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We study a model in which a Hubbard Hamiltonian is coupled to the dispersive phonons in
a classical nonlinear lattice. Our calculations are restricted to the case where we have only two
electrons of opposite spins, and we investigate the dynamics when the second electron is added to
a single polaron, or solitobreather state. Depending on the parameter values, we find a number
of interesting regimes. In many of these, discrete breathers (DBs) play a prominent role with a
localized lattice mode coupled to the quasiparticles, a state we designate as bipolarobreather. We
compare these simulations with those obtained for the corresponding purely harmonic lattice. Our
results support the possibility that DBs are important in HTSC.

PACS numbers: PACS: 71.38.-k,63.20.PW,63.20.Ry

I. INTRODUCTION.

In spite of the many studies [1, 2] made since it was
first discovered [3], the theory of high temperature super-
conductivity (HTSC) remains a challenge. The nature of
the carriers and the mechanism behind pair formation
are still unclear. Some argue that the electron-phonon
interaction is the main operating force, as in conventional
superconductivity, but others think that charge and/or
spin interactions are paramount. The model we study,
in which a Hubbard Hamiltonian is coupled to the dis-
persive phonons, includes both effects. It also includes a
third ingredient, that is, intrinsic nonlinearity in the lat-

tice which is known to lead to localized modes generally
designated as discrete breathers (DBs) [5]. Previous stud-
ies have shown that the structures that lead to HTSC also
support breathers [4, 6]. The motivation for this work is
the possibility that breathers are an important element
in HTSC.

Other studies have considered the states of two elec-
trons coupled to harmonic lattices [7, 8] or the state of
one electron coupled to an anharmonic lattice [9]. To
our knowledge, this is the first study in which the states
of two electrons coupled to an nonlinear lattice are in-
vestigated. Whilst our ultimate aim is to understand
HTSC, here we propose a specific mechanism for pair for-
mation that involves the interaction of a bipolaron with
a breather, which will have applications in other areas.
We study the stability of such a pair as a function of the
quasiparticle-quasiparticle interaction.
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II. THE HUBBARD-DAVYDOV

HAMILTONIAN.

The Hamiltonian Ĥ we use has three parts:

Ĥ = Ĥqp + Ĥqp-ph +Hph (1)

where Ĥqp is the Hamiltonian for a quasiparticle with

spin 1

2
, Ĥqp-ph describes the interaction of the quasi-

particle with the lattice and Hph is the lattice (phonon)

Hamiltonian.
The Hamiltonian for the quasiparticle is the 1D Hub-

bard Hamiltonian:

Ĥqp = ε
∑

n,σ

(

â†nσ ânσ

)

+ γ
∑

n

â†n↑ân↑â
†
n↓ân↓ (2)

−t
∑

n,σ

(

â†nσ ân−1σ + â†nσân+1σ

)

where the sums are over the sites n, going from 1 to N ,
(N is the total number of lattice sites) and σ refers to the
spin and can be up or down. â†nσ is the creation operator
for a quasiparticle of spin σ at site n. ε is the self-energy
of the quasiparticle, t the transfer term for the quasi-
particle to move between neighbouring sites. We depart
from the usual notation in that the on-site quasiparticle-
quasiparticle coupling is here designated as γ (and not
U) to avoid confusion with the variables {un} used for
lattice displacements (see below). Both negative and pos-
itive values of γ will be considered, corresponding to the
attractive and repulsive Hubbard models, respectively.

As in the Davydov model for energy transfer in pro-
teins [10], Ĥqp-ph, the Hamiltonian for the interaction

of the quasiparticle with the lattice includes the coupling
to acoustic (or Debye) phonons:

Ĥqp-ph = χ
∑

n,σ

[

(un+1 − un−1)
(

â†nσ ânσ

)]

(3)

where χ is a parameter which describes the strength of
the quasiparticle-lattice interaction.
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The phonon Hamiltonian is as follows:

Hph = Hco
ph +Hos

ph (4)

Hco
ph =

κa2

72

N
∑

n=1

[

(

a

a+ un − un−1

)12

−

2

(

a

a+ un − un−1

)6
]

Hos
ph = κ′

N
∑

n=1

(

1

2
u2

n +
1

4
u4

n

)

+
1

2M

N
∑

n=1

p2
n

where un is the displacement from equilibrium position of
site n, pn is the momentum of site n, a is the equilibrium
distance between sites, κ is the elasticity of the nonlinear
lattice and κ′ is a similar constant for the on-site poten-
tial. Here, the coupling interactions between sites are
described by a Lennard-Jones potential Hco

ph, a potential

commonly used to describe interactions between atoms.
The on-site potential Hos

ph is as used in many breather

studies [5]. It can be considered to represent the effect,
in a mean field approach, of the rest of the crystal on the
one dimensional chain whose states are studied explicitly.

