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Abstract

We use economic indicators to improve the prediction of the number
of incurred but not recorded disability insurance claims, assuming that
there is a link between the number of claims and the chosen economic
indicators. We propose a Bayesian model where we model the claims
development in three directions: along incurred periods, recording lag pe-
riods and calendar periods. A stochastic model of the economic indicators
is incorporated into the calendar period development direction. Thus we
allow for the impact of the economic environment on the number of claims.
Applying the proposed model to data, we illustrate how the inclusion of
economic indicators affects the prediction of the number of incurred but
not recorded disability claims.

Keywords: Bayesian model; Calendar period; Claims prediction; Credit
spreads; Disability insurance; Economic indicators; Prediction uncertainty; Stochas-
tic model; Unemployment.

1 Introduction

Disability insurance is a form of insurance payable to policyholders who are
unable to work either permanently or for an extended time period, due to some
impairment. There can be a significant delay, called a recording lag, between
the date an impairment occurred (the incurred date) and the date on which a
valid claim is recorded on the insurer’s administrative system. The lag can be
broken down into two parts:

(i) the time between the incurred date and the date on which a claim is
received for consideration by the insurer. This delay can be due to a
waiting period in the policy or uncertainty on the part of the insured on
whether their current incapacity is temporary or not;
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(ii) the time between the initial consideration date and the date on which the
valid claim is recorded on the insurer’s administrative system. This delay
can be due to the time taken to assess both the validity of the claim and
the extent of the work incapacity.

The insurer must take the recording lag into account when calculating reserves
for claims which are incurred but not recorded. This prediction of incurred but
not recorded claims is an important problem for the insurer. In disability in-
surance, it seems intuitive that claims experience should be linked to economic
conditions; it is generally observed that many disability claims are a choice not
to participate in the workforce, and the size and prospects of the workforce are
affected by economic conditions. There are arguments as to the exact impact
of the economic conditions, as highlighted in Schriek & Lewis (2010, Section 2).
For example, there are arguments that disability rates should increase as the
economy declines and other arguments that disability rates should increase as
the economy booms. Studies have shown both these effects in different coun-
tries (see Schriek & Lewis 2010, Section 2 for references). Whatever the precise
impact on individual policyholders in a particular industry sector or country,
the broad message is that changes in economic conditions should be reflected
by changes in the disability experience. For this reason, we model the devel-
opment of incurred but not recorded claims using economic factors in addition
to the information gained from the past evolution of claims. Furthermore, we
might expect that there is a delay before changes in economic conditions affect
policyholder behaviour, since it takes time for industry and the policyholders
to recognize the effects of a different economic environment. For claims predic-
tion, this means that we may be able to use economic indicators observed in the
past, for example one year ago, in order to improve the prediction of the claims
development.

The use of economic indicators for the prediction of disability claims has
been examined through linear regression in two papers. In Schriek & Lewis
(2010), a linear regression of South African disability rates against various eco-
nomic indicators is performed, with the goal of finding if there is a link between
disability claims incidence and the state of the economy. They find that unem-
ployment and consumer confidence indicators are strongly correlated with the
disability experience. In König et al. (2011), a Poisson model is applied in a
Bayesian framework to Swiss data for the purposes of claim prediction. A strong
correlation between the posterior mean of one of the fitted model parameters
and the spread of corporate bonds over government bonds is found.

However, König et al. (2011) do not incorporate a stochastic model of the
economic indicators into the claims prediction model. Consequently, while their
model is simple, it is not helpful for the quantification of prediction uncertainty,
which is a drawback from a risk management perspective. In particular, their
approach was to develop a Bayesian claims prediction model independently of
the chosen economic indicator. Then the posterior mean of a parameter of
the fitted model was linearly regressed against the economic indicator. If we
use the resultant linear relationship to predict future claims then, as we are
forced to consider only posterior means, we lose the powerful Bayesian predictive
distribution and thus are unable to quantify prediction uncertainty.

The primary aim in this paper is to propose a Bayesian model which over-
comes this limitation and hence allow us to
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(i) justify the findings in König et al. (2011);

(ii) stochastically project the economic indicators into the future;

(iii) consistently predict disability rates within the model; and

(iv) quantify prediction uncertainty.

The model we propose makes the chosen economic indicator an integral part of
the Bayesian model, and thus melds both insurance information and economic
information into the model in a natural way. We allow one of the model parame-
ters to be a function of the economic indicator and choose a stochastic model for
the future development of the economic indicator. Together, these assumptions
enable us to obtain the full predictive distribution of the future claims, allowing
for the impact of the economic indicator on the development of the claims. We
can use the predictive distribution to calculate statistics of the future claims,
calculate risk measures, such as value-at-risk or expected shortfall, and do more
sophisticated analyses, for example applying extreme value theory to estimate
the upper tail of the numbers of claims. We are not constrained to the use of the
posterior means of the parameters in the prediction of claims, as in König et al.
(2011). We use the claims data from König et al. (2011), which is income pro-
tection disability insurance for both temporary and permanent disability claims,
with a minimum waiting period of three months. Our analysis found that the
disability experience is strongly linked to the spread observed 1.25 years ago of
corporate bond yields over government bond yields, which supports the findings
of König et al. (2011). We also examined an unemployment indicator, but we
did not find it to be helpful for claims prediction.

