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1. INTRODUCTION

The discovery of classical and quantum completely integrable systems
led to an increase in interest in the theory of Abelian functions in theoretical
physics and applied mathematics. This area was considered traditionally as
a field of pure mathematics. This new trend makes it necessary to reconsider
classical results in the area from the point of view of modern applications.

In this paper we consider an arbitrary algebraic curve V of genus g and
construct the field of meromorphic functions on its Jacobi variety Jac V in
terms of Kleinian -functions,

i j u
2

ui u j
ln u i j 1 g

where the vector u Jac V and is the Kleinian -function. The effective
construction of the -function plays the principal role in our approach. It
is defined on the universal space of Jacobians, which is the fibration with
the base given by the space of moduli, M V of the curve V of dimension
d 3g 3 and a fibre generated by Jacobi variety Jac V . The Kleinian
function represents a natural generalization of the Weierstrass elliptic func-
tion to the case of an arbitrary algebraic curve, and has the following prop-
erties:

The -function is automorphic with respect to the action of the sym-
plectic group Sp 2g .
The -function is an entire function on the universal space and is ex-
panded in a power series whose entries are monomials

u 1
1 u g

g
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1
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d

where u Jac V , M V , g, d, 0 .

The research described in this publication was supported in part by grants from the Civil
Research Development Foundation, CRDF grant no. UM1-325, the INTAS grant no. 96-
770 and the Engineering and Physical Sciences Research Committee, grant GR/L06119
(JCE and VZE).

1



2 J C EILBECK, V Z ENOLSKII, AND D V LEYKIN

The addition formula for the function inherits the form of the addi-
tion theorem for the Weierstrass function and is written as

u v u v
u 2 v 2 polynomial in i j

This construction began with Weierstrass [22, 23] and Klein [13] and was
well documented in [1, 2]; recently B.M.Buchstaber and two of the authors
reviewed the hyperelliptic case[4, 5, 6].

The principal result of [4, 5] is the discovery of a g 2 g 2 matrix
H of a rank 4 whose entries are functions and the moduli of the curve V
and which dictates all the theory: the 4 4 minors give the embedding of the
Kummer variety Kum V in the projective space, 3 3 minors describe in
the same way the Jacobi variety Jac V , and the associated KdV hierarchy
is constructed in terms of 2 2 minors of the matrix H. The hyperelliptic
Kleinian functions were also developed in [16, 10] for a description of the
lattice KdV system.

The present paper is aimed at developing the analogous matrix realization
of the Kleinian construction of Abelian functions for an arbitrary algebraic
curve, including the case of a singular curve. The paper is based on the
recent results of [7], where the construction of the Kleinian functions was
given for a non-hyperelliptic curve, and contains a set of explicit formulae
to realize the approach of [7].

The paper starts from an example of a hyperelliptic curve of genus two
for which we give the basic formulae of the theory and their application to
completely integrable systems. We concentrate further on the construction
of the principle objects – Kleinian functions for a wide class of alge-
braic curves (the so called canonical curves). With this purpose we derive
the canonical abelian differentials using the Weierstrass gap theorem as the
main working tool. We obtain as the result the Kleinian formula (3.28),
which is a generating one for deriving the complete set relations between

functions and their derivatives. The principle result of the paper is the
explicit solution of the Jacobi inversion problem, which is an alternative to
that given by M.Nöther [17]. We consider as a main example the case of a
non singular trigonal curve, for which we give the complete set of formu-
lae, analogous to those given in [1, 2] for hyperelliptic curve. The paper
is completed by a short discussion on the application of our approach to
completely integrable equations and of the further perspectives of the de-
velopment of the theory.
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2. KLEINIAN FUNCTIONS OF THE GENUS TWO HYPERELLIPTIC CURVE

In this section we consider the simplest example - the Kleinian functions
of an algebraic curve of genus two, and demonstrate how these functions
work in completely integrable systems.