Our Hamiltonian Eqs.(3-4) includes two sources of
nonlinear effects. The first comes from the intrinsic non-
linearity of the Lennard-Jones potential, Hco

ph and the

on-site potential, Hos
ph. The second source of nonlinearity

is extrinsic and comes from the interaction of the quasi-
particle with the lattice (cf. Eq. 3). The former is the
source of nonlinearity in the studies of discrete breathers
[5] and the latter is the cause of localization in polaron
theory.

We adopt a mixed quantum-classical approach in
which the lattice is treated classically, while the quasi-
particle is treated quantum mechanically. Accordingly,
the displacements un and momenta pn are real variables.
The quasiparticle variables are operators, a distinction
which is marked by the hats above the operators. In a
classical system, equilibrium thermodynamic quantities
that do not involve velocities do not depend on the mass
of its components. A consequence in a classical lattice
is that isotopic effects on the transition temperatures do
not arise. In some cases, this is a limitation of the mixed
quantum-classical approach. The importance of quan-
tum effects of the lattice can be assessed by considering
the full quantum model, but such an investigation would
make the calculations presented here much more difficult
to tackle.

Ultimately, the need for a full quantum treatment
comes from comparison with experimental results. Ev-
idence for isotopic effects is as controversial as a mech-
anism for HTSC, with results for [11] and against [12].
The consensus seems to be that isotopic effects are weak,
which constitutes an extra a priori justification for a clas-
sical treatment of the lattice. An isotopic dependence of
magnetic quantities [13], on the other hand, is not nec-
essarily evidence for quantum lattice effects, as magnetic

variables are dependent on velocities, and thus on the
mass of sites, even in a classical system. Thus, as a
first approximation, we restrict ourselves to the mixed
quantum-classical regime and study the behaviour of a
pair of quasiparticles, coupled to a nonlinear lattice.

With these assumptions, the exact two quasiparticle
wavefunction for the Hamiltonian (1-4) is:

|ψ(t)〉 =
∑

n,m=1,N

φnm({un}, {pn}, t) â
†
n↑ â

†
m↓|0〉 (5)

where φnm is the probability amplitude for a quasiparti-
cle with spin up to be at site n and a quasiparticle with
spin down to be at site m. The probability amplitude
is dependent on the lattice displacements and momenta
in a way that is not specified a priori and is determined
by the equations of motion. Similarly to other systems
[14], the equations of motion for probability amplitudes
φnm are derived by inserting the wavefunction (5) in the
Schrödinger equation for the Hamiltonian (3-4), and the
equations for the displacements and momenta are derived
from the Hamilton equations for the classical functional
E2 = 〈ψ|Ĥ |ψ〉. They are:

ı~
dφjl

dt
= −t (φj−1l + φj+1l + φjl−1 + φjl+1) + γφjlδjl+

+ χ (uj+1 − uj−1 + ul+1 − ul−1)φjl (6)

dpj

dt
= −

∂Hph

∂uj

(7)

− χ
(

|ϕ↑
j−1|

2 − |ϕ↑
j+1|

2 + |ϕ↓
j−1|

2 − |ϕ↓
j+1|

2

)

where |ϕ↑
j |

2, the probability for the quasiparticle with

spin up to be in site j and |ϕ↓
j |

2, the probability for
the quasiparticle with spin down to be in the same site.
These are given by:

|ϕ↑
j |

2 = 〈ψ|â†j↑âj↑|ψ〉 =

N
∑

l=1

|φjl|
2 (8)

|ϕ↓
j |

2 = 〈ψ|â†j↓âj↓|ψ〉 =

N
∑

l=1

|φlj |
2 (9)

III. DYNAMICAL STATES.

We consider the case in which the quasiparticle density
is low and the starting point is that of an isolated quasi-
particle interacting with the lattice. We wish to find if
the addition of a second quasiparticle with opposite spin
to that state can lead to pairing of the two quasiparticles,
and how the relative stability of the paired state depends
on the quasiparticle-quasiparticle interaction γ.

