## Tutorial 1 Solutions 11.3YC1

# Question 1

| $x_0$ | $x_2$          | $x_1$  | $f(x_0)$ | $f(x_2)$    | $f(x_1)$ |
|-------|----------------|--------|----------|-------------|----------|
| 0     | $\swarrow 0.5$ | 1      | _        | <u>/</u> -  | +        |
| 0.5   | 0.75           | 1      | _        | $+\searrow$ | +        |
| 0.5   | 0.625          | 0.75   | _        | $+\searrow$ | +        |
| 0.5   | 0.5625         | 0.625  | _        | $+\searrow$ | +        |
| 0.5   | 0.53125        | 0.5625 | _        | +           | +        |

This can be interpreted as either 4 or 5 steps – either is acceptable. Root estimate is midpoint at last step: 0.53125. Error estimate is half interval size: 0.5(0.5625 - 0.5) = 1/32.

| $x_0$  | $x_2$   | $x_1$ |
|--------|---------|-------|
| 2      | 2.5     | 3     |
|        |         |       |
| 2.5625 | 2.59375 | 2.625 |

Again, this can be interpreted as either 4 or 5 steps. Root estimate is midpoint at last step: 2.59375. Error estimate is half interval size: 1/32.

Error estimate is upper limit on absolute error.

## Question 2

Initial bracket length  $L_0 = |\pi - 0| = \pi$ . After k steps:  $L_k = \pi/2^k$ . We want  $L_k \leq 10^{-3}$ . Take logs,  $\log_{10} \pi - k \log_{10} 2 \leq -3$  so  $k \geq (\log_{10} \pi + 3)/\log_{10} 2 = 11.61...$  k is integer so use k = ceil(11.61) = 12 steps. (ceil() means round up to nearest integer).

## Question 3

 $L_k = |a - b|/2^k \le 10^{-n}.$ Take logs:  $\log_{10} |a - b| - k \log_{10} 2 \le -n$  so

$$k \ge \frac{(\log_{10}|a-b|+n)}{\log_{10} 2}$$

Use  $k = \operatorname{ceil}((\log_{10} |a - b| + n) / \log_{10} 2)$ , which increases with n since  $\log_{10} 2 > 0$ .

## Question 4

|     | (i)                | (ii)               | (iii)       |
|-----|--------------------|--------------------|-------------|
| (a) | $4 \times 10^{-2}$ | $1 \times 10^{-2}$ | $\approx 2$ |
| (b) | $3 \times 10^{-4}$ | $1 \times 10^{-3}$ | $\approx 3$ |
| (c) | $4 \times 10^{-5}$ | $1 \times 10^{-2}$ | $\approx 2$ |
| (d) | $3 \times 10^{-2}$ | $1 \times 10^{-3}$ | $\approx 3$ |

### Question 5

(a)  $|x^* - \pi|/|\pi| \le 10^{-3}$  so  $|x^* - \pi| \le \pi \times 10^{-3}$ , i.e.  $\pi(1 - 10^{-3}) \le x^* \le \pi(1 + 10^{-3})$ . (b), (c), (d) are similar.

## Question 6



 $f' < 0 \Rightarrow$  function decreases monotonically  $f(a) > 0 > f(b) \Rightarrow$  only one root between a and b. (b)  $f(a)f(b) > 0 \Rightarrow f(a), f(b) > 0$  both +ve, or f(a), f(b) < 0 both -ve.  $f' > 0 \Rightarrow$  increases monotonically from f(a) to f(b). Draw both cases – no roots.

(c)  $f(a)f(b) < 0 \Rightarrow f$  changes sign. No other information, so there is at least one root. Draw it.

# Question 7

Show that f(1) < 0 < f(2) and that f'(x) > 0 for all  $1 \le x \le 2$ . Then use the result of 6(a). Apply the bisection method starting with [1,2] and stopping when  $\frac{1}{2}|a-b| \le 5 \times 10^{-3}$ . The absolute error is  $\le \frac{1}{2}|a-b|$  so this satisfoes the condition abs. error  $\le 5 \times 10^{-3}$ .

## Question 8

(a) Apply bisection method to  $f(x) = x^3 - 3$  with initial bracket [1, 2], say. Stop when current interval [a, b] satisfies  $\frac{1}{2}|a - b| / \min(|a|, |b|) \le 5 \times 10^{-3}$ .

(b) Apply bisection method to  $f(x) = x^n - a$  (solution is  $x = a^{\frac{1}{n}}$ ).

## Question 9

The equation doesn't affect the result. Use the formula as in Questions 2 and 3. Solutions: (a) 14 (b) 15 (c)  $\operatorname{ceil}(N/\log_{10} 2)$ .

## Question 10

(a) Depends on whether [a, b] is a nontrivial bracket or not. If it is, method works. If not, the method fails at the start. In this case, if it is known that there are two roots inside [a, b], it would be possible to evaluate the function at various points inside this interval, until one or more nontrivial brackets were found, then start the bisection method.

(b) [a, b] is not a nontrivial bracket since f(a)f(b) > 0. Method fails.