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We study the exact eigenvalue spectrum for a variety of quantum lattice models,
concentrating on the Quantum Discrete Nonlinear Schrödinger (QDNLS) model. In
particular we discuss eigenstates which are the quantum equivalent of the classical
breather. These results extend previous work, by considering larger number of
quanta and bigger lattices.

1. Introduction

Physics is increasingly moving towards nano-scale technology, and with this
comes the need to understand small lattices or quasi-lattices supporting a
small number of quanta. Often this gives the quantum equivalent of a clas-
sical breather, though with some interesting differences. In this short paper
we review some work on quantum lattice problems, concentrating mainly
on the quantum discrete nonlinear Schrödinger (QDNLS) model. The cor-
responding classical DNLS lattice is discussed elsewhere in this book. Our
eventual aim is to understand such systems as quantum dot arrays, Bose-
Einstein Condensate lattices, and even models for Quantum Computers.

We adopt here a pedagogical approach with many details omitted–
see2,5,6 for a fuller description of the background material in our approach,
and 3,4 for some other interesting developments by other authors.

Consider the classical DNLS model1 in one spatial dimension with
nearest-neighbour interactions

i
dAj

dt
+ Aj−1 + Aj+1 + γ|Aj |2Aj = 0,

where j = 1, 2, . . . , f are the lattice points, the Aj ’s are the complex
mode amplitudes at each site j, and γ is the anharmonic parameter. This
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equation can be derived from the following Hamiltonian

H = −
f∑

j=1

[
1
2
γ|Aj |4 + A∗j (Aj+1 + Aj−1)

]
,

where the canonical variables are Aj , A
∗
j , and periodic boundary conditions

are assumed (Aj+f = Aj). As shown elsewhere in this volume, this model
supports both stationary and mobile breathers, strongly localized solutions
with an internal mode of oscillation. How do these properties carry over to
the quantum case?

A corresponding Quantum DNLS Hamiltonian is

Ĥ = −
f∑

j=1

[γ

2
b†jb

†
jbjbj + b†j(bj−1 + bj+1)

]
(1)

where the boson annihilation (bj) and creation (b†j) operators destroy or
create a boson at site j according to the following rules.

bj |nj〉 =
√

nj |nj − 1〉, bj |0〉 = 0, b†j |nj〉 =
√

nj + 1|nj + 1〉
where |nj〉 is the number of bosons at lattice point j. The bj satisfy the
boson commutation relations bjb

†
k − b†jbk = δj,k

An important feature is that the Hamiltonian (1) conserves the number
of bosons in the system

N̂ =
f∑

j=1

b†jbj .

The methods we discuss can be extended to a range of other number-
conserving models, for example the following boson models

• The Quantum Ablowitz-Ladik (QAL) model

Ĥ = −
f∑

j=1

[
a†j(aj+1 + aj−1)

]
,

where a†j and aj are operators satisfying the commutation relations

[a†j , a
†
k] = [aj , ak] = 0, [aj , a

†
k] =

(
1 + 1

2γa†jak

)
δjk.

• The Salerno system. This is a q-deformation of the QDNLS system
which interpolates between the QAL and QDNLS systems. Now
[aj , a

†
k] =

(
1 + 1

2 (γ − ε)a†jak

)
δjk, and the Hamiltonian is

Ĥ = −
f∑

j=1

[
a†j(aj+1 + aj−1)−
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− 2ε

(γ − ε)


 ln

(
1 + 1

2 (γ − ε)a†jaj

)
ln

(
1 + 1

2 (γ − ε)
) + a†jaj





 .

Note that the corresponding number operator will be different in all these
cases, details can be found in 6,5. The methods also extend to a number of
fermion models such as a fermionic polaron model and the Hubbard model.

