A Fixed Point Iteration Theorem

If $\varphi(x)$ and its derivatives are continuous, and $|\varphi'(x_*)| < 1$, $\varphi(x_*) = x_*$, then there is an interval $I_{\delta} = [x_* - \delta, x_* + \delta]$, $\delta > 0$, such that the iteration $x_{k+1} = \varphi(x_k)$ converges to x_* for every $x_0 \in I_{\delta}$. Further, if $\varphi'(x_*) \neq 0$, then the convergence is linear with ratio $|\varphi'(x_*)|$. Alternatively, if $0 = \varphi'(x_*) = \varphi''(x_*) = \ldots = \varphi^{(p-1)}(x_*)$, and $\varphi^{(p)}(x_*) \neq 0$, then the convergence is of order p.

Proof

(Similar to the proof for convergence of the Newton-Raphson method).

(a)

Let
$$e_k = x_k - x_*$$
 for $k = 0, 1, \dots$ ($e_k \equiv$ "error").
So
 $e_{k+1} = x_{k+1} - x_* = \varphi(x_k) - \varphi(x_*)$ by definition of x_* and $\{x_k\}$.
 $= \varphi(x_*) + (x_k - x_*)\varphi'(\xi_k) - \varphi(x_*)$ by Taylor expansion for some ξ_k
between x_k and x_* .
 $= e_k \varphi'(\xi_k)$

(b)

By hypothesis $|\varphi'(x_*)| < 1$ and $\varphi'(x)$ is continuous, so there is an interval $I_{\delta} = [x_* - \delta, x_* + \delta]$, (i.e. close to x_*) where $x \in I_{\delta} \Rightarrow |\varphi'(x)| \le C < 1$, for some constant *C* such that $|\varphi'(x_*)| < C < 1$. (See Figure).

(c)

Note that $x \in I_{\delta}$ is the same as saying $|e_k| \le \delta$ since $|e_k| = |x_k - x_*|$. (a) and (b) give us

$$|e_{k+1}| = |e_k||\varphi'(\xi_k)| \le \delta\varphi'(\xi_k) < \delta$$

since ξ_k lies between x_k and x_* , i.e. $\xi_k \in I_{\delta}$. So if $x_k \in I_{\delta}$ then $|e_k| \leq \delta$ and $|e_{k+1}| \leq \delta$, i.e. $|x_k - x_*| < \delta$, so $x_{k+1} \in I_{\delta}$. So finally $x_k \in I_{\delta} \Rightarrow x_{k+1} \in I_{\delta}$, and if $x_0 \in I_{\delta}$, then so is $x_1 \in I_{\delta}, x_2 \in I_{\delta}, \dots$ Therefore all $x_k \in I_{\delta}$ (and so are all the ξ_k).

Figure 1: Illustration of I_{δ}

(**d**)

$$e_{k}| = |e_{k-1}||\phi'(\xi_{k-1})| \text{ from (a)} \\ \leq C|e_{k-1}| \text{ from (b)} \\ \leq C|e_{k-2}||\phi'(\xi_{k-2})| \\ \leq C^{2}|e_{k-2}| \leq C^{3}|e_{k-3}| \leq \dots C^{k}|e_{0}|$$

Recall that $0 \le C < 1$. So

$$\lim_{k \to \infty} |e_k| = |e_0| \lim_{k \to \infty} C^k = |e_0| \times 0 = 0$$

hence $e_k \to 0$ as $k \to \infty$ ($e_k = x_k - x_*$) and equivalently $x_k \to x_*$ as $k \to \infty$. So the sequence $\{x_k\}$ converges to x_* under the assumptions of the theorem.

(e)

Check linear convergence.

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_*|}{|x_k - x_*|} = \lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|}$$

$$= \lim_{k \to \infty} |\varphi'(\xi_k)| \quad \text{from (a)}$$
$$= |\varphi'(x_*)|$$

since $\xi_k \to x_*$ as $x_k \to x_*$ and ξ_k is trapped between x_k and x_* . Also $|\varphi'(x_*)| < 1$ by assumptions of theorem, so convergence is *linear* if $|\varphi'(x_*)| \neq 0$ and *superlinear* if $|\varphi'(x_*)| = 0$.

(f)

(The case $0 = \varphi'(x_*) = \varphi''(x_*) = \ldots = \varphi^{(p-1)}(x_*)$) Taylor expand again (similar to (a))

$$e_{k+1} = x_{k+1} - x_* = \varphi(x_k) - \varphi(x_*)$$

= $\varphi(x_*) + (x_k - x_*)\varphi'(x_*) + \frac{1}{2!}(x_k - x_*)^2\varphi''(x_*)$
+ ... + $\frac{1}{(p-1)!}(x_k - x_*)^{(p-1)}\varphi^{(p-1)}(x_*) + \frac{1}{p!}(x_k - x_*)^p\varphi^{(p)}(\eta_k)$
- $\varphi(x_*)$

for some η_k between x_k and x_* . Since $0 = \varphi'(x_*) = \varphi''(x_*) = \ldots = \varphi^{(p-1)}(x_*)$, we have that

$$e_{k+1} = \frac{1}{p!} (x_k - x_*)^p \, \varphi^{(p)}(\eta_k) = \frac{1}{p!} e_k^p \, \varphi^{(p)}(\eta_k)$$

Now test for *p*th order convergence.

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = \lim_{k \to \infty} \left| \frac{1}{p!} \varphi^{(p)}(\eta_k) \right|$$
$$= \frac{1}{p!} |\varphi^{(p)}(x_*)| \neq 0$$

by hypothesis and since $\eta_k \rightarrow x_*$.

Hence convergence is *p*th order as required.