
Linear Functional Analysis, Second Edition

Misprints and further comments:

• Page 50, Ex. 2.12 (b): replace zn = (r − n−1)z with zn = (1− n−1)z.

• Page 55, Ex. 3.8: replace (·, ·) : Fk × Fk → F with (·, ·) : ℓ2 × ℓ2 → C .

• Page 72, Ex. 3.20: replace ‘inner product space’ with ‘Hilbert space’

• Page 83, Proof of Theorem 3.56: replace the given definition of the function fδ with the

following definition:

fδ(x) =

{
0, if x ∈ [0, δ] ∪ [π − δ, π],

f(x), if x ∈ (δ, π − δ),

with 0 < δ < π/2.

• Page 81, Ex. 3.25: change x ∈ X to x ∈ M .

• Page 85, Ex. 3.28 (c): delete the term (2nn!)2 on the right hand side of the formula

(the calculation in the solution is correct, but needs to be divided by (2nn!)2 to yield the formula

in the question)

• Page 114: Since

∥
∞∑
j=1

2−jxj∥ ≤
∞∑
j=1

2−j = 1,

the series
∑∞

j=1 2
−jxj is absolutely convergent, so it follows immediately from Theorem 2.30

that it converges to some x ∈ B0,X(1) (the partial sums argument given on page 114 is written

slightly incorrectly, and is not needed anyway since it is already in the proof of Theorem 2.30).

• Page 118, line 8: change Im(Tf ) = C[0, 1] to Im(Tf ) ⊃ C[0, 1].

• Page 135: add the following hypothesis to Corollary 5.22: ‘Suppose that X ̸= {0}’.

• Page 144, Exercise 5.11: in addition to being non-empty and convex, the set A must be open.

In fact, if A is not open the stated result need not be true — we can construct an example as

follows.

Let x0 = 0, choose U to be a dense linear subspace of X with U ̸= X (for example, see

Exercise 5.2 (c); see also Exercise 5.7), and choose a point a ̸∈ U and let A = {a}. Since

U is dense, its closure U = X, so there is no closed hyperplane H containing U (the only

closed subspace containing U is X, which of course intersects A and is not a hyperplane, see

Definition 5.31).

In addition, on rereading this exercise and its solution, it seems that some further explanation

would clarify the solution, so a rewritten version is as follows.

Choose a0 ∈ A and let w0 = x0 − a0 and C = w0 + A − B, as before. We first note that

w0 ∈ U ⇐⇒ x0 − a0 = u, for some u ∈ U , that is, x0 − u ∈ A, which contradicts the



condition A ∩ (x0 + U) = ø, so we have w0 ̸∈ U . Hence, we can define W = Sp {w0} ⊕ U and

fW (αw0 + u) = α for α ∈ R, u ∈ U . Next, it also follows from A ∩ (x0 + U) = ø that, for

any u ∈ U , w0 + u ̸∈ C, and so pC(w0 + u) ⩾ 1. Hence, fW satisfies (5.3), and so fW has

an extension f ∈ X ′. Now, with γ = f(x0), it follows that f(a) < γ = f(x0 + u) for a ∈ A,

u ∈ U , that is, x0 + U ⊂ H = f−1(γ), and A ∩H = ø.

• Page 160, proof of Lemma 5.67: the first part of the proof that (b) =⇒ (a) should read:

Then, by Theorem 2.11 (b), for each x ∈ X the set {∥fn(x)∥ : n = 1, 2, . . . } is bounded,

so the boundedness assertion in condition (a) follows from the Uniform Boundedness Theorem

(Theorem 4.52).

• Page 187: the proof of Theorem 6.39 (a) refers to Lemma 4.35, but the statement of Lemma 4.35

is not strong enough to give the required result. The required result is as follows.

Lemma 4.35

Let X, Y , Z be normed linear spaces, and T1 ∈ B(X, Y ), T2 ∈ B(Y, Z).

(A) If T1, T2 are invertible then:

(a) T−1
1 is invertible with inverse T1;

(b) T2T1 is invertible with inverse T−1
1 T−1

2 .

(B) If X = Y = Z and T1 and T2 commute then:

(a) if T1 is invertible then T−1
1 and T2 commute;

(b) if T1T2 is invertible then T1 and T2 are invertible.

Proof

(A) The proof is in Exercise 4.15.

(B) (a) Multiply each side of the equation ST = TS by S−1.

(B) (b) Writing S = T1T2, the inverse of T1 (for example) is S−1T2 (check).

• Page 232-3, Exercise 7.27, and its solution: since we allow r(S) = ∞ here, statements

of the form n = 1, . . . , r(S) seem somewhat poorly written; these should be replaced with

1 ⩽ n ⩽ r(S) (with the obvious meaning of n ⩽ ∞).

• Page 255, line −3: change ξ0 = ξ(a) to ξ0 = h(a).

• Pages 259-260: the equations at the bottom of p. 259 and the top of p. 260 are missing an en
throughout the eigenvector expansions, and should read:

u−
k∑

n=1

(u, en)en = G
(
Tu−

k∑
n=1

(Tu, en)en
)
,

∥∥ u−
k∑

n=1

(u, en)en
∥∥
X

=
∥∥ G

(
Tu−

k∑
n=1

(Tu, en)en
) ∥∥

X

⩽ M(b− a)1/2
∥∥ Tu−

k∑
n=1

(Tu, en)en
∥∥
H → 0, as k → ∞



• Page 262, line 6: (8.31) should be (8.27).

• Page 281: the solutions to Exercises 5.2 and 5.3 are slightly mixed up, and one part is missing.

For simplicity, the full statements of these exercises and their solutions are written out below.

