lattice, the DNLS equation (3) with
γ = ε = 1 is readily generalized to

i
dAm,n

dt
+|Am,n|2Am,n+Am+1,n+Am−1,n+Am,n+1+Am,n−1−4Am,n = 0,(12)

and stationary solutions of the form (9) with frequency ω can be found anal-
ogously to the 1D case. The single-site peaked discrete soliton (breather)
was first thoroughly studied in77,72. The following characteristics should be
mentioned: (i) The solution can be smoothly continued from a single-site
solution at the anti-continuum (large-amplitude) limit ω → ∞ to the so
called ground state solution of the continuous 2D NLS equation87 in the
small-amplitude limit ω → 0. (ii) There is an instability-threshold at ω ∼ 1,
so that the solution is stable for larger ω (’discrete branch’) and unstable
for smaller ω (’continuum-like branch’). (iii) The stability change is char-
acterized by a change of slope in the dependence N(ω), so that dN

dω > 0
(< 0) on the stable (unstable) branch. (A similar criterion exists also for
single-site peaked solutions to the 1D DNLS equation with on-site nonlin-
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earities of arbitrary power73.) (iv) The value of the excitation number N

at the minimum is nonzero, and thus there is an excitation threshold99 for
its creation, in contrast to the 1D case (3) where N → 0 as ω → 0 for fixed
γ = ε = 1. A similar scenario occurs also in 3D42. The effect of this excita-
tion threshold in 2D was recently proposed to be experimentally observable
in terms of a delocalizing transition of Bose-Einstein condensates in optical
lattices61. (v) The dynamics resulting from the instability on the unsta-
ble branch is, in the initial stage, similar to the collapse of the unstable
ground state solution of the continuous 2D NLS equation87, with increased
localization and blow-up of the central peak. In contrast to the continuum
case, however, this process must be interrupted since the peak amplitude
must remain finite, and the result is a highly localized ’pulson’ state where
the peak intensity |Am,n|2 oscillates between the central site and its four
nearest neighbours22. This process has been termed ’quasicollapse’.73,77

It is not known whether these pulson states represent true quasiperiodic
solutions to the DNLS equation (see below).

As was shown by MacKay and Aubry75,11 under very general condi-
tions, two-dimensional lattices allow for a new type of localized solutions,
’vortex-breathers’, with no counterpart in 1D. They can be constructed
as multi-site breathers by continuation from an anti-continuum limit of a
cluster of single-site breathers with identical frequencies but with uniformly
spatially varying phases constituting a closed loop, such that the total phase
variation around the loop (’topological charge’) is a multiple of 2π. The
simplest examples are three breathers in a triangle phase shifted by 2π/3,
or four breathers in a square phase shifted by π/2. The general existence
and stability theorems75,11 (valid also for the DNLS equation) guarantee
that such solutions exist as localized solutions for weak enough coupling,
and that certain configurations are linearly stable. As a consequence of the
phase torsion, such solutions will carry a localized circulating current when
the coupling is nonzero. For the DNLS model, vortex-breathers for a square
2D lattice were first obtained in 57. Typically they become unstable as the
coupling is increased; the mechanisms of these instabilities were described
in some detail in76,63.

Let us finally also mention a recent study62 exploring numerically dif-
ferent types of breathers (including vortex-breathers) and their stability in
triangular and hexagonal DNLS-lattices.
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7. Quasiperiodic Breathers

A particular feature of the DNLS equation, distinguishing it from generic
anharmonic lattice models, is the existence of continuous families of exact,
spatially localized solutions of the form (9) but where the amplitudes φj in
the rotating frame are not time-independent but time-periodic (with non-
harmonic time-dependence). Such solutions are obtained by adding a term
iφ̇j to the left-hand side of Eq.(10). Thus, these solutions are in general
quasiperiodic with two incommensurate frequencies in the original ampli-
tudes Aj (although they may also be periodic if the frequency relation is
rational). At first, one may not be surprised by the existence of quasiperi-
odic solutions, since at least for finite-size lattices they should appear as
KAM tori. However, generically (i) one would not expect them to appear in
continuous families since they should be destroyed for rational frequency re-
lations; and (ii) one would not expect them to survive as localized solutions
in infinite lattices since the presence of two incommensurate frequencies in
a generic anharmonic system would generate all possible linear combina-
tions of the frequencies, i.e. a dense spectrum implying that resonance with
the continuous spectrum should be unavoidable, and the breather should
radiate and decay.

The key point to realize why, in spite of this, quasiperiodic breathers
with two incommensurate frequencies do exist in the DNLS lattice is to
note that the first frequency ω in (9) always yields harmonic oscillations,
and thus no multiples of this frequency are generated. The origin to this is
the phase invariance of the DNLS equation, i.e. invariance under transfor-
mations Aj → Aje

iα, related to the norm conservation law (8) by Noether’s
theorem. A recent result13 proves that very generally, each conservation law
in addition to the Hamiltonian yields possibility for existence of quasiperi-
odic breathers with one additional frequency.