2. Eigenvalues of the QDNLS Hamiltonian

We now describe our computational method. Since the number is con-
served, we can block-diagonalize the Hamiltonian matrix using states which
are simultaneously eigenstates of Ĥ and N̂

H =
〈
Ψ

∣∣∣Ĥ∣∣∣ Ψ
〉

=




H0 0
0 H1 0

0 H2 0
. . . . . . . . .




where Hn is the block describing states with a total of n bosons. Each
eigenstate for a fixed value of n is formed as a linear combination of number
states with a fixed n.

|Ψn〉 =
∑

i

ci|ψ(i)
n 〉

The number states |ψ(i)
n 〉 are formed from the different ways we can dis-

tribute n bosons over the f sites on the lattice (we are assuming a finite
lattice with periodic boundary conditions).

|ψ(i)
n 〉 = |n(i)

1 〉|n(i)
2 〉 . . . |n(i)

f 〉 = [n(i)
1 , n

(i)
2 , . . . , n

(i)
f ], where n =

∑
j

n
(i)
j .

For example, [2, 2, 0, 0, 0, 1] means a state with 2 bosons on site 1, 2 bosons
on site 2, and 1 boson on site 6. For a fixed value of n and f there are
(n + f − 1)!/n!(f − 1)! different number states, a quantity which expands
rapidly with n and f .

We can further block-diagonalize the Hamiltonian by using the fact that
it is translationally invariant, and hence we can simultaneously diagonalize
with respect to the momentum operator5,6. As a simple example, consider
a 1D periodic lattice of length f = 3 with n = 2 bosons. There are 6
possible number states [2, 0, 0], [0, 2, 0], [0, 0, 2], [1, 1, 0], [0, 1, 1], [1, 0, 1] , so
H2 in this case is 6× 6. But we can block-diagonalize this into three 2× 2



4

blocks H2,k using the translationally invariant states

|Ψ(a)
2 〉 = [2, 0, 0] + t[0, 2, 0] + t2[0, 0, 2]

|Ψ(b)
2 〉 = [1, 1, 0] + t[0, 1, 1] + t2[1, 0, 1]

with t = 1, exp 2πi/3, exp−2πi/3, so that t3 = 1, with corresponding k

(momentum) values 0,±2π/3 respectively. When f and n are large this
can give a substantial saving in calculation time.

The problem of a non-translationally invariant Ĥ, such as a lattice with
a defect, is a more difficult problem and is currently under investigation.

2.1. Quantum Mechanics in Maple

We can further speed up our studies by using an algebraic manipulation
package to manipulate the states and to calculate the Hamiltonian in al-
gebraic form as a function of the parameters. In Maple, for example, we
represent [2, 2, 0, 0, 0, 1] as psi(2,2,0,0,0,1), where psi() is an “unde-
fined” function. Then the operators b†j are defined something like

bd := proc(phi,j::nonnegint)

nj:=op(j,phi);

RETURN(sqrt(nj+1)*subsop(j=nj+1,phi))

end

with a corresponding definition for b, the QDNLS Ĥ is defined along the
following lines

H := sum(’gamma/2*bd(bd(b(b(phi,i),i),i),i)

+bd(b(phi,cyc(i+1)),i)+bd(b(phi,cyc(i-1)),i)’, ’i’=1..f)

where cyc deals with the periodic boundary conditions, i.e. cyc(f+1)=1,
etc. This is only a brief sketch of the codes lying behind the calculations.
It has recently been found that by careful optimization of the algorithms,
a speedup of almost two orders of magnitude is possible. This, combined
with the continuing improvement in micro-chip speeds, means that much
bigger problems can be tackled than 10 years ago.
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2.2. The n = 2 case

In this case each H2,k is tridiagonal. In the case of the QDNLS equation
for large odd f , the value of H2,k is given by

H2,k =




γ
√

2q∗√
2q 0 q∗

q 0 q∗

q 0 q∗

. . . . . . . . .




,

where q = −(1 + exp(ik)). Eigenvalues and eigenvectors can be calculated
numerically, or analytically, and some simple formula are known in the limit
f → ∞. An investigation of the 1D case for various models was made in
1992 by Eilbeck and Pego, but unfortunately this work has not yet been
published. The results in the limit f →∞ for the QDNLS model are shown
in Fig.1. In this figure, eigenvalues are plotted vertically for each k value
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Figure 1. Eigenvalues E(k) for QDNLS, n = 2, γ = 4. The lower band is the “breather”
band.

on the horizontal axis. There is a continuum set and an isolated eigenvalue
for each k. The equation for the lower band of isolated eigenvalues is, in
the limit f →∞,

E = −
√

γ2 + 16 cos2(k/2)
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The isolated band corresponds to an eigenvector of H2,k with the following
form

v =
(

1√
2
, µ, µ2, µ3, . . .