The idea of directly incorporating an economic indicator into a Bayesian
model for claims prediction is new. Although we use a specific set of claims
data to illustrate our model, our approach can be applied to other claims data
where there are solid reasons for assuming that the claims are affected by eco-
nomic indicators, e.g. inflation. We emphasise the importance of a well-founded
argument for assuming a link between the data and the chosen indicator.

2 Notation

An annual summary of the disability claims data that we work with is shown in
Table 1. The data corresponds to the calendar years 1997 to 2008 and concerns
only claims for which a disability payment will eventually be made. The data
DI is shown as a claims development table, where the time period in which the
claim was incurred is shown vertically and the lag before it was recorded on
the insurer’s administrative system is shown horizontally. The lower triangle
is empty since this corresponds to claims which have been incurred but have
not yet been recorded on the insurer’s administrative system. The right-most
column shows the number of insured lives in each incurred period. Our aim is
to find a suitable model for the incurred but not recorded claims so that we can
predict the lower triangle.

We denote by Ni,j the number of claims which were incurred in period i and
were recorded by the insurer j time periods later. Thus in Table 1, N5,1 = 5 933
is the number of claims which were incurred in calendar year 2002 and were
recorded in calendar year 2003 on the insurer’s administrative system.

3



Table 1: Claims development table (annual figures).
Incurred Recording lag period j Number of
period i 0 1 2 3 4 5 6 7 8 9 10 11 policies si

0 2 016 3 560 1 049 316 130 52 16 8 4 0 0 0 480 199
1 1 774 3 660 1 049 361 97 74 70 12 4 0 0 502 661
2 2 292 3 493 1 019 405 125 62 20 12 0 8 515 803
3 1 968 4 081 1 291 426 121 31 8 0 8 536 556
4 2 511 5 070 1 598 378 70 55 12 4 582 452
5 2 850 5 933 1 504 262 90 47 16 601 253
6 3 304 5 476 1 090 285 94 47 609 116
7 2 738 5 031 1 008 320 90 591 749
8 2 617 4 297 1 242 293 600 378
9 2 086 4 457 930 622 947
10 2 144 3 746 627 236
11 2 379 669 942

We denote by I the last row of the claims development table and denote the
set of observed claims by

DI := {Ni,j ; i+ j ≤ I, 0 ≤ i, j ≤ I}. (2.1)

For example, in Table 1, I = 11 and the upper triangle corresponds to D11.
Correspondingly, we denote the unknown lower triangle by the complement

DcI := {Ni,j ; i+ j > I, 0 ≤ i, j ≤ I}. (2.2)

3 Bayesian models for disability prediction

In this paper, we consider Bayesian models for the disability claims data. There
have been various papers written about Bayesian methods in a non-life insur-
ance claims reserving context; for example, see de Alba (2002, 2006), de Alba
& Nieto-Barajas (2002), England & Verrall (2006), Ntzoufras & Dellaportas
(2002), Peters et al. (2009), Scollnik (2001) and Verrall (2004). Usually, models
for the claims table consist of modeling the development of claims vertically
(along incurred periods) and horizontally (along recording lag periods). We
model additionally the development of claims diagonally (along calendar pe-
riods). The motivation is that, for disability claims, we expect the economic
indicators in calendar period ` to impact all the claims recorded in calendar
period k, for some k ≥ `. This means that we must model the changes in the
claims data which occur between calendar time periods.

We use the parameters

• {πi; i = 0, 1, . . .} to model the incurred period direction;

• {γj ; j = 0, 1, . . .} to model the recording lag period direction; and

• {λk; k = 0, 1, . . .} to model the calendar period direction.

3.1 A brief summary of Bayesian inference

Suppose we wish to find a model for the incurred but not recorded claims data.
To combine prior information, expert judgment and the information contained
in the observations in the upper triangle of the claims table in order to predict
the lower triangle, we use Bayesian inference.

Based on our past experience in dealing with similar data and our subjec-
tive judgment, we decide on a model of the upper triangle DI with joint density
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function f(DI |Θ), where Θ is a vector of unknown constants called the param-
eter. Thus, if we know Θ, the model allows us to determine the distribution of
the claims data in the upper triangle.