The existence of quasiperiodic DNLS-breathers in infinite lattices was
first proposed by MacKay and Aubry75, and later explicit proofs of exis-
tence and stability as well as numerical demonstrations for some particu-
lar examples were given55,57 (earlier findings of quasiperiodic solutions in
DNLS-related models had concerned mainly small systems53,7 or the inte-
grable AL model16). As some renewed interest has appeared on this topic63,
it is useful to comment on the differences between these two approaches.
The solutions in55,57 (see also 13) were constructed as multi-site breathers
by continuation from the anti-continuum limit ε = 0 of solutions with two
(or more) sites oscillating with non-zero amplitude according to (5) with
two different (generally incommensurate) frequencies ω1 and ω2. Except
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for some particular relations between the frequencies where resonances ap-
pear, such solutions can always be continued to some non-zero ε. On the
other hand, the solutions discussed in63 originated in internal-mode exci-
tations (i.e. time-periodic localized solutions to the linearized equations)
of a particular stationary solution, the so-called ’twisted localized mode’27

(TLM). As for the bond-centred breather in Fig.1, the anti-continuum ver-
sion of this solution has two neighbouring sites oscillating with equal |Aj |2;
however for the TLM these sites are oscillating in anti-phase so that the so-
lution is spatially antisymmetric. This solution exists and is linearly stable
for small ε.55 Now, the occurrence of linear internal-mode oscillations is a
very common phenomenon67. However, in most cases such oscillations do
not yield true quasiperiodic solutions of the fully nonlinear equations since
typically some harmonic will resonate with the linear continuous phonon
spectrum, implying that these oscillations decay in time. This scenario
appears e.g. for the single-site peaked DNLS-breather56. The interesting
discovery by Kevrekidis and co-workers was, that for the particular case
of the TLM, there are certain intervals in ε where all higher harmonics
of the internal mode frequency are outside the continuous spectrum, and
thus in these intervals the oscillating solutions of the linearized equations
could be continued into truly quasiperiodic localized solutions of the non-
linear equation. As the allowed intervals are away from ε = 0, it is clear
that this approach yields solutions which could not be obtained by direct
continuation from the anti-continuum limit.

8. Wave Instabilities

Another important class of solutions in anharmonic lattices are space-time
periodic travelling waves. For the DNLS model such solutions are very
simple, since they are just rotating-wave solutions of the type (11) with
constant u = |A|. Direct substitution into the DNLS equation (using the
form (3)) yields the nonlinear dispersion relation

ω = −4ε sin2 κ

2
+ γ|A|2. (13)

Linear stability analysis shows18,68 that the travelling waves are stable if
and only if γ

ε cos κ < 0. Thus, for γ
ε > 0 only waves with π/2 < |κ| ≤ π

are stable, while waves with small wave vectors 0 ≤ |κ| ≤ π/2 are unstable
through a modulational instability analogously to the continuous NLS equa-
tion. This instability destroys the homogeneous amplitude distribution of
the wave, and typically28,88,89 results in the creation of a number of small-
amplitude mobile localized excitations (’breathers’), which through inter-
action processes (see below) may coalesce into a small number of standing
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large-amplitude breathers. Thus, the plane-wave modulational instability
was proposed28 generally to constitute the first step towards energy local-
ization in nonlinear lattices (including DNLS).

Now, in a linear system one may always take linear combinations of
counter-propagating waves e±iκj to obtain standing waves (SWs) of the
form cos(κj + β). The same is of course not true in a nonlinear system
due to lack of superposition principle; still however there generally exist
nonlinear continuations of the linear standing waves, although they cannot
be written as superpositions of counter-propagating travelling waves. Such
nonlinear standing waves were investigated in detail for general coupled
oscillator chains in 83 (the results for the DNLS chain were more concisely
summarized in 60). Without going into too much detail, let us state some
main conclusions, referring to the DNLS form (3) with γ = 1. (i) SWs
with given wave vector κ exist as stationary solutions of the form (9) for all
values of ω

ε > −4 sin2 κ
2 . In the lower limit (corresponding to the dispersion

relation (13) for a linear wave), the wave is a linear standing wave. (ii) In
the anti-continuum limit ω

ε →∞ a SW with wave vector κ is described by
a particular spatially periodic (or quasiperiodic if κ is irrational) repetition
of local on-site solutions of the form (5) of oscillating and zero-amplitude
solutions. The oscillating sites have the same frequency ω but generally
alternating phases α = 0, π. (iii) For each wave vector κ there are only two
different distinct (modulo lattice translations) SW families corresponding
to different spatial phases β of the linear SW cos(κj + β). They appear as
hyperbolic respectively elliptic periodic points in the map defined by the
stationary DNLS equation (10). (iv) One of the SW families is stable in
a regime of large ω

ε , while close to the linear limit all nonlinear SWs with
κ 6= π are unstable for infinite systems! The instability for the ’most stable’
waves is of oscillatory type (i.e. corresponding to complex eigenvalues of
the linear stability eigenvalue problem).