)′
,

where

µ =
−(γ + E)eik/2

4 cos(k/2)
.

This eigenvalue and the corresponding eigenvector can be checked by direct
calculation. It is also straightforward to check that |µ|2 < 1 for γ > 0.
When γ À cos(k/2) we have

µ ≈ 2
γ

cos(k/2) exp(ik/2)

so that µ → 0 as γ → ∞. Note also that µ = 0 when k = ±π, a result
originally pointed out by S. Flach (private communication).

The ordering is such that the ith element of v multiplies the following
translationary invariant states Ψi

Ψ1 = [2, 0, 0, . . .] + eik[0, 2, 0, . . .] + e2ik[0, 0, 2, . . .] + . . .

Ψ2 = [1, 1, 0, . . .] + eik[0, 1, 1, 0, . . .] + e2ik[0, 0, 1, 1, 0, . . .] + . . .

Ψ3 = [1, 0, 1, 0, . . .] + eik[0, 1, 0, 1, 0, . . .] + e2ik[0, 0, 1, 0, 1, 0, . . .] + . . .

. . . = . . .

so that the (unnormalized) eigenfunction is

Ψ =
∞∑

i=1

viΨi

This is a localized eigenfunction in the sense that there is a high probability
of finding the two bosons on the same site, but with an equal probability
of finding these two bosons at any site in the system. We claim this is a
quantum analogue of the classical localized breather.

2.3. Results for general n, γ

There are some general results for general n, but only in the large γ limit6,5.
In this case there is still a “breather” band with eigenfunction

Ψ ≈ [n, 0, 0, . . .]+[0, n, 0, . . .]+. . .+[0, 0, . . . , n]+O
(
γ−1

)
([n− 1, 1, 0, . . .] + . . .) ,
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but the continuum band in the n = 2 case now bifurcates into a number of
separate bands. These can be understood by considering the γ-dependent
term in the Hamiltonian

−
f∑

j=1

[γ

2
b†jb

†
jbjbj

]
.

Any site with nj > 1 will contribute a value 1
2γnj(nj−1) to this sum. If all

the bosons are on one site this gives 1
2γn(n− 1). If there are n− 1 bosons

at one site and 1 at another site, the contribution will be 1
2γ(n− 1)(n− 2).

If there are n− 2 bosons at one site and 2 at another site, the contribution
will be 1

2γ[(n− 2)(n− 3) + 2], and so on.
For example, consider the case n = 4. With γ = 0 we get the spectrum

shown in Fig.2. Note that now we are working with a finite size lattice, the
spectrum is for discrete k values, but it is clear that in the continuum limit
we will get a single continuum band. If we now increase γ to 7 we get Fig.3.
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Figure 2. Example: 4 bosons, 15 sites, γ = 0

Now the single breather band has clearly split off below, and the main con-
tinuum band has started to split into two or more bands. If we increase
γ to 14 we get Fig.4. Now there are 5 bands clearly visible. The low-
est corresponds to the single 4-breather band, conveniently labelled (in the
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Figure 3. Example: 4 bosons, 15 sites, γ = 7
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Figure 4. Example: 4 bosons, 15 sites, γ = 14
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large γ limit) as [4, 0, . . .] (plus cyclic permutations). The next lowest is the
“3-breather band plus single boson” band [3, 1, 0, . . .], plus permutations.
The next narrow band is the “double 2-breather band” [2, 2, 0, . . .]. Inter-
estingly, this band shows some structure at higher magnification which will
be reported elsewhere. Moving up, the penultimate band is the “2-breather
band plus single bosons”, [2, 1, 1, 0, . . .], and the top band consists of single
bosons only, [1, 1, 1, 1, 0, . . .].

As a final example, we show the result of a calculation on a 2D lattice
with n = 2. Fig.5. The “breather band” is now a 2-dimensional sheet, and
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Figure 5. Example: 2 bosons, 13× 13 lattice

the “continuum band” is a lens-shaped volume.
Further work is now concentrating on the fine structure of these bands in

one and higher dimensions, both in QDNLS and in QAL and other models.
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