
Question 1 Tutorial 4 Solutions 11.3YC1 J C Eilbeck, November 26, 1999

problem exact Trapezoidal Simpson
(a) 0.386294. . . 0.346573. . . 0.385834. . .
(b) 0.0348119. . . 0.0232079. . . 0.0322961. . .
(c) 0.307092. . . 0.392699. . . 0.305432. . .

Single interval Trapezoidal rule and error term is∫ b

a
f(x) =

h

2
(f(a) + f(b))− h3

12
f ′′(ζ), h = b− a ,

for some ζ between a and b. The error satisfies

|error| ≤ h3

12
max
a≤ζ≤b

|f ′′(ζ)|

The actual error (exact - approximate solution) must be less than or equal to this upper bound.
Upper bound for the trapezoidal Rule error in the three cases is:

(a) |error| ≤ h3

12
max
1≤ζ≤2

| − ζ−2| = 1

12
,

(b) |error| ≤ 0.13

12
max

0≤ζ≤0.1
|2/9ζ−5/3| =∞ unbounded

(c) |error| ≤ π3

27× 12
max

0≤ζ≤π/3
|4 cos2(ζ)− 2| = π3 × 2

27× 12
.

The Simpson Rule results are similar, but use the 4th derivative.

Question 2

problem exact Trapezoidal Simpson Midpoint Open NC 2f’s
(a) 0.102459. . . 0.102440. . . 0.102459. . . 0.102469. . . 0.102466. . .
(b) 0.785398. . . 0.785398. . . 0.785398. . . 0.785398. . . 0.785398 . . .
(c) 0.75 0.5 0.695800. . . 0.793700. . . 0.783470. . .

The second and fourth derivatives are used in the various error estimates. The idea is to
work them out and find their maximum value over the range of integration.

(a) f(x) =
√

(1 + x) , |f ′′(x)| = | −1

4(1 + x)3/2
| ≤ 1

4
, |f (4)(x)| = | −15

16(1 + x)7/2
| ≤ 15

16
.

(b) f(x) = sin2(x) , |f ′′(x)| = |4 cos2(x)− 2| ≤ 2 , |f (4)(x)| = | − 16 cos2(x) + 8| ≤ 8 .

(c) f(x) = x1/3 , |f ′′(x)| = | −2

9x5/3
| ≤ ∞ , |f (4)(x)| = | −80

81x11/3
| ≤ ∞ .

The maximum errors in the schemes are given below. The actual errors are all smaller than
these values and hence are consistent with them.

problem Trapezoidal Simpson Midpoint Open NC 2f’s
(a) 2× 10−5 3× 10−9 1× 10−5 7× 10−6

(b) 0.645. . . 0.0265. . . 0.322. . . 0.215. . .
(c) ∞ ∞ ∞ ∞
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Question 3

Following the notes and the Simpson Rule handout we find that

∫ b

a
f(x)dx = 3hf(c) +

9h3

8
f ′′(c) +O(h5)

where c = (a+b)/2 is the midpoint and h = b−a. The next stage is to rewrite the approximation
in terms of c and h:

approx =
3h

2
(f(a+ h) + f(a+ 2h)) =

3h

2
(f(c− h/2) + f(c+ h/2)) .

Next Taylor expand about h = 0 to get

3h

2
(f(c− h/2) + f(c+ h/2)) = 3hf(c) +

3h3

8
f ′′(c) +O(h5).

Finally, subtract the two Taylor expansions at the same place to get

exact− approximate =
3h3

4
f ′′(c) +O(h5)

The other scheme can be rewritten in terms of c and h as:

approx =
3h

8
(f(c− 3h/2) + f(c+ 3h/2)) +

9h

8
(f(c− h/2) + f(c+ h/2)) .

Taylor expand about h = 0 to get eventually

3hf(c) +
9h2

8
f ′′(c) +

21h5

128
f (iv)(c) +O(h7)

Exact is obtained as for first part, but we need the next nonzero term in the series also

∫ b

a
f(x)dx = 3hf(c) +

9h3

8
f ′′(c) +

81h5

640
f (iv)(c) +O(h7)

Finally, subtracting the two Taylor expansions at the same place to get

exact− approximate =
−3h5

80
f (iv)(c) +O(h7)

Question 4

with b = a+ 3h, h = (b− a)/3, we have

f(x)
∫ b
a f(x)dx Approximation Match

1 b− a b− a yes
x b2/2− a2/2 3h

8
(8a+ 12h) yes

x2 b3/3− a3/3 3h
8
(a2 + 3(a+ h)2 + 3(a+ 2h)2 + (a+ 3h)2) yes

x3 b4/4− a4/4 3h
8
(a3 + 3(a+ h)3 + 3(a+ 2h)3 + (a+ 3h)3) yes

x4 b5/5− a5/5 3h
8
(a4 + 3(a+ h)4 + 3(a+ 2h)4 + (a+ 3h)4) no
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The degree of precision is 3. Check foryourselves that the two columns are the same up to the
x3 terms.

