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The spectrum of the Quantum Discrete Nonlinear Schrödinger equation, or Boson Hubbard Hamil-
tonian, on a periodic 1D lattice shows some interesting detailed band structure which may be in-
terpreted as the quantum signature of a two-breather interaction in the classical case. This fine
structure is studied using degenerate perturbation theory. We present also a modification to this
model which increases the mobility of bound states.
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The localization and transport of energy in lattices
by intrinsic localized modes or discrete breathers, has
recently been the subject of intense theoretical and ex-
perimental investigation (see [1] and references therein).
Corresponding results on the quantum equivalent of these
states are less numerous, c.f. [2, 3] for some theoretical
results and [4] for some experimental work. Studies of
quantum modes on small lattices are of increasing inter-
est for quantum devices based on quantum dots (c.f. [5]),
for studies of photonic crystals, and for studies of Bose-
Einstein condensates in periodic optical traps [6]. In
particle terms these modes can be interpreted as bound
multi-boson states.

We present some novel results on breather bands in
periodic one dimensional lattices with f sites contain-
ing a small number of bosons. These lattices are de-
scribed by the quantum version of the discrete nonlinear
Schrödinger equation (QDNLS) whose Hamiltonian

H1 = −
f

∑

s=1

[

γ1a
†
sa

†
sasas + εa†s+1as + h.c.

]

(1)

conserves the number of bosons n. According to the sign
of γ1, this model is also known as the repulsive (γ1 < 0) or
attractive (γ1 > 0) Bose-Hubbard model. In the study
of cold bosonic atoms in optical lattices, the repulsive
case was already investigated in [7], but as far as we
know the attractive case has only been treated classically,
by the mean-field approximation (see [8] for example).
We mention also that the trimer version of (1) has been
studied, c.f. [9].

Assuming that the anharmonic parameter γ1 > 0 is
stronger than the intersite coupling, the eigenvalues of
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(1), plotted as a function of the wave number k, sepa-
rate out into distinct bands [2]. The eigenstates of each
band are dominated by states in which the bosons have
clumped together, two or more on one site. For exam-
ple, with n = 4, the lowest band is, to a good approxi-
mation, a linear combination of states with 4 bosons on
site i and no bosons elsewhere. The next lowest band is
mostly composed of states with 3 bosons on one site and
another boson elsewhere. The third band essentially con-
sists of states with 2 bosons on one site and 2 bosons on
a separate site. We will refer to it as the {2, 2} band in
an obvious notation. This band is of great interest since
it represents the simplest case of a band describing two
“composite” particles interacting with each other. Our
letter is devoted to the fine structure of this and similar
bands such as the {4, 2} and {3, 3} bands in the n = 6
case.

Bands involving the interactions of single bosons with
composite states, such as {3, 1}, {1, 1, 4}, etc., do not
reveal such interesting structure and are more difficult to
analyse. We do not considered these bands here.

The fine structure of the {2, 2} band, see Fig. 1, shows
the eigenvalues (crosses) in the n = 4 case. The solid lines
show the results of the theoretical calculations (described
below) in the asymptotic limit f → ∞. We stress again
that this picture shows only one of the bands in the n = 4
spectrum. Its fine detail is revealed as a “continuum”
band (in the f → ∞ limit), plus a single k-dependent
“line band”. Examination of the corresponding eigen-
vectors shows that the “line band” is mostly composed
of states where the two sites each with two quanta lie
occupy adjacent sites, whereas in the “continuum” band
these sites are separated by one or more vacant sites.

One flaw of the standard QDNLS Hamiltonian is its
thermodynamical instability (the energy per particle in
the ground state goes to −∞ as n → ∞). Moreover,
some bands are degenerate with others, for example the
{3, 3} and the {4, 1, 1} bands in the n = 6 case. For
these reasons, we consider also the following generalized
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FIG. 1: Detail of the eigenvalue spectrum for the QDNLS
periodic lattice (see Eq. (1)), n = 4, f = 19, γ1 = 10, ε = 0.5.

QDNLS Hamiltonian

H2 = H1 + γ2

f
∑

s=1

a†sa
†
sa

†
sasasas . (2)

The γ2 > 0 term is a saturation term which discourages
too many bosons occupying the same site. It appears in
nonlinear optics [10] or in cold bosonic atoms trapped in
optical lattices [11] where it describes three body interac-
tions. At zero coupling (ε = 0), the energy of l bosons on
the same site is now given by El = −l(l−1)[γ1−(l−2)γ2].
Thus in the n = 4 case, for example, the {4} band has
energy E4, the {31} band has energy E3, the {22} band
energy 2E2, etc. As a general result, if 3(n− 2)γ2 < 2γ1,
the n-boson bound state is the ground state of the n-
boson sector and it can be shown that its effective mass
decreases as γ2 increases. The main physical effect of the
saturation term is then to increase the mobility of the
ground state within this range of parameters.