We consider the Riemann surface of a curve V x y of genus g 2,

y2 4x5
4x4

3x2
2x2

1x 0(2.1)

4
5

k 1
x ak ai a j

equipped with a homology basis 1 2; 1 2 H1 V .
Introduce the canonical basis in the space of holomorphic differentials

duT du1 du2
1 V as follows

du1
dx
y

du2
xdx
y

The associated canonical meromorphic differentials of the second kind drT

dr1 dr2 have the form

dr1
3x 2 4x2 12x3

4y
dx dr2

x2

y
dx(2.2)

The 2 2 matrices of their periods,

2
k

dul
k l 1 2

2
k

dul
k l 1 2

2
k

drl
k l 1 2

2
k

drl
k l 1 2

satisfy the equations,

T T 0 T T ı
2

12
T T 0

which generalizes the Legendre relations between complete elliptic inte-
grals to the case g 2.

The fundamental function in this case is a natural generalization of the
Weierstrass elliptic function and is defined as follows

u
det 2 4

1 i j 5 ai a j

exp uT 2 1u 2 1u 1



4 J C EILBECK, V Z ENOLSKII, AND D V LEYKIN

where 8 1 and v is the function with an odd characteristic
1 2

1 2
,

v
m 2

exp ı m T m 2 v T m

We denote

11 u
2

u2
1

ln u 12 u
2

u1 u2
ln u

22 u
2

u2
2

ln u

The multi-index symbols i j k etc. are defined as logarithmic derivatives
by the variable ui u j uk on the corresponding indices i j k etc.

The equations of the Jacobi inversion problem,

u1

x1

a1

du1

x2

a2

du1

u2

x1

a1

du2

x2

a2

du2

are equivalent to an algebraic equation

x u x2
22 u x 12 u 0(2.3)

that is, the pair x1 x2 is the pair of roots of (2.3). So we have

22 u x1 x2 12 u x1x2(2.4)

The corresponding yi is expressed as

yi 222 u xi 122 u i 1 2(2.5)

There is the following expression for the function 11 u in terms of x1 x2
and y1 y2:

11 u
F x1 x2 2y1y2

4 x1 x2
2(2.6)

where

F x1 x2

2

r 0
xr

1xr
2 2 2r 2r 1 x1 x2(2.7)

All the possible pairwise products of the i jk functions are expressed as
follows in terms of 22 12 11 and constants s of the defining equation
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(2.1). We give here only basis equations
2
222 4 11 3 22 4 3

22 4 12 22 4
2
22 2

222 122
1
2 1 2 2

12 2 11 22
1
2 3 12

4 12
2
22 4 12 22

2
122 0 4 11 12 4

2
12 4 22

2
12

All such expressions may be rewritten in the form of an extended cubic
relation as follows. For arbitrary l k 4 the following formula is valid [2]

lT T k
1
4

det
H l
kT 0

(2.8)

where T
222 221 211 111 and H is the 4 4 matrix:

H

0
1
2 1 2 11 2 12

1
2 1 2 4 11

1
2 3 2 12 2 22

2 11
1
2 3 2 12 4 4 22 2

2 12 2 22 2 0

The vector satisfies the equation H 0, and so the functions 22 12
and 11 are related by the equation

detH 0(2.9)

The equation (2.9) defines the quartic Kummer surface in 3 [12].
The i jkl functions are expressed as follows

2222 6 2
22

1
2 3 4 22 4 12(2.10)

2221 6 22 12 4 12 2 11(2.11)

2211 2 22 11 4 2
12

1
2 3 12(2.12)

2111 6 12 11 2 12
1
2 1 22 0(2.13)

1111 6 2
11 3 0 22 1 12 2 11

1
2 0 4

1
8 1 3(2.14)

These equations can be identified with completely integrable partial dif-
ferential equations and dynamical systems, which are solved in terms of
Abelian functions of hyperelliptic curve of genus two.

