Question 1. [20 Marks Total]

(a) [6 Marks] The bisection method gives

k	x_0	x_1	$f(x_0)$	$f(x_1)$	x_2	$f(x_2)$
1.1	1.2	-0.095833976	0.120116923	1.15	0.008192910	
1.1	1.15	-0.095833976	0.008192910	1.125	-0.044783151	
1.125	1.15	-0.044783151	0.008192910	1.1375	-0.018538793	

final interval is [1.1375, 1.15], estimate for root is 0.5(1.1375 + 1.15) = 1.14375, maximum error is 0.5(1.15 - 1.1375) = 0.00625.

After 10 steps the interval will be of length $0.1/2^{10} = 0.00009765625$

(b) [7 Marks] Integrating each strip using SR

$$\int_{a+kh}^{a+(k+2)h} f(x) \, dx \approx \frac{h}{3} \left(f(a+kh) + 4f(a+(k+1)h) + f(a+(k+2)h) \right),$$

$$k = 0, 2, 4, \dots, (b-a)/h - 2$$

gives

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left((f(a) + 4f(a+h) + f(a+2h)) + (f(a+2h) + 4f(a+3h) + f(a+4h)) + \dots + (f(b-2h) + 4f(b-h) + f(b)) \right)$$

= $\frac{h}{3} (f(a) + 4f(a+h) + 2f(a+2h) + 4f(a+3h) + 2f(a+4h) + \dots + (2f(b-2h) + 4f(b-h) + f(b)))$

With $f(x) = \exp(x)$, a = 0, b = 1, h = 1/4, we have

$$\begin{split} I_{CSR} &= h/3(f(0) + 4f(0.25) + 2f(0.5) + 4f(0.75) + f(1)) = 1.718318843\\ I_{\text{exact}} &= \exp(1) - 1 = 1.718281828\\ \text{error} &= I_{\text{exact}} - CSR = -0.000037015 \end{split}$$

and solving

$$-\frac{(b-a)h^4}{180}f^{(iv)}(\eta) = -0.000037015$$

for η gives

$$\eta = \ln(-180 \times \text{error}/h^4) = 0.533947$$

(c) [7 Marks] Either

$$\begin{aligned}
\sqrt{1+x} - \sqrt{1-x} &= \frac{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{1+x} + \sqrt{1-x})}{(\sqrt{1+x} + \sqrt{1-x})} \\
&= \frac{1+x - (1-x)}{\sqrt{1+x} + \sqrt{1-x}} \\
&= \frac{2x}{\sqrt{1+x} + \sqrt{1-x}}
\end{aligned}$$

which is well behaved at $x \approx 0$, or

$$\sqrt{1+x} - \sqrt{1-x} = \left(1 + \frac{1}{2}x + \frac{1}{2}(-\frac{1}{2})\frac{x^2}{2!} + \dots\right)$$
$$- \left(1 - \frac{1}{2}x + \frac{1}{2}(-\frac{1}{2})\frac{(-x)^2}{2!} + \dots\right)$$
$$= x + \frac{1}{8}x^3 + O(x^5)$$

Question 2. [20 Marks Total]

(a) [10 Marks]

Note that $x_k \in I_{\delta}$ is the same as saying $|e_k| \leq \delta$ since $|e_k| = |x_k - x_*|$. Assume first that $x_k \in I_{\delta}$, it follows that

$$|e_{k+1}| = |e_k||\varphi'(\xi_k)| \le \delta |\varphi'(\xi_k)| < \delta$$

since ξ_k lies between x_k and x_* , i. e. $\xi_k \in I_{\delta}$.

So if $x_k \in I_{\delta}$ then $|e_k| \leq \delta$ and $|e_{k+1}| \leq \delta$, i. e. $|x_k - x_*| < \delta$, so $x_{k+1} \in I_{\delta}$.

