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Abstract

All high-Tc superconductors have a layered structure, but the impor-
tance of this remains unclear. Some of these layers have chains of atoms
with a local symmetry, which facilitates quasi-one-dimensional effects. We
describe numerical simulations which suggest that lattice nonlinearities al-
low the transport of strongly localized and robust packets of vibrational
energy (discrete breathers) along these chains. The results support pre-
vious studies which correlated these particular structural properties with
superconductivity in these cuprates.

PACS: 63.20.Pw, 63.20.Ry, 74.72.−h

1 Introduction

It has been reported that single layers of cuprate superconducting material,
can have a Tc similar to that of the bulk material [6]. This suggests that the
underlying pair-bonding mechanism in high-Tc superconductors can be active
in a 2D plane of the crystal. In addition, other studies support the idea that the
lattice structural and dynamic properties play a critical role in the mechanisms
for superconductivity. For example, ref. [7] shows how induced stresses in the
lattice at the microscopic level can dramatically change Tc.

Our special interest is in the quasi-one-dimensional anharmonic lattice exci-
tations that can propagate in some atomic planes of theseYBCO-like materials.
This was motivated by a previous study [17], where the superconducting proper-
ties of cuprates were correlated to the existence of linear chains of atoms, which
were conjectured to transport one-dimensional nonlinear waves. Our results
provide a realization of these waves in the form of mobile discrete breathers,
which we have already established in the hexagonal lattice case [13].

The planes of interest here relate to a square lattice that contain linear chains
of atoms for which the surrounding lattice has C2 symmetry, i.e. rotations of
180◦ around the line of the chain leave the lattice unchanged. As a result,
a displacement of an atom along the chain direction causes a restoring force
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purely in the reverse direction, with no net transverse force. Crystals with
a more general Cn symmetry will of course show this same effect. It should
be noted that typical doping levels in these superconducting materials does not
destroy such C2 chains [10]. We report here that anharmonic lattice excitations,
in the form of highly localized moving breathers, can propagate along the C2

chains of the flat CuO2 planes embedded in a 3D structure. Such breathers have
been shown to be robust against lateral in-plane spreading. Rough estimates
predict that the energies of such breathers can extend from about 0.01 eV to
more than 0.5 eV, which is well above the single-phonon energy.

The search for moving breathers in higher dimensional lattices was first mo-
tivated by studies on mica minerals. Indirect experimental studies of lattice
excitations caused by atomic scattering events in mica suggested that mobile,
but very localized, lattice vibrations propagated in C2 chain directions of this
crystal [15]. These conjectured mobile excitations, called “quodons” to reflect
their quasi-one-dimensional behavior, appeared to be extremely robust against
progressive lateral spreading to adjacent C2 chains. This lateral stability is the
more remarkable because, if the theory is correct, the effect must persist to tem-
peratures of about 600K. This contrasts with the expected rapid degeneration
of Toda-like solitons in quasi-2D systems [16]. Some numerical and magneto-
mechanical analogue studies of these C2 chains in terms of 1D moving breathers
showed that the concept of a breather was the most promising explanation for
the observations [14].

2 Moving breathers

It is well known that some non-linear discrete one-dimensional systems can
support localized excitations such as solitons [11] and discrete breathers [1].
A breather is normally contained within a bell-shaped envelope, but unlike a
soliton it has internal oscillations. Breathers are generic in lattices, their long
lifetime being due to a combined effect of discreteness and nonlinearity [8]. The
nonlinearity is responsible for shifting the frequency of such oscillations out of
resonance with the phonon bands, while the discreteness ensures the existence
of gaps and cut-offs in the frequency range of phonons (which is not the case
in continuum-approximation models). The recent experimental observation of
breathers in real materials reported in [2] supports these theoretical studies.

Both moving and stationary breathers are possible. Stationary breathers
are exact solutions of the lattice dynamics, and they are linearly stable in most
cases. This is irrespective of the (non-) integrability of the system, just as in
the case of lattice solitons [9]. In contrast, moving breathers have a “fast”
internal oscillation moving at a phase velocity that exceeds the group velocity
of the envelope (the motion of this envelope is slightly slower than the sound
velocity). Although the non-integrability of the models suggests that these
localized waves are not exact solutions, computer simulations show that they
are extremely long-lived. However, up to now they have mainly been studied in
1D systems [12].
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We have explored the possibility of creating moving breathers in a fully 2D
lattice. Their existence in 2D or 3D lattices posed the problem of preserving the
additional localization in the directions transverse to the propagation direction.
Radiation to the adjacent chains of atoms is, in principle, to be expected. Nev-
ertheless, we recently found that moving breathers can exist in hexagonal 2D
lattices, and showed that they show a remarkable transverse focusing effect [13].