To demonstrate this statement we consider the stationary Veselov-Novikov
equation,

uxxx uyyy 3 vu x 3 wu y 0

wx uy vy ux(2.15)
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where 0 are constants. Then the following proposition is valid

Proposition 2.1. The stationary flow of the Veselov-Novikov equation is
satisfied if we set

u x y 2 22 x y

v x y 2 12 x y
1
3 4(2.16)

w x y 2 11 x y
1
3 2

Proof. A straightforward substitution of (2.16) into (2.15) and use of the
relations (2.11), (2.13) and H 0.

Because the Kleinian functions 22 12 11 are the coordinates of the
Kummer surface, the stationary Veselov-Novikov equation, being associ-
ated with a hyperelliptic curve of genus two, describes the Kummer surface.
The link between the stationary Veselov-Novikov equation and the Kummer
surface was recently discussed by Ferapontov [11].

It can be also shown, that the equations (2.10)-(2.14) describe hierar-
chies of KdV and ”sine-Gordon” equations associated with the hyperelliptic
curve of genus two.

In what follows we develop the Kleinian construction of Abelian func-
tions for a certain class of non-hyperelliptic algebraic curves.

3. KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS

3.1. The curve. Let V be an algebraic curve given by an irreducible equa-
tion

f x y 0 f x y a0 x yn
n

k 1

ak x yn k(3.1)

where ak x are polynomials in x and a0 x and ak x , k 1 n have no
common factors. The curve is called singular if a0 x 1 and nonsingular
otherwise. In other words, a singular curve is the curve which has points
y x .

Definition 3.1. The order N of an arbitrary rational function x y on the
curve V is the number N of common solutions x1 y1 xN yN of the
equations

f x y 0 x y 0(3.2)

We shall call the positive integers n s orders of the curve V because,
clearly x is a function of order n and y is a function of order s.

The definitions given above permit us to formulate the Weierstrass gap
theorem, which serves as a principal working tool in what follows.
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Theorem 3.1 (Weierstrass Lückensatz). For V there exists a number g of
positive integers n1 ng (“gap sequence”) such that for each number ni
the equations

f x y 0 x y 0 ordV x y ni(3.3)

have no solutions and
all exceptional integers (“gaps”) belong to the interval 1 2g 1

0 n1 n2 ng 2g

if the numbers ni and n j – are permitted (“non-gaps”) then the num-
bers pni qn j, where p q are also non-gaps.

The following corollaries are valid

Corollary 3.1.1. Consider the gap sequence with the number of gaps g. Let
n be the lowest from the non gaps. Denote by si, i 1 n 1 the lowest
non-gaps such that si mod n i n . Then the following equality is valid

n 1

i 1

si

n
g(3.4)

Corollary 3.1.2. Suppose that the condition of Corollary 3.1.1 are satis-
fied. Let s min s1 sn 1 . Then the following equality is valid

n 1 s 1
2

g where 0(3.5)

The Weierstrass gap theorem introduced two important positive integers
g and which are the principal geometrical invariants of the curve.

Definition 3.2. The nonnegative integer is the number of multiple points
of the curve, which can not exceed n 1 s 1 2. The number of gaps g,
which is the difference between the maximal number of multiple points of
a curve of orders n s and number of multiple points, which it actually
has, is called the genus 1 of the curve.

To describe the number analytically we compute the discriminant (in y)
Dy x of the curve (3.1),

Dy x
n 1

i 1
d i

i x r x(3.6)

where 2. Zeros of di x i 1 n 1, where

di x
j

j 1
x i j j i j

1In classical literature – Geschlecht or deficiency
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are multiple points, whence zeros of the polynomial r x are the branching
points of the curve. Let us write the number

n 1

i 1
i i 1(3.7)

where we denote 0, as number of multiple points. The curve is
called non-degenerate if 0 and degenerate otherwise.

Introduce on V the structure of one-dimensional compact complex man-
ifold – the Riemann surface of algebraic curve by introducing a local
parametrization of the point y x y x in the vicinity of a point
a b , where is the local coordinate :

y x

a b if a b is an regular point
a b m if a b is an branching point

1
s

1
n if a b is branching

point at infinity
a m b if a b is an multiple point

of multiplicity m

We will employ further the same notation for the plane curve and the Rie-
mann surface – V . Combining notions introduced so far, we come up with

Definition 3.3. The algebraic curve V of orders n s is called nonsingular
non-degenerate canonical iff a0 x 1, 0 and n s are co-prime.