In Bayesian inference, both the unknown parameter Θ and the data before
we observed it have a joint probability distribution function. The distribution of
the parameter Θ is called the prior distribution and here we denote its density
function by g. We choose the prior distribution in accordance with our own prior
subjective beliefs about the parameter Θ. Using Bayes’ formula, the density of
the parameter Θ conditional on seeing the data DI is calculated as

g (θ|DI) =
g (θ) f(DI |Θ = θ)∫
g (x) f(DI |Θ = x) dx

. (3.1)

We call g (θ|DI) the posterior density, since it captures what we know about the
distribution of Θ at the point θ after seeing the data in the upper triangle DI .
Having calculated the posterior density, we can use it to make statements about
the parameter Θ, such as its mean or standard deviation. Furthermore, if we
postulate a model of the lower triangle DcI with joint density function f(DcI |Θ)
as well as conditional independence between DI and DcI given Θ, then we can
also use the posterior density to compute the distribution of the incurred but not
recorded claims DcI . We call this latter distribution the predictive distribution
and from it we can calculate statistics such as the mean and standard deviation
of the incurred but not recorded claims (see Section 4 for an example of these
calculations), as well as risk measures such as the value-at-risk and expected
shortfall.

3.2 A Bayesian model with no economic effects

The first model we present is a Poisson-gamma-lognormal model. We use
Gamma(α, β) to denote a gamma distribution with mean α/β.

Model 3.1. There exist fixed volumes si > 0, for i = 0, 1, . . . , I, and define the
parameter vector

Θ := (π0, . . . , πI , γ0, . . . , γI , λ0, . . . , λ2I).

Set
θi,j := siπiγjλi+j .

Then we assume

(a) the elements of Θ are mutually independent and positive almost surely;
and

(b) the random variables Ni,j |Θ are mutually independent and Poisson dis-
tributed with mean θi,j for i, j = 0, 1, . . . , I, that is

Ni,j |Θ ∼ Poisson(θi,j).

The prior distributions are

(c) πi ∼ Gamma(απ, βπ) for i = 0, 1, . . . , I;

(d) γj ∼ Gamma
(
αγ , βγj

)
for j = 0, 1, . . . , I; and
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(e) λk ∼ logN (µλ, σ2
λ) for k = 0, 1, . . . , 2I,

for appropriate prior parameters απ, βπ, αγ , σλ > 0, βγj > 0 for j = 0, 1, . . . , I,
and µλ ∈ R.

Remark 3.2. Model 3.1 is a variation of König et al. (2011, Model 2.3). The
difference lies in assumption (e); we use a lognormal prior distribution for the cal-
endar period development factors λk whereas König et al. (2011) use a gamma
prior distribution, selected for practical simulation reasons (we prefer to use a
lognormal prior as it fits more naturally with the model of the calendar year
development factors that we choose in Model 3.5 and Model 3.9 below). König
et al. (2011) used expert judgment to specify the prior distributions. As we
analyze the same data, we used the same parameters as König et al. (2011) for
the prior distributions of πi and γj , that is

απ := 225, βπ := 15000, αγ := 1/0.0009 and βγj := 1/
(
0.0009γ̂P

j

)
,

where γ̂P
j is the maximum likelihood estimate of γj for the Poisson Model (Re-

mark 3.3 details how γ̂P
j is calculated). We chose the parameters of the log-

normal prior distribution so that λk has a mean of 1 and a coefficient of vari-
ation of 0.2 (recall that the coefficient of variation of a random variable X is
Vco (X) =

√
Var (X)/E (X)). This results in the specifications

µλ := −1
2

log(1.04) and σ2
λ := log(1.04).

Remark 3.3. The maximum likelihood estimate γ̂P
j used in the prior distribution

of γj is the maximum likelihood estimate for the Poisson Model, a well-known
model in non-life insurance claims reserving, for which details can be found in
Denuit et al. (2007, Chapter 1). It is obtained iteratively by first initializing

p̂0 :=
1
s0

I∑
j=0

N0,j and γ̂P
I :=

N0,I

s0p̂0
,

and then iterating

p̂n :=

∑I−n
j=0 Nn,j

sn

(
1−

∑I
j=I−n+1 γ̂

P
j

) and γ̂P
I−n :=

∑n
i=0Ni,I−n∑n
i=0 sip̂i

,

for each n = 1, 2, . . . , I.