Investigating the long-time dynamics resulting from the SW insta-
bilities, completely different scenarios were found60 for |κ| < π/2 and
|κ| > π/2, respectively. For the first case one finds after long times persist-
ing large-amplitude standing breathers, while for the second case a ’normal’
thermalized state is obtained. In fact, this division of the available phase
space into two isolated regimes of qualitatively different asymptotic dy-
namics was first found by Rasmussen et al.89, and shown to correspond
to a phase transition through a discontinuity in the partition function
in the Gibbsian formalism. In terms of the Hamiltonian and norm den-
sities for a chain of f sites, the phase transition line was obtained as
H
f = −γ(N

f )2, which can be seen to correspond exactly to a SW with wave
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vector |κ| = π/2. Note that the existence of the second conserved quantity
N , which is peculiar for DNLS-type models, is crucial in this context.

Another interesting observation is that taking the limit κ → π for one of
the nonlinear SWs generated from the anti-continuum limit as above, one
obtains a solution consisting of a stable background wave with κ = π hav-
ing a single defect site of zero-amplitude oscillation inserted into it. This
solution can be smoothly continued to the continuum limit, where it is seen
to correspond to the dark-soliton solution of the defocusing NLS equation
(note that the transformation Aj = (−1)jAj in (1) is equivalent to revers-
ing the sign of γ

ε ). Also the discrete dark soliton (’dark breather’) has been
shown to be stable close to the anti-continuum limit, but unstable through
an oscillatory instability close to the continuum limit for arbitrarily weak
discreteness59. The typical outcome of this instability is a spontaneous
motion66. As for the case of ordinary moving breathers, it is still an open
question whether moving dark breathers exist as exact solutions, and cur-
rent research is devoted to this issue. However, numerical evidence that
they can exist at least to a very high numerical accuracy was given in the
work of Feddersen39,40.

Let us also mention that asymmetric discrete dark solitons, with dif-
ferent left and right background amplitudes, can exist as quasiperiodic so-
lutions of the type described in the previous section. Such solutions were
analyzed by Darmanyan et al26 and are subject to similar instabilities.

9. Breather Interactions

In general, one cannot conclude from a linear stability analysis that a solu-
tion is fully stable, but only that small perturbations at least cannot grow
exponentially in time. However, for the single-peaked DNLS-breather, a
stronger result is obtained99: such solutions are orbitally Lyapunov sta-
ble for norm-conserving perturbations. This basically means that small
breather perturbations will remain small (modulo a possible phase drift)
for all times. This result is a consequence of the single-site breather being
a ground state solution, in the sense that among all possible solutions at a
given norm, it has the smallest value of the Hamiltonian. Thus, once again
we find a property where norm conservation is crucial, and thus one should
not expect that Lyapunov stability is a generic property of breathers in
Hamiltonian lattices.

Still there are important issues to address concerning the fate of per-
turbed breathers, which cannot be predicted from stability theorems. One
issue is breather-breather interactions, which correspond to large perturba-
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tions. Some preliminary work was done by Feddersen39, who showed that
the collison of two breathers of equal amplitude travelling in opposite di-
rections was close to elastic. In the more general case the situation is more
complicated.

Accumulated knowledge from several numerical experiments on gen-
eral breather-carrying systems, in particular by Peyrard and coworkers
(e.g.86) has lead to the conjecture, that in collisions between standing large-
amplitude breathers and moving small-amplitude breathers, big breathers
systematically grow at expense of the small ones. For the DNLS model,
such a scenario was described in 88.

Another interesting issue is breather interactions with small-amplitude
phonons, where also the long-time dynamics cannot be predicted from sta-
bility theorems since extended phonons in infinite lattices have infinite
norm. A first approach74,64 is to consider this as a linear scattering prob-
lem, with incoming, outgoing and reflected linear phonons scattered by the
breather. Then, within the linear framework, one finds the scattering on
a single-peaked DNLS-breather to be always elastic. In certain cases, even
perfect transmission or perfect reflection of phonons appear74,64.