It is clearly that the Weierstrass gap sequence of the nonsingular non-
degenerate canonical curve V of orders n s is generated by two coprime
integers n and s. Alternatively, the Weierstrass gap sequence of a nonsingu-
lar degenerate canonical curve V of orders n s is generated by the integers
n and s1 s sk, where 1 k n 1.

The canonical algebraic curve has a branching point at infinity, where
the coordinates x and y are given as x 1

n y 1
s 2

n s where is the local coordinate. The polynomial f x y defining the
canonical curve can be written in the form

f x y yn xs terms of lower order

Let us fix in the form of a proposition the important property of the nonsin-
gular curve

Proposition 3.2. The order of a monomial xPyQ, P Q on nonsingular
non-degenerate curve of orders n s equals

ordV xPyQ nP sQ(3.8)
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Example 3.1. Consider all canonical curves of genus g 4 and construct
the associated Weierstrass gap sequences.

Nonsingular canonical hyperelliptic curve

0 1 2 3 4 5 6 7 8 9

The sequence is generated by the orders 2 and 9.
Nonsingular canonical trigonal curve

0 1 2 3 4 5 6 7 8 9

The sequence is generated by the orders 3 and 5.
Singular canonical trigonal curve

0 1 2 3 4 5 6 7 8

The sequence is generated by the orders 3, 7 and 8.
Singular canonical four-sheeted covering

0 1 2 3 4 5 6 7 8 9

The sequence is generated by the orders 4, 5 and 6.

3.2. The differentials and integrals. All the construction is based on the
explicit realization of the fundamental second order 2–differential.

Definition 3.4. The 2–differential d y x;w z on V V is called a fun-
damental second order 2-differential if it is symmetric d x y;z w
d z w;x y and has the only pole of the second order along the diagonal,
x z in the vicinity of which it can be given as

d y x;w z
d d

2 O 1 d d(3.9)

where – are local coordinates of the points x and z respectively. We
shall look for a realization of d y x;w z in the form [1]

d y x;w z
F y x;w z dxdz

x z 2 fy x y fw z w
(3.10)

where F y x;w z is a polynomial of its variables.

Holomorphic differentials can be represented locally at every point
X Y V in the form du h d , where h – is the holomorphic func-

tion and – is the local parameter in the vicinity of the point X Y . For the
algebraic curve of genus g there exist exactly g independent holomorphic
differentials, which can be written in the form

dui
xPiyQidx
fy x y

i 1 g(3.11)
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where ordV xPiyQi , i 1 g are exactly g first non-gaps of the Weierstrass
gap sequence. Introduce the g-vector

T
i j 1 g(3.12)

whose components i j xPiyQi are ordered by increasing order of the
monomials:

1 0 0 1 2 1 0 x

Definition 3.5. Let x be a polynomial in x of order ordx x n and
Fk x polynomials of orders k, such that the equality

x z
x z

n

k 0

zn kFk x

is valid. Then Dk
z z Fk x is the umbral derivative of order k of the

polynomial z .

Definition 3.6. The rational function x y on the nonsingular curve V is
called an entire rational function, if x y iff x . Entire rational
functions generate a ring, which we denote by V .

Let

x y T 1 1 x y n 1 x y

be a basis in V , where

i x y
Dn i

y f x y

di x
i 0 n 1(3.13)

where Dk
y – is the umbral derivative in y of order k, and f x y is the poly-

nomial defining the curve.
Then it follows from the definition of the umbral derivative and the exis-

tence of such functions

x y T
0 x y 1 x y n 1 x y(3.14)

that

x y T x Y
f x Y f x y

Y y
(3.15)

The functions i have, clearly, the form

i x y di x yn i 1 i 0 n 1
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The property (3.15) allows us to construct A canonical differential of
the third kind with unique poles of the first order in the points x1 y1 and
x2 y2 as follows [1]

d x1 x2 x
dx

fy x y
x1 y1

T x y
x x1

x2 y2
T x y

x x2
(3.16)