3.3 The disability frequency

As a measurement of the disability risk of a portfolio, the disability frequency
is an important quantity. (Although the duration of the disability claim should
also be considered for income disability insurance, as data on this was not
available to us, we have ignored this second quantity in our analysis.) The
disability frequency pi is the average number of disability claims per life insured
which occur in period i, that is

pi :=
1
si

I∑
j=0

Ni,j .
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To calculate the posterior mean predicted disability frequency p̂i, we require the
posterior mean of the predicted claims. For Model 3.1 this is given by

N̄i,j := E (Ni,j |DI) = E (θi,j |DI) = siE (πiγj |DI) E (λi+j) , for i+ j > I,
(3.2)

Note that, for i + j > I, λi+j is in the lower triangle and is thus, due to our
assumptions, independent of the information DI . The posterior mean predicted
disability frequency is then given by

p̂i :=
1
si

I−i∑
j=0

Ni,j +
I∑

j=I−i+1

E (πiγj |DI) E (λi+j) , for i > 1. (3.3)

For our calibration of Model 3.1, we have E (λk) = 1, for k = I + 1, . . . , 2I. In
the sequel, we propose an alternative distribution for λk which links it to an
economic indicator. In that case, the posterior mean of the predicted claims
does not decouple as in (3.2) and hence neither does the posterior mean pre-
dicted disability frequency. This is due to the incorporation of the economic
indicator data into the model, which induces a non-trivial dependence structure
and changes the prediction.

3.4 Incorporating an economic indicator into the model

Here we detail an empirical Bayesian model which incorporates an economic
indicator. We relate the calendar period development factors to an appropriately
time-lagged economic indicator before performing a Bayesian analysis. Up to a
number of future calendar periods equal to the chosen time lag, the incorporation
of a time-lagged economic indicator should improve the prediction of the claim
numbers compared to a model using a non-lagged economic indicator. Thus,
ideally, we prefer an economic indicator which not only is a good model for the
calendar period development factors, but also requires a large time lag since this
allows prediction over several future periods.
Remark 3.4. In König et al. (2011) (see also Remark 3.2), the future calendar
period development factors are assumed to satisfy

λk = α̂+ β̂Sk−5, for k = I + 1, . . . , 2I, (3.4)

where Sk is the spread of corporate bond yields over government bond yields
in period k (which corresponds to the calendar year 1997 + k/4 in a quarter-
year view). The coefficients α̂ and β̂ are obtained by fitting a linear regression
model to the posterior means {E (λk |DI) ; k = 0, 1, . . . , I} and lagged credit
spreads, with the lag of 5 quarter years determined as the lag which maximizes
the empirical correlation of the posterior means and credit spreads.

3.4.1 A first model incorporating an economic indicator

Model 3.5. Assume Model 3.1 but with the additional assumptions that we
are given a scalar factor ρ ∈ [0, 1], a fixed time lag ∆ ∈ {0, 1, 2, . . .} and replace
assumption (e) with the following two assumptions:

(e′) we are given a series (Sk)k∈Z of economic indicators which follow a random
walk:

Sk = Sk−1 + εk, εk
i.i.d.∼ N (−ασ2

ε /2, σ
2
ε ), for all k ∈ Z.
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We set the variance σ2
ε equal to the sample variance of the observed eco-

nomic indicator data (Sk)k≤I . The calculation of the scaling factor α is
detailed in the next assumption.

(f′) We set

ln (λk) :=
√

1− ρ ln
(
λ

(1)
k

)
+
√
ρ ln

(
λ

(2)
k

)
, for k = 0, 1, . . . , 2I,

in which the random variables λ(1)
j and λ

(2)
k are independent for all j, k,

λ
(1)
k

i.i.d.∼ logN (µλ, σ2
λ), λ

(2)
k := exp (αSk−∆)

and the scaling factor α is chosen so that the coefficient of variation of
λ

(1)
k is equal to that of λ(2)

k for k ≥ I + ∆ + 1.

Remark 3.6. If we choose ρ = 0 then Model 3.5 reduces to Model 3.1. Choosing
ρ = 1 means that we believe the calendar period development factors (λk)k to be
fully explained by the economic indicators (Sk)k≥−∆. Thus, we can think of ρ
as the credibility weight we give to Model 3.1 (as represented by λ(1)

k ) compared
to a fully economic model (as represented by λ(2)

k ). For this reason, we refer to
ρ as the credibility weight.

Remark 3.7. The mean of the error term εk in assumption (e′) is chosen so that
λ

(2)
k is a martingale, for k ≥ I + ∆ + 1.

Remark 3.8. If we did not take the square root of 1−ρ and ρ in the equation of
(f′), then the variance of ln(λk) is a strictly convex combination of the variance
of ln(λ(1)

k ) and ln(λ(2)
k ). If, for example, the variance of λ(1)

k is much less than
that of λ(2)

k then this could result in a favouring of models which have more
weight given to λ(1)

k . We avoid this possibility by taking the square root of 1−ρ
and ρ so that the variance of ln(λk) is a linear combination of the variance of
ln(λ(1)

k ) and ln(λ(2)
k ).

If we use a model which includes economic indicator data, then the available
information consists not only of the claims table data, but also of the observed
economic indicators. We represent this information as

D?I := {DI , (Sk)k≤I}. (3.5)

When we do Bayesian inference on Model 3.5, we use the information D?I . For
example, the posterior density of Θ is g (Θ|D?I ) instead of g (Θ|DI).