We start from the state of a single quasiparticle. The
wavefunction is

|ψ1
σ〉 =

∑

n

φ1
nâ

†
n|σ |0〉 (10)
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Minimum energy states for this one quasiparticle can
be found by numerical minimization of the energy func-
tional E1 = 〈ψ1|Ĥ |ψ1〉 with respect to the probability
amplitude for a single quasiparticle in site n, φ1

n, and
to the displacements un [15]. Two kinds of minimum en-
ergy states are found. For sufficiently large quasiparticle-
lattice interaction χ, the quasiparticle states are localized
and there is an associated lattice distortion. In the case
of an electron in a polarizable lattice this state is known
as polaron and, in a previous publication, it was desig-
nated as solitobreather, since it shares both soliton and
breather characteristics [17]. We call this the single par-
ticle polaron, or simply polaron. Below a threshold value
for χ, the states are delocalized, as in the usual Bloch
states, and the lattice is undistorted. We have considered
a value of χ and other parameters such that the initial
one quasiparticle polaron state is neither too weak nor
too stable when compared with delocalized, Bloch states
for the same values. While it is important to find the
behaviour of the two quasiparticle states considered here
for different values of the parameters, our choice ensures
that the results here are not the consequence of extreme
values.

As for the parameters, the number of initial conditions
we can consider is a priori infinite. In order to make
a more direct connection to the one electron, polaron,
states, the dynamical states we study are perturbations
of the single polaron state, induced by the presence of a
second electron with opposite spin. Because the number
of variables φnm that characterize the wavefunction (5)
increases with the square of the lattice size, in order to
be able to integrate the equations of motion for a suffi-
ciently long time, the size of the lattice was kept relatively
short, i. e. the number of sites is N = 20. The aim is to
investigate the influence of the strength and sign of the
quasiparticle-quasiparticle interaction γ on the dynamics
of the paired quasiparticle states.

The parameters of the simulations in the figures are
the same, except for the quasiparticle-quasiparticle in-
teraction γ. In Fig. 1 we set γ/t = −10 in an attractive

Hubbard model. The addition of a second quasiparti-
cle leads to a localized state for the pair, with a very
slight peak oscillation, that is hardly visible in the fig-
ure. (The probability for the second quasiparticle is the
same as that shown and is not displayed). The lattice,
however, sets into a breather-like oscillation [5], i.e., a
localized excitation with an internal oscillation. Indeed,
at the site of the initial lattice distortion, oscillations are
clearly visible in the lattice displacements and momenta.
A striking observation is that the amount of radiation
generated is very small, and most of the energy of the
lattice is associated with the breather. In analogy with
a previous study [7], we may call this state a bipolaro-

breather. We should nevertheless stress that while the
polarobreather determined in [7] is an excited state in
which the electron and the lattice vibrate with the same
frequency, the bipolarobreathers we find in this study do
not have that restriction. They do share the stability ex-

5101520

n

0
2

4
6

t

0.2
0.4
0.6
0.8

1

|ϕ1
n|2

5101520

n

0
2

4
6

t
-0.4
-0.2

0
0.2
0.4

un

5101520

n

0
2

4
6

t

-1
-0.5

0
0.5

1

pn

FIG. 1: Time dependence for (a) the probability for one quasi-
particle to be in site n, (n = 1 · · ·N , N = 20), (b) the lattice
displacement and (c) the momentum of site n. Time is in pi-
coseconds. The parameters are t = 10 × 10−22J, χ = 100pN,
κ = 1N/m, κ′ = 2κ, a = 4.5Å and γ = −100 × 10−22J.

pected from breathers in that they remain stable after 42
ps of simulations.

A Hubbard Hamiltonian with a much weaker attrac-
tion, corresponding to a ratio of γ/t = −0.5, is consid-
ered in Fig. 2, where the last 6 picoseconds of a 42 pi-
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FIG. 2: Same as Fig. 1, but with γ = −5 × 10−22J.

cosecond simulation are displayed. A modulation of the
peak of the probability distribution is now clearly seen,
which has the same frequency as the main modulation of
the lattice breather. The modulation of the quasiparticle
probability is associated with a periodic change of shape
in which a lower peak with a slight tail appears. Even at
this comparatively much weaker interaction, the amount
of radiation is very small and most of the lattice energy
is in the breather. The frequency of the main modulation
of the breather is as for γ/t = −10.
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FIG. 3: Same as Fig. 1, but with γ = +10 × 10−22J.

In Fig. 3 the repulsive interaction is increased to γ/t =
+1. The modulations in the probability distribution
for the quasiparticles lead to greater periodic changes of
shape, still with the same frequency as for the other val-
ues of γ. The radiation in the lattice is now more visible,
but the breather remains stable.