To construct explicitly the fundamental second order 2-differential d x y;z w
we consider on V V the 2–differential

dz
dx

fy x y z

T z w x y
x z

It follows from the definition of the umbral derivatives, that this differential
has a pole of the second order along the diagonal, where it is represented in
the form (3.9). But being holomorphic in x y away from the diagonal, this
differential has nevertheless poles in the variables z w at z . Restore
the symmetry by setting

d x y;z w dz
dx

fy x y z

T z w x y
x z

T z w x y
dxdz

fy x y fw z w
(3.17)

where the g–vector x y is defined by the holomorphic differentials and
the g–vector T

1 g is found from the equality

f z w
w z

T z w x y
x z

f x y
y x

T x y z w
z x

T x y z w T x y z w(3.18)

The canonical differentials of the second kind drT dr1 drg associ-
ated with the holomorphic differentials (3.11) are then given by the formula

dri
i x y dx
fy x y

i 1 g(3.19)

where the correspondence

i x y i x y i 1 g

of the polynomials x y i with monomials i x y being ordered accord-
ing to the Weierstrass gap sequence as was pointed in (3.12) is supposed.

The Weierstrass gap sequence gives complete information about the curve.
Consider the Weierstrass gap sequence and prescribe by the lowest non-gap
entries n s , n s orders ordV x n and ordV y s. Write the curve in the
form (3.1).
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Define the functions (3.13). d0 1, and d1 x dn 1 x polynomials
in x, such that ordV i x y si, i 1 n 1 are the lowest non-gaps,
and that si mod n i n. According to Theorem , the functions

0 x y 1 1 x y n 1 x y

give a basis in V . Therefore for every pair i k 0 n 1 the follow-
ing equalities are valid

i x y k x y
n 1

j 0

j
ik x j x y(3.20)

where j
ik x are polynomials in x. By equating powers of y in equations

(3.20) one can find the form of the polynomials Ak entering the equation of
the curve (3.1) and also the property, which the polynomials di x possess

di 1 x di 1 x divisible by d2
i x(3.21)

As result we come to the following result:

Proposition 3.3. The curve V of orders n s is given by the formula

a0 x yn
n 1

k 0

ak x
n 1

i 2
d̃n k

i x yk 1 0(3.22)

where ak x are polynomials of orders ordxak x s, and the polynomials
d̃i x are defined by the equation

d̃i 1
di 1 x di 1 x

d2
i x

i 1 n 1(3.23)

where the polynomials di posses the property (3.21).

This construction can be inverted: the Weierstrass gap sequence is uniquely
defined by the curve and can be algorithmically constructed by the curve.

3.3. Kleinian Formula. Let be a basis of cycles in H1 V with
the intersection matrix i k 0 and i k 0 i k k i 1.
g g matrices of their periods –periods,

2
k

dul
k l 1 g

2
k

dul
k l 1 g

are non-degenerate and the matrix 1 is symmetric and has positive
imaginary part. Under the action of the transformation 2 1 the vector
du du1 dug

T becomes the vector of normalised holomorphic dif-
ferentials dv dv1 dvg

T , namely the vector H1 V satisfying the
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conditions
k
dvk kl k l 1 g. Introduce also the period matrices of

the canonical differentials of the second kind

2 2
i

dr j
i

dr j
i j 1 n

(3.24)

Denote by Jac V the Jacobian of the curve V , which is the factor g ,
where 2 2 is the lattice, generated by the periods of the holomor-
phic differentials.

Divisors on Riemann surfaces are given by formal sums of analytic points
n
i mi yi xi , and deg n

i mi. The effective divisor is such that
mi 0 i. Let be a divisor of degree 0, , with and the
effective divisors deg deg n given by y1 x1 yn xn
and w1 z1 wn zn V n, where V n is the n–th symmetric
power of V .