Applying Model 3.5 to the data

We analyzed the quarterly claims data corresponding to the data summarized
by Table 1. This means that I = 47, corresponding to 48 quarter-year’s worth
of data from 1997 to 2008. We applied Model 3.5 with the parameters of the
prior distributions as in Remark 3.2 and using two economic indicators: credit
spreads and the unemployment rate. The economic indicator data is plotted in
Figure 1. Although we also examined a consumer confidence index, the analysis
showed that it was not useful for claims prediction and we do not show the
results here.
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(a) Credit spread data between government and corporate bonds.
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(b) Unemployment rate data.

Figure 1: The economic indicator data. The first quarter of 1997 corresponds to
calendar period 0. Each series has been normalized by subtracting the average
value, so that the normalized series has empirical mean zero.
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Running Model 3.5 and assessing the output

To compute the posterior distributions, we used Markov chain Monte Carlo
(MCMC) simulation methods. The MCMC methodology provides us with a
simulated Markov chain Θ[1],Θ[2],Θ[3], . . . with

Θ[n] =
(
π

[n]
0 , . . . , π

[n]
I , γ

[n]
0 , . . . , γ

[n]
I , λ

[n]
0 , . . . , λ

[n]
2I

)
, (3.6)

which is an empirical approximation of the posterior distribution g(Θ|D?I ). The
computation was implemented in WinBUGS, which is a software program spe-
cially designed for such a purpose, to produce 10 000 simulations from the pos-
terior densities of each of the model’s parameters. Scollnik (2001) gives an
overview of MCMC techniques and how they can be implemented in WinBUGS
in an actuarial context.

A selection of autocorrelation plots and traceplots for the parameters are
shown in Figures 2 and 3, respectively. We used a thinning interval of 50 to
reduce the autocorrelations which were observed without any thinning. Boxplots
of the posterior parameter distributions are shown in Figure 4. The diagnostic
plots in Figure 3 show that convergence has been obtained.

Selecting a time lag and economic indicator for Model 3.5

To compare Model 3.5 for different choices of the scalar ρ, time lag ∆ and
economic indicator series, we used a model selection criterion called the Deviance
Information Criterion (DIC). Introduced in Spiegelhalter et al. (2002), the DIC
is a way of comparing Bayesian models by measuring the trade off between the
fit of the model to the data and the complexity of the model. Using the DIC
as a model selection criterion suggests that we should choose the model with
the smallest DIC. However, as it is a relatively ad hoc measure (for criticisms
of DIC, see, for example, the discussion in Spiegelhalter et al. 2002), we do not
apply this criterion rigorously. Instead, we use it as an approximate guide to
the selection of a model. Note that WinBUGS can automatically calculate the
DIC.

Choosing credit spreads as the economic indicator, we plot the DIC against
the time lag ∆ in Figure 5(a). Each line corresponds to a fixed choice of ρ ∈
{0, 0.1, 0.2, . . . , 0.9}. In particular, the horizontal line corresponding to ρ = 0,
which corresponds to having no economic indicators in Model 3.5, gives the DIC
value for Model 3.1. The DIC values for ρ = 1 are not plotted since they are
much higher. For each fixed credibility weight ρ 6= 0, the lowest DIC is attained
when the time lag is ∆ = 5, corresponding to a time lag of 5 quarter years.
This suggests that the optimal time lag for the data analyzed is ∆ = 5, which
is consistent with the optimal time lag obtained by König et al. (2011).

Fixing the time lag ∆ = 5, we see from Figure 5(a) that the lowest DIC value
is attained at a credibility weight of ρ = 0.6. However, for ρ ∈ {0.1, 0.2, . . . , 0.8},
the differences in DIC are not very substantial, being less than 5 units in mag-
nitude. This means that we cannot state with statistical conviction that the
model with ρ = 0.6 is the “best”, based on the lowest DIC criterion.

Figure 5(b) shows the results when we choose the unemployment rate as
the economic indicator. For each fixed choice of the credibility weight ρ ∈
{0, 0.1, 0.2, . . . , 0.7}, the lowest DIC is obtained when the time lag is ∆ = 0,
corresponding to no time lag. As the credibility weight ρ is increased, the DIC
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Figure 2: Autocorrelation plots for a selection of the parameters of Model 3.5,
using credit spreads as the economic indicator, with a time lag ∆ = 5 quarter
years and a credibility weight ρ = 0.5.

(a) π1. (b) π2. (c) γ3.

(d) γ4. (e) log(λ
(1)
25 ). (f) log(λ

(1)
48 ).