Hence $x_k \in I_{\delta} \Rightarrow x_{k+1} \in I_{\delta}$, and if $x_0 \in I_{\delta}$, then $x_1 \in I_{\delta}, x_2 \in I_{\delta}, \ldots$, as required (and also all the $\xi_k \in I$).

Further we have

$$|e_{k}| = |e_{k-1}||\varphi'(\xi_{k-1})|$$

$$\leq C|e_{k-1}|$$

$$\leq C|e_{k-2}||\varphi'(\xi_{k-2})|$$

$$\leq C^{2}|e_{k-2}| \leq C^{3}|e_{k-3}| \leq \dots C^{k}|e_{0}|$$

Recall that $0 \leq C < 1$. So

$$\lim_{k \to \infty} |e_k| = |e_0| \lim_{k \to \infty} C^k = |e_0| \times 0 = 0$$

hence $e_k \to 0$ as $k \to \infty$ ($e_k = x_k - x_*$) and equivalently $x_k \to x_*$ as $k \to \infty$. So the sequence $\{x_k\}$ converges to x_* under the given assumptions.

(b) [10 Marks] The FP iteration gives

k	x_k
0	1.6
1	1.625
2	1.615385
3	1.619048
4	1.617647
5	1.618182
6	1.617978

To find the fixed point(s), solve $x = 1 + 1/x \rightarrow x^2 - x - 1 = 0 \rightarrow x = \frac{1}{2}(1 \pm \sqrt{5})$. Clearly in this case the iteration is converging to the positive root, i.e. $x_* = \frac{1}{2}(1+\sqrt{5}) = 1.618034$. Calculating $|x_k - x_*|$ and $|x_{k+1} - x_*|/|x_k - x_*|$ we get

k	$ x_k - x_* $	$ x_k - x_* / x_{k-1} - x_* $
0	0.018034	
1	0.006966	0.3863
2	0.002649	0.3803
3	0.001014	0.38278
4	0.000387	0.38167
5	0.000148	0.3824
6	0.0000565	0.3818

 $|\varphi'(x_*)|=-1/x_*^2=0.381966\ldots$, which agrees with these calculations, since we expect from the theory that

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_*|}{|x_k - x_*|} = \varphi'(x_*).$$

Question 3. [20 Marks Total]

(a) [8 Marks] Newton's method is

$$x_{k+1} = x_k - f(x_k)/f'(x_k), \quad k = 0, 1, \dots$$

Putting f(x) = a - 1/x, we get

$$x_{k+1} = x_k - \frac{a - 1/x_k}{1/x_k^2}$$

= $x_k - (ax_k^2 - x_k) = x_k(2 - ax_k)$

 So

$$\begin{aligned} (x_{k+1} - \frac{1}{a}) &= x_k(2 - ax_k) - \frac{1}{a} = -a(x_k^2 - \frac{2x_k}{a} + \frac{1}{a^2}) \\ &= -a(x_k - \frac{1}{a})^2 \end{aligned}$$

As required.

Since

$$\frac{|x_{k+1} - \frac{1}{a}|}{|x_k - \frac{1}{a}|^2} = |a|$$

then by definition, if x_k converges to 1/a, is is superlinear convergence of order 2.

(b) [12 Marks]

In the figure, $x_k = a, x_{k+1} = b$ are the two latest values, and the straight line is the line joining $(x_k, f(x_k))$ to $(x_{k+1}, f(x_{k+1}))$. The point $(c, 0) = (x_{k+2}, 0)$ is the point where this straight line crosses the x-axis. To find x_{k+2} , either find equation of line, or use a simple geometry argument based on similar triangles.