The Abel map : V n Jac V puts into correspondence the divisor
, with fixed , and the point u Jac V , according to the rule

u du or ui

n

k 1

xk

zk

dui i 1 g(3.25)

The Jacobi inversion problem is formulated as the problem of inversion of
the Abel map.

The standard function v is defined by its Fourier series,

v
m g

exp i mT m 2vT m(3.26)

The function possesses the following periodicity properties k 1 g:

v1 vk 1 vg v

v1 1k vk kk vg gk e i kk 2 ivk v

Let wT w1 wg Jac V be some fixed vector. The function,

x
x

x0

dv w x V

is called the Riemann function. The Riemann function x is either
identically 0, or it has exactly g zeros x1 xg V , for which the Riemann
vanishing theorem says that

g

k 1

xi

x0

dv w Kx0

where KT
x0

K1 Kg is the vector of Riemann constants with respect
to the base point x0.
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Definition 3.7. The fundamental Abelian function is defined by the for-
mula

z
1

4 D V

g

det
exp 1

2uT 1u u Kx0
1(3.27)

Kx0 is the vector of Riemann constants with the base point x0, the func-
tion D V Dx Dy f x y is the discriminant of the defining equation
f x y 0 of the curve V .

The fundamental function is invariant with respect to the action of
the symplectic group Sp 2g and therefore inherits the corresponding
property of the function of the Weierstrass theory of elliptic functions.

Kleinian functions are defined as logarithmic derivatives of the funda-
mental function

i j u
2ln u

ui u j
i jk u

3ln u
ui ui uk

i j k 1 g

The functions have the following periodicity properties

I u 2 m m I u I i j i j k i j k 1 g

where m m m m .
For the remaining results, the principal role is played by the following

theorem

Theorem 3.4 (Klein). Let y x0 x0 , y x be arbitrary distinct points on
V and let y1 x1 yg xg be arbitrary sets of distinct points V g.
Then the following relation is valid for every r 1 g

g

i j 1
i j

x

a0

du
g

k 1

xk

a0

du i x y j xr yr

F x y;xr yr

x xr
2(3.28)

where monomials i x y are defined by the holomorphic differentials and
F x y;z w is the polynomial entering into the definition of the fundamental
2-differential (3.9).

Proof. The proof is based on the application of the Riemann vanishing the-
orem to compute the integral over the boundary of the fundamental domain

,
x

z
d x y;z w dlog x
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where x is the Riemann function and d x y;z w is the fundamental
2-differential.

The Kleinian formula (3.28) gives an additional theorem of a “point +
divisor” kind. In the case of g 1 it is exactly the addition theorem for the
Weierstrass function (function 11 u in our notation).

Expanding the formula (3.28) at x 1 n we obtain from the con-
dition of vanishing of the principal part of the poles the complete set of
relations between functions and their derivatives. In particular, the first
n 1 equations are polynomial in x y (written instead xr yr, r 1 g)
with coefficients depending on Kleinian functions. Their derivatives rep-
resent an over-determined system of algebraic equations whose zeros give
the solution of Jacobi inversion problem. This statement will be exemplified
further by the considering of the trigonal curve.

We summarise the results of this section in the form of a proposition

Proposition 3.5. Consider a nonsingular (a0 1) non-degenerate (d1
1 dn 1 1) canonical algebraic curve of orders n s and genus g.
Construct the associated Weierstrass gap sequence with g gaps. Then

the g independent canonical holomorphic differentials (3.11) are de-
fined by monomials i j xPiyQ j whose orders nPi sQ j are exactly
the first g non-gaps in the Weierstrass gap sequence.
The associated differentials of the second kind are given by (3.19) with
the polynomials

i j x y
j 1

l 0

n 1

k n l 1

i j k lx
kyl y j

n 1

k i 1
i j k jx

k

n 1

l j 1

n 1

k 0
i j k lx

kyl(3.29)

where k ordxak x , k 0 n, i j k l ˜ i j k l ˜ k l i j and

˜ i j k l
l
j

n 1 l

p 0

n 1 j p

q 0

n 1 l p
i k q 2 C n l 1 l j p

i k q 2 q i(3.30)

and

C i j k
l r s 1 0 i2 0 jai k lai k j r

1 0 i 0 j n i j r s 1 if k 0

1 i k k l r 2s 2 j r s 1 if k 0

where i k is the Kronecker symbol and l
k 1 if l k and 0 other-

wise.
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Proof. The proof of the first part of the theorem is based on the corollary
3.1.1. The formula (3.29) is derived by direct transformations of the right
hand side of the condition (3.18) to the form of the right hand side.