Now, regarding the n = 4 sector, it is seen that provid-
ing γ1 < 3γ2, the bottom of the {2, 2} band is the ground

state of the system.
To describe the components of the quantum states we

use a position state representation, where for example
the state |020020 . . .〉 represents a state with two bo-
son at site 2, two boson at site 5, and no boson else-
where. In view of the periodic nature of the lattice, we
can generate an equivalence class of states by applying
the translation operator (with periodic boundary con-
dition) to one of these states. We will refer to these
classes by ordering them such that the leftmost num-
ber is the largest, so for example |3000 . . .〉 is shorthand
for |3000 . . .〉, |0300 . . .〉, |0030 . . .〉, etc. For further con-
ciseness we will truncate all trailing zeros, so the above
class becomes |3〉. The set of all the classes containing
|22〉, |202〉, |2002〉, etc. is referred to as the {2, 2} band.

At zero coupling, all the {2, 2} states |22〉,

|202〉, |2002〉, . . . are degenerate. We use degenerate per-
turbation theory to obtain both eigenvalues and eigen-
states for ε 6= 0. For the sake of simplicity, we consider
an odd number of sites f = 2σ+1. Bloch waves of {2, 2}
states can be written (in the notation of [2, 12])

|ψ〉 =
σ∑

j=1

cj |ψj〉 (3)

where

|ψj〉 =
1√
f

f
∑

s=1

(eikT̂ )s−1|2, 0, . . . , 0
︸ ︷︷ ︸

j−1

, 2〉 (4)

Here T̂ is the translation operator and k = 2πl/f where
l ∈ {−σ, . . . , σ}, is the wave number.

Using (3) and standard Brillouin-Wigner perturbation
theory up to second order in ε we obtain

(E − 2E2)cj =

σ∑

j′=1

〈ψj |V |ψj′〉cj′+ (5)

+

σ∑

j′=1

∑

ψ̃

〈ψj |V |ψ̃〉〈ψ̃|V |ψj′〉
2E2 − Ẽ

cj′

where V is the hopping term in the Hamiltonian, and |ψ̃〉
is any state not in the {2, 2} subspace. Ẽ is the energy

corresponding to |ψ̃〉 in the uncoupled limit (ε = 0).
It is obvious that the first sum of (5) is zero as V does

not link any of the |ψs〉 to each other. Then, defining

H
(22)
j,j′ =

∑

ψ̃

〈ψj |V |ψ̃〉〈ψ̃|V |ψj′〉
2E2 − Ẽ

, (6)

we obtain

H(22) = −4ε2

γ1
Iσ − 2ε2

γ1









Γ κ∗

κ 0 κ∗

. . .
. . .

. . .
κ 0 κ∗

κ p









(7)

where Im is the m×m unity matrix and

κ = ei
k

2 cos

(
k

2

)

; p = cosσk ; Γ =
3γ2 − 4γ1

γ1 − 3γ2
. (8)

The structure of the matrix (7) is very similar to the
two-boson case described in [2]. The first term represents
a global shift of the {2, 2}-band, whereas the “impurity”
Γ will in general be responsible for a splitting of the states
|22〉 from the rest of the band (|202〉, |2002〉, etc.). In
this respect, the |22〉’s can be seen as “bound states of
doublets” within the {2, 2}-band. It is separated from
the continuum band because in addition to linking with
states such as |211〉, it also links to states such as |31〉.
This explains the {2, 2}-band fine structure.



3

−π 0 π
−40.3

−40.2

−40.1

−40.0

−39.9

−39.8

k

E

FIG. 2: Detail of the eigenvalue spectrum for the generalized
QDNLS periodic lattice (2), n = 4, f = 19, γ1 = 10, γ2 =
7.5, ε = 0.5.

In case the number of sites tends to infinity, (7) may
be diagonalised exactly to yield

E = −4γ1 −







2ε2

γ1

(

2 + Γ + cos2(k/2)
Γ

)

iff |Γ| > cos
(
k
2

)

4ε2

γ1

(
1 + cos

(
k
2

)
cos θ

)
where θ ∈ (0, π)

(9)
Depending on the various values of γ1, γ2, and ε, we can

get the line band completely above, below or partially
merged with the continuum band. Fig 2 shows a case
where the line part is below the continuum part of the
{2, 2} band and represents the ground state of the n = 4
sector.

To provide some insight in the way the two groups of
two bosons interact within a |22〉 state, we may com-
pare its effective mass m∗

22 with twice the effective mass
m∗

2 of a single |2〉 state. From [2] and (9), we obtain
m∗

2 ' γ1/(2ε
2) as ε → 0 and m∗

22/(2m
∗
2) = Γ (see (8)).