Figure 3: Traceplots for a selection of the parameters of Model 3.5, using credit
spreads as the economic indicator, with a time lag ∆ = 5 quarter years and a
credibility weight ρ = 0.5.
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Figure 4: Boxplots showing the posterior distribution of the parameters of Model
3.5 using credit spreads as the economic indicator, with a time lag ∆ = 5 quarter
years and a credibility weight ρ = 0.5.
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Figure 5: DIC against lags for various fixed values of the credibility weight ρ in
Model 3.5. Note the difference in scales.

13



increases. Again, we do not plot the DIC values for ρ ∈ {0.8, 0.9, 1} since they
are much higher.

In summary, based on the DIC, using credit spreads as the economic indi-
cator suggests an optimal time lag ∆ = 5 and using the unemployment rate as
the economic indicator suggests an optimal time lag ∆ = 0. In order to improve
claims prediction, we prefer an economic indicator which maximizes the time lag
and, on this criterion, we prefer to use credit spreads as an economic indicator.
Indeed, for the claims data summarized by Table 1, the unemployment rate is
not particularly useful as an economic indicator since it has an optimal time lag
of zero.

3.4.2 A second model incorporating an economic indicator

Using credit spreads as an economic indicator in Model 3.5, the differences in the
DIC at time lag ∆ = 5 were not large enough to enable us to choose a particular
value of the credibility weight ρ. For this reason, we considered a model which
is identical to Model 3.5 except that the credibility weight is modelled as a
parameter with a prior distribution, rather than as a constant. The motivation
is to find the time lag which allows us to give the most weight to the economic
factor λ(2)

k .

Model 3.9. Assume Model 3.5 but replace the parameter vector Θ by

Θ̃ := (ρ,Θ)

and replace assumption (f′) with

(f′′)

ln (λk) :=
√

1− ρ ln
(
λ

(1)
k

)
+
√
ρ ln

(
λ

(2)
k

)
, for k = 0, 1, . . . , 2I,

in which the credibility weight parameter ρ is independent of all the other
parameters and has prior distribution

ρ ∼ Unif[0, 1],

the random variables λ(1)
j and λ

(2)
k are independent for all j, k,

λ
(1)
k

i.i.d.∼ logN (µλ, σ2
λ), λ

(2)
k := exp (αSk−∆)

and the scaling factor α is chosen so that the coefficient of variation of
λ

(1)
k is equal to that of λ(2)

k for k ≥ I + ∆ + 1.

Remark 3.10. Reflecting the inconclusive results about the optimal value of the
credibility weight in Model 3.5, we assume that the prior distribution of the
credibility weight parameter is uniformly distributed between 0 and 1. As in
Model 3.5, the mean of the error term εk in assumption (e′) is chosen so that
λ

(2)
k is a martingale, for k ≥ I + ∆ + 1.
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Applying Model 3.9 to the data

We analyzed the same quarterly claims data, applying Model 3.9 with the values
of the parameters of the prior distributions as detailed in Remark 3.2 and using
credit spreads and the unemployment rate as economic indicators. As before,
we use a MCMC method to obtain simulations

Θ̃[n] =
(
ρ[n], π

[n]
0 , . . . , π

[n]
I , γ

[n]
0 , . . . , γ

[n]
I , λ

[n]
0 , . . . , λ

[n]
2I

)
from a Markov chain which empirically approximates the posterior distribution
g(Θ̃|D?I ).

Running Model 3.9 and assessing the output

A selection of autocorrelation plots and traceplots for the parameters are shown
in Figures 6 and 7, respectively. The plots were obtained after using a thinning
interval of 50 to reduce the autocorrelations. We observe more autocorrelation
and thus a slower rate of convergence than for Model 3.5. Boxplots of the
posterior parameter distributions of (λ(1)

k )k≤I and (λk)k≤I are shown in Figure
8. The effect of the credit spreads are seen clearly in this figure by comparing
the mean of λ(1)

k to the mean of λk, for each value of k. By examining Figure
8(a) and Figure 1(a) together, we see that the parameter means in Figure 8(b)
decrease when the (normalized) lagged credit spreads are negative and they
increase when the lagged credit spreads are positive. The diagnostic plots in
Figure 7 show that convergence has been obtained.

Selecting a time lag and economic indicator for Model 3.9

Since the information is given by D?I (recall (3.5)), the posterior mean of the
credibility weight parameter ρ is

ρ̄ := E (ρ|D?I ) .

In Figure 9(a) the posterior mean ρ̄ of the credibility weight parameter is plotted
against the time lag ∆ when we use credit spreads as the economic indicator;
this is the solid line. The dashed and dotted lines show a 50% and 95% credible
interval about the posterior mean, respectively. The plot shows that the highest
posterior mean ρ̄ = 0.270 is attained at time lag ∆ = 5. The time lag ∆ = 5 is
consistent with the results when Model 3.5 is applied to the same data.