However, going beyond linear theory the scattering process is generally
inelastic, and the breather may absorb or emit energy to the surround-
ing phonons. These processes were investigated in 56,54 using a multiscale
perturbational approach. It was found56, that under certain conditions a
breather can pump energy from a single phonon and continuously grow with
a linear growth rate. This process is always associated with generation of
second-harmonic outgoing phonon radiation. On the other hand, it was
also found54 that breather decay could only happen if two or more different
phonons were initially simultaneously present. An additional interesting
observation54 was that beyond a certain breather amplitude (|A0|2 & 5.65
corresponding to ω > 4ε for the DNLS of form (3) with γ = 1), all lowest-
order growth and decay processes disappear. Thus, this explains why, once
created, breathers with large amplitude are extremely stable also for non-
norm-conserving perturbations.

Let us finally mention also some results obtained21 for an extended
DNLS model, which has very recently received renewed attention in the
description of ultrafast catalytic electron transfer12. To model the inter-
action of an electron, or exciton, with a classical phonon system treated
as a thermal bath, the DNLS equation is appended with the terms[−η d

dt (|ψj |2) + hj(t)
]
ψj , where the first term is a nonlinear damping term

providing dissipation, and the second term is a fluctuation term which
as a crudest approximation is taken as a Gaussian white noise. This ex-
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tended DNLS equation conserves excitation number but not the Hamilto-
nian. Then, it was shown21 that breathers are always ultimately destroyed,
but that strongly localized breathers may be very long-lived for weak noise.
The decay was shown to be linear in time, with decay rate proportional to
D (ε/γ)2, where D is the noise variance (here N = 1 is assumed). It would
be highly interesting to know whether similar behaviour could appear also
in more realistic models with coloured noise, since the white noise can be
considered to be somewhat unphysical having infinite frequency content.

10. Applications

We have already mentioned the Holstein polaron model as (to our knowl-
edge) the first51 suggested application of a DNLS equation. Likewise, we
mentioned Davydov solitons29,92,91. Another early motivation for the study
of the DNLS/DST equation was within the theory of Local Modes of small
molecules93. The two latter topics are well described in the textbook by
Scott92. Here we just briefly discuss the two applications which have at-
tracted the most attention during the last five years, namely coupled optical
wave guides and Bose-Einstein condensates (BEC).

The modelling of two coupled optical waveguides, interacting through
a nonlinear material, by a DNLS dimer equation was suggested already
in 1982 by Jensen53. Later work23 extended these ideas and proposed
the DNLS equation to describe discrete self-focusing in arrays of coupled
waveguides. Many works followed proposing the applicability of different
properties of the DNLS equation for nonlinear optical purposes; here we
just mention the investigation of packing, steering and collision properties
of self-localized beams4, and the use of discreteness effects to obtain a con-
trolled switching between different guides in the array14. The success of
the DNLS equation in describing discrete spatial solitons in waveguide ar-
rays was first experimentally confirmed in 1998.36 Later experimental work
showed the existence of propagating discrete solitons and confirmed the
DNLS predictions of a Peierls-Nabarro barrier81 as well as that of non-
linear Bloch oscillations82. More recently, also dark discrete solitons were
observed80.

In the context of Bose-Einstein physics, the use of the dimer DNLS equa-
tion was (to our knowledge) first suggested by Smerzi et al.96 to model two
weakly coupled BEC in a double-well trap. Later97, the full DNLS equation
was proposed to model the earlier quoted experiment8 with a BEC trapped
in a periodic potential, and the existence of discrete solitons/breathers for
such experiments was predicted. A large amount of theoretical predictions,
based on DNLS dynamics, for different phenomena to occur in BEC arrays
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has appeared in the last year, of which we here, quite randomly, just quote
1,61. So far, most of the predictions are awaiting experimental verification.
Some experimental confirmation that, at least to some extent, BEC in pe-
riodic potentials can be treated with DNLS models, under the condition
that the inter-well potential is much larger than the chemical potential, has
appeared very recently19,20. In these experiments the BEC was trapped
in an optical lattice superimposed on a harmonic magnetic potential, and
modelled by a DNLS equation with an additional quadratic on-site term
Ωj2Aj . The observed frequency of the Josephson-like coherent oscillations
of the BEC centre-of-mass in the magnetic trap was shown to agree with
DNLS predictions19. Moreover, changing the centre of the magnetic poten-
tial led to a transition from the (superfluid) regime of coherent oscillations
into an insulator regime with the condensate pinned around the potential
centre20. The onset of the transition was interpreted as the result of a
discrete modulational instability, and could be estimated from the DNLS
model. Many new experiments in this exciting field are awaited in the near
future!

11. Conclusions

We hope the reader has enjoyed this brief introduction to this fascinating
topic. We are conscious of the many details, figures and areas that we
have left out, either because of space restrictions or because the topics are
covered in depth elsewhere. To do the subject full justice would require a
whole volume.
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