In the geometric derivation, ratios are $f(x_k)/f(x_{k+1}) = (x_{k+2} - x_k)/(x_{k+2} - x_{k+1})$, and solving for x_{k+2} we get

$$x_{k+2} = \frac{x_k f(x_{k+1}) - x_{k+1} f(x_k)}{f(x_{k+1}) - f(x_k)} , \ k = 0, 1, \dots$$

If we have $p_4(x)$ in the given form, clearly $p_4(r) = z$. Writing out both sides in full gives

$$1 + x + 2x^{2} - 3x^{4} = (x - r)(b_{1} + b_{2}x + b_{3}x^{2} + b_{4}x^{3}) + z$$

= $b_{4}x^{4} + (b_{3} - rb_{4})x^{3} + (b_{2} - rb_{3})x^{2} + (b_{1} - rb_{2})x + (z - rb_{1})$

So $b_4 = -3$, $b_3 - rb_4 = 0 \rightarrow b_3 = rb_4$, $b_2 - rb_3 = 2 \rightarrow b_2 = rb_3 + 2$, $b_1 - rb_2 = 1 \rightarrow b_1 = rb_2 + 1$, $z - rb_1 = 1 \rightarrow z = rb_1 + 1$.

When $r = x_0 = 1$, b_4 , b_3 , b_2 , b_1 , z = -3, -3, -1, 0, 1, so $f(x_0) = 1$. When $r = x_1 = 2$, b_4 , b_3 , b_2 , b_1 , z = -3, -6, -10, -19, -37, so $f(x_1) = -37$. Inserting these numbers into the Secant formula gives

$$x_2 = 39/38 = 1.026316\dots$$

Question 4. [20 Marks Total]

(a) [8 Marks]

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} [f(c) + (x - c)f'(c) + (x - c)^{2}f''(c)/2 + (x - c)^{3}f'''(c)/3! + O(x - c)^{4}] dx$$

= $[xf(c) + (x - c)^{2}f'(c)/2 + (x - c)^{3}f''(c)/3! + O(x - c)^{4}] dx$

+
$$(x-c)^4 f'''(c)/4! + O(x-c)^5 \Big]_a^b$$

= $hf(c) + \frac{1}{24}h^3 f''(c) + O(h^5),$

So A = 1/24. Similarly

$$\begin{aligned} \frac{h}{2}[f(a) + f(b)] &= \frac{h}{2} \left[f(c) - \frac{h}{2} f'(c) + \left(\frac{h}{2}\right)^2 f''(c) - \left(\frac{h}{2}\right)^3 f'''(c) + \left(\frac{h}{2}\right)^4 f^{(iv)}(c) + O(h)^5 + f(c) + \frac{h}{2} f'(c) + \left(\frac{h}{2}\right)^2 f''(c) + \left(\frac{h}{2}\right)^3 f'''(c) + \left(\frac{h}{2}\right)^4 f^{(iv)}(c) + O(h)^5 \right] \\ &= hf(c) + \frac{1}{8} h^3 f''(c) + O(h^5) \end{aligned}$$

So B = 1/8. Hence the error in the TR is $(\frac{1}{24} - \frac{1}{8})h^3 f''(c) = -\frac{1}{12}h^3 f''(c)$.

(b) [6 Marks]

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} [f(a) + f(a+h)] + \frac{h}{2} [f(a+h) + f(a+2h)] + \dots + \frac{h}{2} [f(b-h) + f(b)]$$

= $h \left[\frac{1}{2} f(a) + f(a+h) + f(a+2h) + \dots + f(b-h) + \frac{1}{2} f(b) \right]$

When f(x) = 4, a = 0, b = 3, n = 200, we have

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{3}{200} 4\left(\frac{1}{2} + 1 + 1 + \dots + 1 + \frac{1}{2}\right) = 12$$

This is exact since in the error formula for each strip, f'' = 0.

(c) [6 Marks]

CTR gives $\frac{1}{2}[0 + \frac{1}{4} + \frac{1}{2}] = \frac{3}{8}$. Hence error is $\frac{1}{3} - \frac{3}{8} = -\frac{1}{24}$. Error estimate for each interval of CTR is $-h^3 f''(c)/12$ where c is the midpoint of the interval. In this case f''(x) = 2 everywhere, so error estimate is $2 \times -(\frac{1}{2})^3 \frac{2}{12} = -\frac{1}{24}$. Estimate is exact for the same reason as above.