Figure 9(b) shows the results when we use the unemployment rate as an
economic indicator. For this latter plot, the highest posterior mean ρ̄ = 0.007
is attained at time lag ∆ = 0. This means that not only is the unemployment
rate not useful for prediction, but also that the impact of the unemployment
rate on the calendar year development factors is very small.

In summary, the analysis of the claims data using Model 3.9 suggests choos-
ing credit spreads as the economic indicator with time lag ∆ = 5. This is
consistent with the results in Subsection 3.4.1 and König et al. (2011). The
unemployment rate is relatively unhelpful, both in its predictive ability and its
impact on the claim numbers. This also means that it does not appear worth-
while to extend the model to include both economic indicators.
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Figure 6: Autocorrelation plots for a selection of the parameters of Model 3.9,
using credit spreads as the economic indicator, with a time lag ∆ = 5 quarter
years.
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Figure 7: Traceplots for a selection of the parameters of Model 3.9, using credit
spreads as the economic indicator, with a time lag ∆ = 5 quarter years.
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Figure 8: Boxplots showing the posterior distribution of the parameters
(λ(1)
k )k≤I and (λk)k≤I of Model 3.9 using credit spreads as the economic in-

dicator, with a time lag ∆ = 5 quarter years.
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(a) Posterior mean of the credibility weight parameters against credit spread lag.
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(b) Posterior mean of the credibility weight parameters against unemployment lag.

Figure 9: Posterior mean of the credibility weight parameter against time lag,
with the dashed lines showing a 50% and 95% credible interval about the mean.
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4 Improving disability prediction

We have considered two Bayesian models which incorporate an economic indi-
cator. Our analysis of these models with the claims data summarized by Table
1 suggests that Models 3.5 and 3.9, with the credit spreads as the economic
indicator and a time lag ∆ = 5, would improve claims prediction. Here we
compare the claims prediction of the latter model against that of Model 3.1,
which does not incorporate any economic indicator.

Posterior distribution from MCMC

For Models 3.1 and 3.9 applied to the quarterly claims data, we used MCMC
techniques as outlined before to obtain 10 000 samples from each of the poste-
rior distributions of the parameters in Θ and Θ̃ = (ρ,Θ), respectively. From
these samples, we can calculate the empirical densities of the parameters. For
example, the posterior density g(ρ|D?I ) of the credibility weight parameter ρ is
plotted in Figure 10. The plot is approximately symmetrical about the mean
ρ̄ = 0.270, with the density tending to zero at values of ρ near zero and 0.5.

The predictive distribution

A considerable advantage of using the Bayesian approach to claims prediction
is that we obtain the predictive distribution of every entry Ni,j in the lower
triangle. With the predictive distribution at hand, one can do various analyses
of the total number of future claims. For example, one can calculate any risk
measure and thus perform a tail event analysis, which is very important for any
solvency consideration.

Using the relationship

f (Ni,j |D?I ) =
∫
f(Ni,j |θ̃) g(θ̃|D?I ) dθ̃, for each i+ j > I,

we can sample from the predictive densities f(Ni,j |D?I ) as follows. Let

θ̂ = (ρ̂, π̂0, . . . , π̂I , γ̂0, . . . , γ̂I , λ̂0, . . . , λ̂2I)

denote a sample from the empirical posterior joint density g(Θ̃|D?I ) of the pa-
rameters, obtained by the MCMC method. We use this sample to simulate from
Ni,j |θ̂, which by assumption is Poisson distributed with mean siπ̂iγ̂j λ̂i+j . The
result is a sample from Ni,j |D?I . We do this for each of the 10 000 samples from
the posterior joint density g(Θ̃|D?I ) to obtain 10 000 samples from the predictive
density f(Ni,j |D?I ). Repeating this procedure simultaneously for one sample θ̂
and all the cells in the lower triangle, we use the resulting samples to calculate
empirically the predictive density

f

 I∑
i=1

I∑
j=I−i+1

Ni,j

∣∣∣∣D?I


of the total number of future claims (that is, the sum of the cells in the lower
triangle) for Model 3.9. This empirical predictive density of the lower triangle is
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plotted in Figure 11. The vertical solid line shows the empirical posterior mean

E

 I∑
i=1

I∑
j=I−i+1

Ni,j

∣∣∣∣D?I
 =

I∑
i=1

I∑
j=I−i+1

siE
(
πiγjλi+j

∣∣∣∣D?I) (4.1)

and the vertical dashed lines show one posterior standard deviation about the
posterior mean. Notice from Figure 11 that we have positive skewness in the
predictive density of the total number of future claims.

Remark 4.1. In (4.1) we can no longer decouple λi+j as in (3.2) since λi+j now
depends on the observed credit spread data through the random walk which
projects the credit spread data beyond time period I (assumption (e′)).