It was natural then to enquire if this behavior was restricted to hexagonal
systems. In particular, it was interesting to investigate other 2D structures
with a square lattice having both C2 and non-C2 crystal chains, in order to
test the hypothesis that longitudinal moving breathers need this kind of sym-
metry. Work done by one of the authors (FMR, [17]) pointed to the high-Tc

superconductor layered materials as good candidates for study. It was shown,
by molecular mechanical methods, that C2 chains exist in the flat cuprate layers
of YBa2Cu3O7, Y2Ba4Cu6O13 and La2CuO4. In the light of current attempts
at understanding the role that the lattice properties play in superconductiv-
ity [6, 7, 3], our interest is more than justified.

3 The model for cuprates

Figure 1 shows the 2D copper-oxide layer of a typical YBCO compound that we
used for our simulations. As before, we chose to model the system by means of
lattice dynamics (LD). We use pair potentials between the atoms of the plane,
and simulate the 3D environment of the crystal via a layer of fixed atoms sitting
above (and below) the plane. The Hamiltonian of the system can be written as

H =
∑
ij,l


1

2
ml~̇x

2

ij,l + Vl(~xij,l) +
1
2

∑
<i′j′,l′>

Wll′(~xij,l, ~xi′j′,l′)


 , (1)

where ~xij,l is the 2D vector for the displacement of the atom l in unit cell (i, j),
Wll′ represents the various inter-atomic pair potentials, and Vl is the on-site
potential generated by the fixed atoms above and below. In our particular case
this on-site potential, which has to mimic the presence of the structure in which
the CuO2 plane is embedded, was constructed using the actual positions of
atoms in the neighbouring layers of the YBCO structure.

We have made a major simplification by ignoring the motion of atoms in
the adjacent planes. If the other planes were rigid, this would already be a
good approximation, since the forces due to atoms in adjacent planes would be
modeled by the on-site potentials. However, we know that the atoms in the
other planes are not fixed, so it may be that in a full 3D model the energy of
the breather is radiated in the third dimension. A counter-argument is that in
many cases, in a full 2D model, the breather shows a strong self-focussing effect
in one dimension, with the atoms in the adjacent chains exhibiting an oscillatory
motion with no nett perpendicular transport of energy. Our hypothesis is that
this effect extends to 3D in some lattices. There is supporting experimental evi-
dence for this. It is reported that, in silicon, breathers (quodons) can propagate

3



d
3 d

1
d

2

d
4

Figure 1: Schematic figure of the CuO2 plane of atoms in some high-Tc materials.
This was the structure used in the simulations, with corresponding fcc layers of
fixed atoms sitting symmetrically above and below.

in certain C2 directions with flat paths of order 1µ [23]. We plan to make some
full 3D simulations of cuprate materials in the near future.

We experimented with both Lennard-Jones ((a/r)12 − 2(a/r)6) or Morse
( 1
2

(
1− e−(r−a)

)2
) potentials, both for the inter-atomic and the on-site inter-

actions. They provide a good approximation to realistic potentials once we
neglect long-range Coulombic interactions. We included interactions to nearest
and next-nearest neighbours.

We have assumed that the forces between the atoms can be approximated by
radial forces, thus neglecting angular (i.e. “three-body”) forces. One reason for
this is of course to avoid the necessity of engaging in a full MD time-dependent
simulation. Once the results with the simpler lattice model are more fully
understood, a more accurate calculation will be appropriate. However the effects
we observe suggest that the key point is the C2 symmetry discussed above, and
the fact that for small deviations from movement along the crystalographic
directions, the transverse forces are small. Molecular-mechanics studies of the
potential energy surfaces on the relaxed structures of HTSC structures [17]
suggest that a full model will also have these key features.

We should stress however, that we do not require the initial disturbance to
be in line with a crystalographic direction. Simulations show that breathers
travelling along the crystalographic direction can be excited by perturbations
at quite a large angle (≈ 15◦) to the eventual line.

To ensure that the 2D scheme is internally consistent, we made some sim-
plifications. The pair potentials used between atoms have to match the bond-
lengths that we have chosen as the reference lattice. This means that both the
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Figure 2: Atomic displacement along the d3 direction. Units are in fractions of
the unit cell length. The asymmetry of the envelope, an oscillation of the “dc”
component of the vibrations, is due to the usual bond-stretching phenomenon
of soft nonlinear potentials.

inter-atomic and the on-site potentials will have their bond lengths adapted, so
that when the atoms are at their reference positions, each bond is in their own
relaxed state. Their relative strengths can still be varied, via a prefactor in the
potential, without changing the bond length. This is not a big simplification,
since one can think of these modified pair potentials as “effective” interactions,
where the rest of the contributions to the potential landscape have been in-
tegrated. Our lattice dynamics schema provides a good approximation to the
problem at hand. Moreover, it has been shown that discrete breathers are a very
generic phenomenon, insensitive to the details of the potentials involved [8].

Our simulations confirmed that moving breathers can exist in this system,
propagating in some chain directions and being robust against lateral spreading
for a wide range of initial starting conditions. Such breathers are somewhat
insensitive to the relative strengths of the inter-particle to on-site terms in the
system Hamiltonian. As expected from the pair-wise, radial nature of the po-
tentials used, these are longitudinal breathers, where the atoms oscillate along
the line of propagation, in a nearly out-of-phase motion. They travel over long
distances in the lattice, with very weak coupling (radiation) to the phonons.
Figure 2 shows the displacement of a typical atom in the C2 chain as a func-
tion of time as the breather passes through. One common feature of all these
breathers is that the internal, “fast” vibration has a frequency which is outside
the phonon bands of the system (also true for higher harmonics), while the
translational velocity is below that of linear sound waves by 20%–60%.