Depending on the ratio γ2/γ1, Γ and thus m∗
22 are either

positive or negative. The same phenomenon is observed
for bright solitons in systems of Bose-Einstein conden-
sates in optical lattices for which (1) may be seen as a
tight-binding limit (see [13] and references therein).

As a further example we consider the n = 6 case. Now
there are two bands describing an interaction of two an-
harmonic states: the {4, 2} and the {3, 3} bands. Fig 3
shows a n = 6, {4, 2} example, again the crosses repre-
sent numerically exact solutions in the f = 11 case, and
the lines represent perturbation theory calculations. In
this case we have a “continuum band” which shows very
weak k-dependence, plus two “line bands”, one above and
one below. With other choices of γ1 and γ2 we can move
one or both of the “line bands” into the continuum.

Fig 4 shows the corresponding {3, 3} case. In this case
there appears to be only two “line bands”, but a closer
examination reveals the upper “line” is in fact a contin-
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FIG. 3: Detail of the eigenvalue spectrum for the generalized
QDNLS periodic lattice (2), n = 6, f = 11, γ1 = 30, γ2 =
0, ε = 0.5.
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FIG. 4: Detail of the eigenvalue spectrum for (2), n = 6,
f = 11, γ1 = 10, γ2 = 20, ε = 0.5.

uum band with the degeneracy split at an O(ε/γ)3 level.
For the n = 6, {4, 2} band, proceeding as in the {2, 2}
case, we now obtain

H(42) = Dε2 I2σ − ε2

γ1









Γ 1 p
1 0 1

. . .
. . .

. . .
1 0 1

p∗ 1 Γ









(10)

where

D = −2

3

5γ1 − 9γ2

γ1(γ1 − 3γ2)
; Γ =

2

3

4γ2
1 − 27γ2

2

(γ1 − 3γ2)(γ1 − 6γ2)
;

p =
6γ1e

ik

γ1 − 6γ2
.

An analysis of the eigenvalues of this matrix in the f →
∞ limit is somewhat messy but explicit results can be
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found: details will be published elsewhere. Essentially
the results depend on whether two rational functions of
γ1/γ2 are less than or greater than 1 in modulus. This
gives the two “line bands” in Fig 3. The corresponding
eigenstates are essentially symmetric and antisymmetric
combinations of the Bloch waves made from |42〉 and |24〉.

The “continuum band” is given by the formula

Ec = 24γ2 − 14γ1 +
2ε2

γ1

[
5γ1 − 9γ2

9γ2 − 3γ1
− cos θ

]

+ O
(
ε3

)
,

(11)
where θ ∈ (0, π). Note that, up to order 2 in ε, the ener-
gies of this band do not depend on the crystal momentum
k, in accord with the numerical results.

In the case of the n = 6, {3, 3} band, the correction to
the zeroth order states is given by

H(33) =
6ε2

3γ2 − 2γ1
( Iσ +M) (12)

where M1,1 = Γ = 9
2 (2γ2 − γ1)/(γ1 − 6γ2) and Mi,j = 0

otherwise. The diagonal matrix (12) has an “impurity”
Γ responsible for a splitting of the states |33〉 from the
rest of the band. In this respect, the |33〉’s can be seen as
“bound states of doublets” within the {3, 3}-band. Note
again that none of the elements of the matrix above con-
tains the wave vector k. At this order of perturbation
theory, the bands are then flat. Moreover, the degen-
eracy of the |3 · · · 3〉’s (i.e. two 3-quanta breathers sepa-
rated by one or more empty sites) has still not been lifted

although it would to next order.

It is possible to generalize the above results to discuss
{m, `} bands when m + ` = n > 6. The case m = ` is
similar to the {3, 3} case and the case m > ` > 1 follows
the {4, 2} case discussed above. Details will be given
elsewhere.

The results known previously for bound states repre-
senting a group of n bosons located on the same site [2]
have been extended here to higher order states represent-
ing two interacting groups of bosons. This opens up the
possibity of a study of the collision process between these
composite particles, that is a quantum breather collision.
A similar study has already been done for the continu-

ous version of (1), i.e. the integrable quantum nonlin-
ear Schrödinger equation (QNSE), well known in nonlin-
ear optics and quantum field theory [14]. However, the
bound states of groups of quanta which we have described
here within the {m, `} bands do not exist in QNSE. Their
appearence in these nonintegrable discrete systems is thus
expected to affect the collision process between two quan-
tum breathers and to bring new features in comparison to
the quantum soliton collisions described in [14]. Results
of this investigation will be reported elsewhere.
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