The main result

As the disability frequency is an important quantity to measure the disabil-
ity risk of a portfolio, we examine how the prediction of the disability fre-
quency varies between the two models. For Model 3.1, it is given by (3.3) with
E (λi+j) = 1. For Model 3.9, the posterior mean predicted disability frequency
is given by

ˆ̂pi =
1
si

I−i∑
j=0

Ni,j +
I∑

j=I−i+1

E (πiγjλi+j |D?I ) , for i > 1.

For Model 3.9, the posterior mean predicted disability frequency is shown in
Figure 12 as a solid line, with the dashed lines indicating a 95% credible interval.
The posterior mean predicted disability frequency which results from adopting
Model 3.1 is also shown; it is the dashed-dotted line, also with a 95% credible
interval indicated by dotted lines. The effect of incorporating the credit spread
data is clear; the posterior mean predicted disability frequency is much higher
for Model 3.9 than for Model 3.1, especially at the later incurred periods where
most of the claims numbers are predicted. For example, for claims which were
incurred in period 47 (corresponding to the last quarter of 2008), Model 3.9 gives
the posterior mean predicted disability frequency p̄47 = 0.0228, whereas Model
3.1 gives p̄47 = 0.0145. The significantly higher predicted disability frequency
for Model 3.9 reflects the increase in credit spreads observed from calendar
period 43 onwards (see Figure 1(a)). The increasing credit spreads result in
the corresponding calendar period development factors increasing, which means
that the predicted number of claims increase too. Indeed, credit spreads were
at unusually high levels around calendar periods 47 and 48 (corresponding to
the last six months of 2008), due to a breakdown in trust between banks which
led to a severe liquidity crisis. If we believe that the crisis was a temporary
phenomenon which was highly unusual and had a less severe impact on insured
lives than on banks, then we may decide to adjust the credit spread data down-
wards. However, this is a matter of professional judgment and we have not done
any such adjustments in our analysis.

Examining the credible intervals in Figure 12, it is clear that they are wider
for Model 3.9 than for Model 3.1. This is due to the greater variation in the
calendar year development factors of Model 3.9; they are a function not only of
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Figure 10: The posterior density plot for the credibility weight parameter ρ
given D?I using credit spreads as the economic indicator with a time lag ∆ = 5
in Model 3.9. The solid vertical line shows the posterior mean and the vertical
dashed lines show one posterior standard deviation about the posterior mean.
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Figure 11: Empirical density function of the predicted total number of claims
using credit spreads as the economic indicator with a time lag ∆ = 5 in Model
3.9. The solid vertical line shows the posterior mean and the vertical dashed
lines show one posterior standard deviation about the posterior mean.
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the calendar year development factors of Model 3.1 (that is, λ(1)
k ), but also of

the credibility weight parameter ρ and the economic indicator data.
In summary, the incorporation of credit spread data into the model has

resulted in a marked difference in the estimation of the disability risk. Due to
the increasing credit spreads which were observed in 2008, the disability risk for
claims which were incurred in calendar year 2008 is significantly higher under
Model 3.9 than under Model 3.1, which does not incorporate economic data.
The results suggest that ignoring economic indicators when predicting claims
can result in a significant mis-estimation of the disability risk because these
economic indicators correlate with disability rates.
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Figure 12: The mean predicted disability rate for Model 3.9, with credit spreads
as the economic indicator and time lag ∆ = 5 quarter years, and for Model 3.1.
The dashed lines show a 95% credible interval about each mean.

5 Summary

In this paper, we propose a Bayesian model which incorporates an economic
indicator. The motivation is to include economic effects which affect the devel-
opment of the number of disability claims and hence improve the claims pre-
diction. We examined in detail two possible economic indicators: credit spread
and the unemployment rate. For the disability claims data we analyzed, there
was evidence that credit spreads are useful indicators for claims development,
but there was no compelling evidence for incorporating the unemployment rate.

To illustrate the impact of incorporating economic indicators into the Bayes-
ian model, we focused on the disability frequency, which is a measure of the
disability risk in a portfolio. Due to the current financial crisis, the mean pre-
dicted disability frequency increased sharply when using credit spreads as an
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economic indicator, as opposed to not using any economic indicator. The results
demonstrate how the incorporation of an economic indicator can significantly
alter the prediction of the disability risk.

While we found credit spreads to be a reasonable economic indicator, clearly
this depended on the data we analyzed. For other datasets, not only may
other economic indicators be relevant, but multiple economic indicators could
be incorporated into the Bayesian model. However, many economists use credit
spreads as a time-lagged indicator of the state of an economy.

It would be interesting to apply a Bayesian model with economic indicators
to the amounts of the disability claims, and not only to the number of claims,
as well as the effect of economic conditions on the duration of income disability
insurance. Unfortunately, we did not have the data to perform these analyses.
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