The formula (3.29) generalizes the formula given by Abel and Weierstrass
for the polynomial i in the case of a hyperelliptic curve (4.2). In the next
sections we consider as examples hyperelliptic and trigonal curves.

4. HYPERELLIPTIC CURVE

The hyperelliptic curve V of genus g, given by the formula

f x y y2 p x p x 4x2g 1
2g

i 0
ix

i(4.1)

is the canonical hyperelliptic curve of order 2 2g 1 . Suppose, that the
curve is nonsingular, i.e. the discriminant Dy f x y p x has no multi-
ple zeros.

The sets of canonical holomorphic differentials and associated second
kind differentials have the form [1]

duk
xk 1dx

y
dri

dx
4y

2g 1 i

k i

k 1 i k 1 ix
k(4.2)

where i 1 g. The differential of the third kind with first order poles
at the points x1 2 is defined as

d x1 x2 x
dx
2y

y y1

x x1

y y2

x x2
(4.3)

The 2–differential of the second kind d x y;z w with the unique pole
along the diagonal is given by (3.10) with the polynomial

F x y;z w 2yw
g

k 0

xkzk 2 2k x z 2k 1(4.4)

The Abel pre-image of the point u Jac V is given by the set y1 x1 yg xg
V g, where x1 xg are the zeros of the Bolza equation [3, 1]

xg xg 1
g g u xg 2

g g 1 u g 1 u 0(4.5)

and y1 yg are given by

yk
x;u
ug x xk

(4.6)
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5. TRIGONAL CURVE

Consider the trigonal curve. Set d0 1, then we have

0 x y 1 1 x y
y a1 x

d1 x

2 x y
y2 a1 x y a2 x

d2 x
(5.1)

Write the equations

2
1

1
11 1

2
11

3
11 3

1 2
1

12 1
2

12
3

12 3
2
2

1
22 1

2
22

3
22 3

By equating powers of y and eliminating k
i j we arrive at the equation of

the curve

y3 r x d1 x y2 p x d2 x y q x
d2

2 x
d1 x

0(5.2)

where d2 is divisible by d2
1 . We restrict ourselves to the case of the nonsin-

gular curve d1 d2 1 of the form

f x y 0 f x y y3 p x y q x(5.3)

p x
g g 1

3

k 0

pkxk q x xg 1
g 1

k 0

qkxk(5.4)

with the coefficients pi q j , the fraction g 1
3 being non-reducible, and

the discriminant Dy f x y 27q2 x 4p3 x is assumed to be without
multiple zeros.

Further we shall distinguish two cases s 3K 1 and s 3K 2, which
we shall denote in what follows as I and II respectively. For example,
the curves of lowest genera of order (3,4) and (3,5) correspondingly yield
the following Weierstrass gap sequences, in which we over-line the non-gap
numbers

0 1 2 3 4 5 6 7 case 3 4
0 1 2 3 4 5 6 7 8 9 case 3 5

The holomorphic differentials are given by the formula (3.11) with the
monomials

i 0 i 0
s1

3 i 1 i 0
s2

3
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where si, i 1 2 are the lowest non-gaps such that si mod 3 i 3 (see
corollary 3.1.1). The associated second kind differentials are given by the
formula (3.19) with the polynomials i x y given by (3.29). In particular,

g x y
x2K for I

xKy for II

g 1 x y
2yxK for I

2x2K 1 p2K 1xKy for II
(5.5)