In Figure 4, a large repulsive value, corresponding to
γ/t = 5 is taken. This leads to a change in the prob-
ability distribution for the quasiparticles, from a single
site peak into a two site peak, with periodic oscillations
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FIG. 4: Same as Fig. 1, but with γ = +50 × 10−22J.

which make one probability at one site larger than the
other. The lattice variables show that, concurrently with
the appearance of the breather, a considerable amount
of radiation is generated. Also noticeable is the fact that
the frequency of the modulations has changed. Continu-
ation of this simulation shows that the new quasiparticle
probability distribution is stable, as well as the lattice
breather, even if the noise which results from successive
passes of the radiation through the periodic boundaries,
constitutes a significant part of the lattice energy.
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FIG. 5: Same as Fig. 1, but with γ = +100 × 10−22J.

In Fig. 5, a repulsive interaction corresponding to
γ/t = 10 is used. It shows that a drastic transforma-
tion takes place in which the initial distribution changes
into a two peak distribution. One of the peaks is located
where the initial lattice distortion was and the second
peak is as far away from it as it can be in this lattice.
Also, while the peak that is located at the original lat-
tice distortion site remains unmodulated in time, as well
as its associated lattice distortion, the second peak oscil-
lates with approximately the same frequency as that in
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Figs. 4. The momenta in Fig. 5 show clearly that the
second peak has an associated lattice breather, while the
first peak is associated with a distortion that is essen-
tially static. After some time, because of the repeated
reflection of the radiation from the boundaries, this pic-
ture is not so clear. Both peaks show oscillations in the
displacements and the momenta of the lattice are rather
noisy. However, the stability of the two peak solution,
even in the presence of such relatively large amount of
noise is apparent also after 42 ps (not shown).

IV. DYNAMICAL STATES IN THE FULLY

HARMONIC APPROXIMATION

The early theory of pair formation via interaction with
phonons assumed that the lattice motion was harmonic.
It is interesting to see how the dynamics of the two elec-
tron states would be in this case, and this section is de-
voted to that question. The first two terms in the Hamil-
tonian we consider in this section are the same as before,
(see eqs.(3-3)), except that now the phonon Hamiltonian
is given by:

Hharm
ph = Hco-harm

ph +Hos-harm
ph (11)

Hco-harm
ph =

1

2
κ

N
∑

n=1

(un − un−1)
2

Hos-harm
ph = κ′

N
∑

n=1

(

1

2
u2

n

)

+
1

2M

N
∑

n=1

p2
n

In this Hamiltonian the only nonlinear term is that
which describes the quasiparticle-lattice interaction.
Fig. 6 shows that when the effective interaction is such
that γ/t = −10, the addition of an extra electron to the
minimum energy single polaron leads to a state in which
both electrons are in the same site with a strong lat-
tice deformation of breather type associated with their
presence. The time evolution of the momenta, how-
ever, shows that there is no breather formation, only
phonons which travel along the lattice. Because of the
periodic boundary conditions, these phonons eventually
come back and after they have crossed each other many
times the lattice becomes very noisy. The lattice defor-
mation associated with the two electrons oscillates pe-
riodically because of the interference of these phonons,
but does not move. And the state of the two electrons
remains localized on one site all the time.

When the electron-electron interaction is repulsive and
such that γ/t = +5, the phonon emission leads to fluc-
tuations in the electron probability distribution that are
clearly visible in Fig. 7. The dynamics is similar to that
of fig. 6, with phonons propagating along the lattice and
causing oscillations in the otherwise constant distortion
induced by the two electrons. Again, the momenta show
that there is no breather formation and all the dynam-
ics of the lattice is due to the phonon propagation and
interference.
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FIG. 6: Same as Fig. 1, but with γ = −100 × 10−22J and for
the harmonic lattice 11.

For a repulsive interaction for which γ/t = +10, the
two electrons split up and the probability distribution
shows two peaks, both of which have an associated lat-
tice deformation with the breather profile (see Fig. 8).
Phonons are generated from each of these locations and
their interference eventually leads to a noisy lattice. The
two peaks in the probability distribution for the electrons
oscillate in a less regular fashion than in the anharmonic
lattice, but remain stable throughout the simulation.
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FIG. 7: Same as Fig. 1, but with γ = +50 × 10−22J and for
the harmonic lattice 11.