Ex. 5.2 Show the following:

(a) ℓp is separable for 1 ⩽ p < ∞;

(b) ℓ∞ is not separable;

(c) S is separable and dense in ℓp, 1 ⩽ p < ∞, but S is not dense in ℓ∞.

Sln. 5.2 (a) A simple adaptation of the proof of Theorem 3.52 (b) shows that ℓp is separable for all

1 ⩽ p < ∞.

(b) Let xk, k ⩾ 1, be an arbitrary sequence in ℓ∞, with each xk having the form xk =

(xk1, x
k
2, . . . ). Now define z ∈ ℓ∞ as follows: for each n ⩾ 1, let

zn =

{
xnn + 1, if |xnn| ⩽ 1,

0, if |xnn| > 1.

Clearly, ∥z − xk∥∞ ⩾ |zk − xkk| = 1 for all k ⩾ 1, so the set {xk} is not dense in ℓ∞.

(c) Suppose that 1 ⩽ p < ∞, and let z ∈ ℓp and ϵ > 0 be arbitrary. By definition, there

exists an integer k ⩾ 1 such that
(∑∞

n=k |zn|
p
)1/p

< ϵ. Now define x ∈ S by xn = zn,

n ⩽ k, xn = 0, n > k. Then ∥z − x∥p < ϵ, which shows that S is dense in ℓp. Since ℓp

is separable, S must be separable (by Theorem 1.43).

Next, define z = (1, 1, . . . ) ∈ ℓ∞. If x ∈ S then x has only finitely many non-zero

entries, so ∥z − x∥∞ ⩾ 1, and hence S cannot be dense in ℓ∞.

Ex. 5.3 Let c0 be the linear subspace of ℓ∞ consisting of all sequences which converge to 0. Show

the following:

(a) S is dense in c0, and S and c0 are separable (with respect to the ℓ∞ norm);

(b) c0 is closed in ℓ∞;

(c) A linear operator Tc0 : ℓ1 → c′0, can be constructed as in Theorem 5.5, and Tc0 is an

isometric isomorphism.

Sln. 5.3 (a) An adaptation of the proof of Theorem 3.52 (b) shows that the (countable) set of

sequences in S with rational terms is dense in S. Next, let z ∈ c0 and ϵ > 0 be arbitrary.

By the definition of c0, there exists k ⩾ 1 such that |zn| < ϵ for all n ⩾ k. Now define

x ∈ S by xn = zn, n ⩽ k, xn = 0, n > k. Then ∥z − x∥∞ < ϵ, so S is dense in c0.

Hence, S and c0 are separable.

(b) Suppose that c0 is not closed in ℓ∞. Then there exists a sequence xk ∈ c0, k = 1, 2, . . . ,

and an x ∈ ℓ∞ \ c0 such that ∥xk − x∥∞ → 0. Since x ̸∈ c0, there is a δ > 0 such that

|xn| > δ for infinitely many n ⩾ 1. However, for each k ⩾ 1 we have limn→∞ |xkn| = 0,

so by the definition of ∥ · ∥∞, ∥xk − x∥∞ ⩾ δ which is a contradiction.

(c) The proof that Tc0 : ℓ
1 → (c0)

′, is a linear isometric isomorphism now follows the proof

of Theorem 5.5, with some minor differences to the inequalities due to the sequences

lying in ℓ∞ and ℓ1, rather than in ℓp and ℓq.



• Page 284, Solution 5.14: in line 4 of the solution, replace ‘Since X ′′ is a Banach space. . . ’

with ‘Since X ′ is a Banach space. . . ’.

• Page 292, Solution 6.19: the given solution is incomplete. At one point the solution says

‘Hence if |λ| < 2 then λ ∈ σ(T ) . . . ’, but the argument given to prove this in fact only shows

that at least one of λ,−λ must belong to σ(T ). It will complete the proof if we can show that

λ ∈ σ(T ) ⇐⇒ −λ ∈ σ(T ).

To do this we define S : ℓ2 → ℓ2 by

S(x1, x2, x3, x4, . . . ) = (x1,−x2, x3,−x4, . . . ).

Then S ∈ B(ℓ2) and S2 = I (so S is invertible), and we have

STS(x1, x2, x3, x4, . . . ) = ST (x1,−x2, x3,−x4, . . . )

= S(0, 4x1,−x2, 4x3,−x4, . . . )

= (0,−4x1,−x2,−4x3,−x4, . . . )

= −T (x1, x2, x3, x4, . . . ).

Hence,

λ ̸∈ σ(T ) ⇐⇒ S(T − λI)S is invertible

⇐⇒ STS − λI is invertible

⇐⇒ −T − λI is invertible

⇐⇒ T + λI is invertible

⇐⇒ −λ ̸∈ σ(T ),

which completes the proof.

• Page 300, Solution 7.11 (c): For the definition of a Hilbert-Schmidt operator to make sense

we need to assume that H is separable, and so has an orthonormal basis (the rest of the exercise

does not require this). The given solution then works if the orthonormal sequence {en} is a

basis for H. If not, let Y = Sp{en} and let {gn} be an orthonormal basis for Y ⊥. The union

{en} ∪ {gn} is then a basis for H (see Exercise 3.26) and it is clear from the definitions that

Tgn = 0 for all the vectors in {gn}. Hence, we can use the basis {en} ∪ {gn}, together with the

previous calculation, to show that T is Hilbert-Schmidt.

• Page 302, Solution 7.16: this solution should use the adjoint operator T ∗ as follows.

Since H is not separable it follows from Theorem 7.8 that ImT ∗ ̸= H (by Theorem 7.14, T ∗ is

compact), so KerT = KerT ∗∗ ̸= {0}, by Lemma 6.11 (c). Thus, there exists e ̸= 0 such that

Te = 0, that is, e is an eigenvector of T with eigenvalue 0.