To define the fundamental 2-differential we introduce the following poly-
nomials

x z
2K

l 0

p2l xp2l 1 xlzl

x z
K

l 0

ql lx 3 l z zl 1

zK 1
s K 2

l 1

qK l 2 l x 3 l z z
l
2

where 0 for the case I and 1 for the case II and in the summand
the positive integers l K 3 l 1

2 1. Note, that the polynomials,
x z x z have the property

x x p x x x 3q x

The 2–differential of the second kind d x y;z w with the unique pole
along the diagonal is given by (3.10) with the polynomial F x y;z w being
defined by the formula

F x y;z w 3y2w2 2yw x z z x w2p x y2 p z
w x z y z x x z z x

Denote i j u i j u i j 1 j 1 u . Then the solution of the Jacobi
inversion problem reduces to the solution of algebraic equations

w
K 1

i 0
K 2i 2 gzi

K 1

i 0
i 1 g zg

K 2i 1 g zi
g

K 1

i 0
i 1 g 1 zg

K 2i 1 g 1 zi w
K 1

i 0
K 2i 2 g 1zi

g 1

where g and g 1 are monomials given in (5.5). Each pair of equations is
reduced after elimination of w to an algebraic equation of degree g, whose
coefficients expressed in terms of the functions i j u give the solution
of the Jacobi inversion problem. These equations generalizes the Bolza
equation (4.5) to the case of trigonal curve.
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In particular the first and the last symmetric functions are

s1
1
2 ggg

3
2 g 1 g for I and

1
2

p2K 1 g g for II

sg 2 1 g K 2 g 1 1 g 1 K 2 g 1 g g K 2 g 1 g K 2 g g

where in the second formula 1 for the case (I) and 1 for the case (II).
In particular for the curve of order (3,4) the symmetric functions are given
as

s1
3
2 23

1
2 333

s2
1
2 33 22 233

1
2 23 23 333 13

s3
1
2 33 12 133

1
2 13 23 333

In the case of the curve of order (3,5)

s1
1
2 444

3
2 34

1
2

p3 44

s2
1
2 34 34 444

1
2 244

1
2 23

1
2 44 33 344

1
2

p3 24

s3
1
2 24 33 344

1
2 34 23 244

1
2 13

1
2 144

1
2

p3 14

s4
1
2 34 13 144

1
2 14 33 344

6. DISCUSSION

It was mentioned in the introduction that in [4, 5] the matrix H hi k i 1 g 1 j 1 g 1
was found for the genus g hyperelliptic curve (4.1) of rank 4 with the en-
tries

hik 4 i 1 k 1 2 k i 2 2 i k 2

1
2 ik 2i 2 2k 2 k i 1 2i 1 i k 1 2k 1

It was shown there, that the following relations are valid

ggi ggk detH i
k

g 1
g 1

g 2
g 2 0 i k 1 g

detH i j g 1 g 2
k l g 1 g 2 0 i j k l 1 g
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gggi detH i
g 1

g 1
g 2 detH i

g
g 2
g 2 detH i 1

g 1
g 2
g 2

i 1 g

where H i1
j1

im
jn hik jl k 1 m; l 1 n denotes an m n sub-matrix. The

first group of these relations describe the Jacobi variety Jac V as alge-
braic variety, the second group describes the Kummer variety, Kum V
Jac V u u and the third group describes the KdV hierarchy.

The techniques developed in this paper is aimed to enlarge this result to
the case of arbitrary algebraic curve. We mention here only, that for the
trigonal curve of order (3,4) the condition of vanishing the next principal
part (after those, which give the solution of Jacobi inversion problem) in
the expansion of the Kleinian formula leads to the equation

3333 6 2
33 3 22 4p2 33

which after double differentiation by u3 becomes the Boussinesq equa-
tion with respect to the function u x t 2 g g const t x . Because the
Kleinian function appears to be natural coordinates of the Boussinesq hi-
erarchy, then the approach presented here creates insights to contribute to
an algebro-geometrical description of solutions of the Boussinesq equation,
[14, 9, 15, 18, 8], and the trigonal generalizations of the Neumann system
[19, 20, 21].
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