V. DISCUSSION

Our aim was to investigate the relative stability of a
correlated pair of quantum quasiparticles with opposite
spins with respect to their uncorrelated states. As in
a previous study [17], the starting point was a solito-
breather, but whilst in [17] we studied higher excited
states due to finite momentum, here we considered the
dynamic states which arise when a second quasiparticle
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FIG. 8: Same as Fig. 1, but with γ = +100 × 10−22J and for
the harmonic lattice 11.

is added to the solitobreather. The Hamiltonian used
includes several physical ingredients. On the one hand,
it contains two sources of nonlinearity, one intrinsic to
the lattice and another which arises from the quasipar-
ticle lattice interaction. Such nonlinear lattices have
been shown to possess generic solutions known as dis-
crete breathers (DBs) [5]. The study of systems in which
nonlinear lattices are coupled to quantum quasiparticle,
on the other hand, is just beginning [9, 16, 17]. In fact,
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as far as we know, this is the first time that the coupling
of two quantum quasiparticles to a nonlinear lattice has
been considered.

A second physical ingredient is the inclusion of
quasiparticle-quasiparticle interactions, in addition to
the quasiparticle-lattice interactions found in the polaron
model. The quasiparticle-quasiparticle interactions can
represent Coulomb interactions, and/or spin-spin inter-
actions, and can be either attractive or repulsive. In a
previous study we found that DBs can be generated by
finite momentum excitations [17]. Here we find that DBs
are also generic solutions of this much more complex sys-
tem and can be generated by the presence of a second
quasiparticle. These lattice breathers can in turn sta-
bilise localized, paired, quasiparticle states, for a large
range of γ values, leading to bipolarobreathers.

Windows of γ were found for which similar solutions
are obtained. Thus, for a ratio of γ/t between −10 and
+1 (Figs. 1-3), DBs are found in the lattice and in the
quasiparticle, with the same main modulation frequen-
cies. For larger values of γ/t, two different solutions were
found (see Figs. 4-5). In one solution the quasiparticles
distribution is split into equal values in two neighbour-
ing sites and in the second a two peak distribution, with
the peaks as far apart as possible in the lattice used, is
observed. Similar dynamical solutions were also deter-
mined here in the case of two electrons interacting with
a linear lattice (see Figs 6-8).

Proville and Aubry [7], who study the minimum en-
ergy states of two electrons in interaction with a har-
monic lattice, also found these types of solutions, which
indicates that they may constitute a general feature of
two electron states in extended Hubbard systems. One
important difference is, however, that in the case of a
nonlinear lattice the lattice states are breathers and these
may have a greater stability against thermal fluctuations,
something that is particularly important for HTSC. In-
deed, the conjecture behind this work is that breathers
are an important element in the glue that binds electrons
in HTSC making bipolarobreathers more thermally sta-
ble than simple bipolarons.

This Hamiltonian also includes the two main physical
causes for quasiparticle pairing that have been considered
in HTSC and allows for interpolation between them, by
varying the strength of the relevant parameters. Accord-

ing to our results, a greater importance of quasiparticle-
lattice interactions in pair formation should arise in sys-
tems for which the dynamics of the lattice dynamics
is fast enough compared to the quasiparticle dynamics,
so that the lattice relaxes when the two quasiparticles
meet. Conversely, a corresponding greater importance of
quasiparticle-quasiparticle interactions should be associ-
ated with systems in which the lattice dynamics is much
slower than the quasiparticle dynamics.

As stated above, an implicit assumption in this study
is that the nonlinear character of the lattice plays an
important role in HTSC. Although the lattice distortions
are weak in conventional superconductors, and thus the
lattice dynamics can be approximately described by a
linear system, we argue that in HTSC these distortions
are such that the lattice enters a nonlinear regime. This
may be why the sound velocity decreases by a few parts
per million in conventional superconductors, whereas in
a high Tc material there is an increase which is two or
three orders of magnitude larger than in the former case.
Our simulations with the harmonic lattice show that the
percentage of energy transferred to travelling phonons is
much larger than for the anharmonic lattice.

The breather-like solutions found in the dynamical
simulations are a signature of the nonlinear dynamics
of the lattice. The possibility that breathers are asso-
ciated with HTSC has been suggested elsewhere [4, 6].
Our study indicates that DBs are generic excitations in
systems governed by the Hamiltonian used here. More-
over, within a certain range of the parameters, the states
in which two quasiparticles are paired and coupled to a
DB are energetically more favourable than those of un-
correlated quasiparticles. Hence, this study gives weight
to the possibility that DBs are important in HTSC.
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