The mismatch in the last case is−9h5/10. This can be verified in the special case a = 0, b = 1
giving exact = 1/5 approximate = 11/54, error = −1/270. It doesn’t match for this particular
choice of a, b and so doesn’t match in general. Maple is good at doing the algebra required for
the other parts. It can also help to write a = c − 3h/2 and b = c + 3h/2 where c = (a + b)/2
and h = (b− a)/3 and do the whole thing in terms of c, h instead of a, b.

Substitute f(x) = 1, x, x2 etc. in turn into the error term. The result is zero until a high
enough power is substituted. In this case all results are zero until f(x) = x4 which gives
error = −9h5/10 = 4!δ, so δ = −3h5/80.

Question 5

Similar to the last one. Solve simultaneous equations for α, β, γ. (It will help to write a = c−h
and b = c + h where c = (a + b)/2 and h = (b − a)/2 and do the whole thing in terms of c, h
instead of a, b.)

α+ β + γ = 2h

aα+ (a+ h)β + (a+ 2h)γ = 2ah+ 2h2

a2α+ (a+ h)2β + (a+ 2h)2γ = 2a2h+ 4ah2 + 8/3h3

a3α+ (a+ h)3β + (a+ 2h)3γ = 2a3h+ 6a2h2 + 8ah3 + 4h4

solving (quicker using Maple, or transforming to a variable where a = 0) gives

α =
h

3
, β =

4h

3
, γ =

h

3
,

and the final substitution f(x) = x4 gives δ = −h5/90. This is Simpson’s Rule (see handout).

Question 6

problem exact Trapezoidal Simpson Midpoint
(a) 1.098612. . . 1.116666. . . 1.098725. . . 1.089754. . .
(b) 4 4.25 4 3.875
(c) 0.636619. . . 0.622008. . . 0.636636. . . 0.643950. . .

Question 7

The Composite Midpoint Rule on 2n subintervals is

approximate integral = h
n−1∑
j=0

f(a+ (2j + 1)h) , h = (b− a)/2n .

In the two examples we get 0.3405058416 . . . and 0.3449916 . . .. (if you use the definition
given in the lecture notes instead of that given in the handout you will get 0.3449916 . . . and
0.3461735 . . .). The exact value is 0.34657359 . . ., so the n = 8 result is closer.

The error term for the composite rule satisfies

|error| = h2(b− a)
6

|f ′′(µ)| ≤ h2(b− a)
6

max
a≤x≤b

|f ′′(x)|
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for some a ≤ µ ≤ b. In this case we have a = 0, b = π/4 and f ′′(x) = 2 tanx(1 + tan2 x). This
is an increasing function of x and so the maximum value is at x = π/4 giving

|error| ≤ h2π

6× 4
|f ′′(π/4)| = h2π

6

where h = π/(4n). The error bounds in the two cases are then 0.02 . . . and 0.005 and the actual
errors (from above) are well within these bounds at 0.006 and 0.0016.

To ensure that the error is < 10−8 we need

h2π

6
=

π3

384n2
< 10−8 .

Rearrange to pick out n2

n2 >
108π3

384
⇔ n > 2841.575 . . .

so that the choosing n ≥ 2842 guarantees that the error is small enough.

Question 8

Use the same process as for the Composite Simpson Rule in the notes. For the composite
Trapezoidal Rule the total error over all n subintervals is

E =
n∑
j=1

−h3

12
f ′′(ζj) =

−h3

12

n∑
j=1

f ′′(ζj)

where h = (b−a)/n and xj−1 ≤ ζj ≤ xj (ζj is in the jth interval). Since each ζj lies in one of the
subintervals between a and b, the value of f ′′(ζj) must be between the maximum and minimum
that f ′′(x) takes on the interval [a, b]. Hence:

n∑
j=1

min
a≤x≤b

f ′′(x) ≤
n∑
j=1

f ′′(ζj) ≤
n∑
j=1

max
a≤x≤b

f ′′(x)

and this simplifies to

n min
a≤x≤b

f ′′(x) ≤
n∑
j=1

f ′′(ζj) ≤ n max
a≤x≤b

f ′′(x) .

Now if we say that the minimum occurs at x = p and the maximum at x = q and divide through
by n we get:

f ′′(p) = min
a≤x≤b

f ′′(x) ≤ 1

n

n∑
j=1

f ′′(ζj) ≤ max
a≤x≤b

f ′′(x) = f ′′(q) .

The Mean Value Theorem now lets us say that if f ′′(x) is continuous (and we assume that it
is), then

f ′′(p) ≤ 1

n

n∑
j=1

f ′′(ζj) ≤ f ′′(q)⇒ 1

n

n∑
j=1

f ′′(ζj) = f ′′(µ)

for some µ between p and q, which in turn lie between a, b. The result then follows:

E =
−h3

12

n∑
j=1

f ′′(ζj) =
−h3

12
nf ′′(µ) =

−h2(b− a)
12

f ′′(µ)

since nh = (b− a).
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