In our model we created moving breathers by giving initial momenta to three
consecutive atoms along a chain, for example, in ratios (−1, 2,−1). Over a wide
energy range, initial impulses of this type yielded stable moving breathers, after
the initial transient (where some percentage of the initial energy is quickly
radiated throughout the lattice). We found that breathers could be propagated
along directions d1,d2, and d3 (see figure), all of which have C2 symmetry.
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Figure 3: A breather travelling along the d3 direction (see Fig. 1).

However, direction d4 does not have this symmetry, and our simulations with
the same initial conditions in this direction revealed no sign of breathers.

In fig. 3 we show a typical simulation of a breather envelope, in this case
along direction d3. In this figure, E is the energy of the breather in arbitrary
units, and only a (different) part of the lattice has been shown in each case. In
between the two snapshots, the excitation has travelled about 100 lattice cells,
losing only some 10% of the energy, but remaining as an exponentially localised
excitation. Moving breathers in general are not expected to be infinitely lived,
due to the non-integrability of these lattice models. We find that 2D moving
breathers, like their 1D counterparts, exhibit remarkably long lifetimes.

The real energy of such breathers can be estimated by comparing (a) the
displacements of atoms from the equilibrium positions during the passage of the
breather in a simulation with (b) the unrelaxed lattice defect-energies resulting
from displacement of a given atom in an initially energy minimised lattice. The
calculation for (b) comes from independent molecular mechanics studies. For
La2CuO4 an approximate lower limit of 0.01 eV was found for the energy of
robust moving breathers, extending upwards to about 0.5 eV.

4 Discussion

Our aim is to explore and better understand the properies of the peculiar layered
structure of YBCO-like superconductors. This includes the possibility of inter-
actions of free charges with moving breathers. The present study was motivated
by the correlation found in these materials between the high-Tc superconducting
property and the existence of C2 chains [17]. These do not need to be necessarily
the C2 chains of the CuO2 plane that we studied. Certainly, many materials
in the YBCO family contain different chains with C2 symmetry in other parts
of the crystal, such as in layers containing Y or Ca [17]. We have focused on
the cuprate layer because this is where the superconductivity is thought to take
place.

Some other layered superconducting materials do not have CuO2 layers. If
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breathers are still involved in mediating charge transport in such materials,
then the existence of Cn chains elsewhere in the crystal should be a prerequisite
for high Tc superconductivity. Such a correlation has been reported for the
structurally related family of compounds containing Ni and B [17].

There is some evidence that breathers might interact with free charges on
or near the C2 chains [3]. We are currently studying the interaction between
breathers and free charges as a possible coupling mechanism in superconductiv-
ity [20, 21, 22].

Acknowledgements

We are most grateful to O. Penrose and L. Cruzeiro-Hansson for a critical read-
ing of an initial draft of the manuscript. JLM acknowledges a Marie-Curie TMR
fellowship from the EU (no. ERBFMBICT972761), and JCE acknowledges sup-
port under the LOCNET EU network HPRN-CT-1999-00163.

References

[1] Sievers A. J. and Takeno S. Phys. Rev. Lett. 61, 1988, 970; Aubry S. Physica
D 103, 1997, 201; Flach S. and Willis C. R. Phys. Rep. 295, 1998, 181.

[2] Swanson B. I. et al. Phys. Rev. Lett. 82, 1999, 3288.

[3] Cianchi L., Moretti P. and Piazza F. Phys. Lett. A 246, 1998, 451.

[4] Ding Chen, Aubry S. and Tsironis G. Phys. Rev. Lett. 77, 1996, 4776;
Cretegny T. PhD Thesis (ENS-Lyon) 1998.

[5] Rossler T. and Page J. B.Phys. Rev. Lett. 78 1997,1287.

[6] J.-H. Choy, S.-J. Kwon, G. S. Park, Science 280, 1589 (1998).

[7] J.-P. Locquet et al., Nature 394, 453 (1998).

[8] R. S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994).

[9] D. B. Duncan, J. C. Eilbeck, H. Feddersen, and J.A.D. Wattis, Physica D
68, 1 (1993).

[10] J.C. Grenier et al., in Phase Separation in Cuprate Superconductors, E.
Sigmund and K. A. Müller, Eds. (Springer-Verlag, 1994), pp. 236–256.

[11] M. Toda, Theory of Nonlinear Lattices (Springer, Berlin, ed. 2, 1989).

[12] V. M. Burlakov, S. A. Kisilev, and V. N. Pyrkov, Phys Rev. B, 42, 4921
(1990); K. Hori and S. Takeno, J. Phys. Soc. Jpn. 61, 4263 (1992).
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